To see the other types of publications on this topic, follow the link: Uranium hexafluoride.

Journal articles on the topic 'Uranium hexafluoride'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Uranium hexafluoride.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Nadezhdin, Igor S., and Nikolay S. Krinitsyn. "Harmonization Values of Downloads and Operating Modes of Interconnected Devices Production of Uranium Hexafluoride." Advanced Materials Research 1084 (January 2015): 655–60. http://dx.doi.org/10.4028/www.scientific.net/amr.1084.655.

Full text
Abstract:
The article is devoted to the problem of load agreement of solid-phase components into the fluorination and capture apparatus of two technological of uranium hexafluoride production lines. The article describes the process of developing a model of the horizontal part of the combined type apparatus which was included in the dynamic mathematical model of uranium hexafluoride production. The developed algorithm of load agreement was studied on dynamic mathematical model of uranium hexafluoride production.
APA, Harvard, Vancouver, ISO, and other styles
2

Ezhov, V. K. "Solubility of Uranium Hexafluoride in Liquid Metal Penta- and Hexafluorides." Atomic Energy 123, no. 3 (January 2018): 173–76. http://dx.doi.org/10.1007/s10512-018-0320-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

YATO, Yumio, Osamu SUTO, and Hideyuki FUNASAKA. "Uranium Isotope Exchange between Uranium Hexafluoride and Uranium Pentafluoride." Journal of Nuclear Science and Technology 32, no. 5 (May 1995): 430–38. http://dx.doi.org/10.1080/18811248.1995.9731728.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Orlov, Аleksey A., and Roman V. Malyugin. "Way to Obtain Uranium Hexafluoride." Advanced Materials Research 1084 (January 2015): 338–41. http://dx.doi.org/10.4028/www.scientific.net/amr.1084.338.

Full text
Abstract:
The article contains an analytical overview of technologies used for obtaining UF6. The structures of devices for obtaining UF6 have been considered. Their advantages and drawbacks have been outlined. It has been shown that plasma reactors using uranium tetrafluoride as a raw material are the most efficient in obtaining UF6.
APA, Harvard, Vancouver, ISO, and other styles
5

Orlov, Aleksey A., and Roman V. Malyugin. "Methods of Uranium Hexafluoride Purification." Advanced Materials Research 1084 (January 2015): 46–49. http://dx.doi.org/10.4028/www.scientific.net/amr.1084.46.

Full text
Abstract:
The article contains an analytical overview of techniques used for UF6 purification. Structures of respective devices have been considered. Their advantages and drawbacks have been outlined. It has been shown that heat discharge desublimators and multi-chamber devices with two heated walls are the most efficient in UF6 purification.
APA, Harvard, Vancouver, ISO, and other styles
6

Armstrong, D. P., D. A. Harkins, R. N. Compton, and D. Ding. "Multiphoton ionization of uranium hexafluoride." Journal of Chemical Physics 100, no. 1 (January 1994): 28–43. http://dx.doi.org/10.1063/1.467270.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vlasov, A. A., E. A. Filippov, L. L. Fadeev, and A. I. Vinnikov. "Safe shipment of uranium hexafluoride." Soviet Atomic Energy 72, no. 2 (February 1992): 163–64. http://dx.doi.org/10.1007/bf01121092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Klouda, Karel, Václav Rak, and Josef Vachuška. "Intercalation of uranium hexafluoride into graphite." Collection of Czechoslovak Chemical Communications 50, no. 4 (1985): 947–55. http://dx.doi.org/10.1135/cccc19850947.

Full text
Abstract:
Intercalation of UF6 into graphite, both from the gaseous phase and from the Ledon 113 solution, was studied. The amount of intercalated UF6 from the gaseous phase was found to be inversely proportional to the size of graphite particles. Intercalation increases with the increasing temperature and surface area of graphite. The contact of gaseous UF6 with graphite led to the formation of β-UF5 that is not intercalated. In the Ledon solution, β-UF5 is not formed. "Passivation" of graphite by elementary fluorine also prevents the formation of β-UF5 but the amount of intercalated UF6 decreases. The intercalation of UF6 into graphite from the gaseous phase is accompanied by the increase of the distance between the parallel carbon atom layers up to the values of about 884 pm. Ternary intercalates graphite-UF6-Ledon 113 are formed during the intercalation of UF6 from the Ledon 113 solutions and the distance between the parallel carbon atom layers is 848-875 pm. Thermogravimetry in the presence of air revealed that the binary intercalates graphite-UF6 decompose in a 3-step reaction while the ternary intercalates decompose in a 4-step reaction. In both cases uranium hexafluoride is not released but acts as a fluorination agent on the graphite carbon.
APA, Harvard, Vancouver, ISO, and other styles
9

Belyntsev, A. M., G. S. Sergeev, O. B. Gromov, A. A. Bychkov, A. V. Ivanov, S. I. Kamordin, P. I. Mikheev, et al. "Intensification of evaporation of uranium hexafluoride." Theoretical Foundations of Chemical Engineering 47, no. 4 (July 2013): 499–504. http://dx.doi.org/10.1134/s0040579513040040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lyman, John L., Glenn Laguna, and N. R. Greiner. "Reactions of uranium hexafluoride photolysis products." Journal of Chemical Physics 82, no. 1 (January 1985): 175–82. http://dx.doi.org/10.1063/1.448791.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Gordon, E. B., V. A. Dubovitskii, V. I. Matyushenko, V. D. Sizov, and Yu A. Kolesnikov. "Uranium hexafluoride reduction with hydrogen atoms." Kinetics and Catalysis 47, no. 1 (January 2006): 148–56. http://dx.doi.org/10.1134/s0023158406010204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Bacher, W., W. Bier, and A. Guber. "Reaction of uranium hexafluoride with fluoroelastomers." Journal of Fluorine Chemistry 35, no. 1 (February 1987): 207. http://dx.doi.org/10.1016/0022-1139(87)95164-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Morel, Bertrand, Ania Selmi, Laurent Moch, Jean-Michel Hiltbrunner, Mickael Achour, Rachid Benzouaa, Aurélien Bock, et al. "Surface reactivity of uranium hexafluoride (UF6)." Comptes Rendus Chimie 21, no. 8 (August 2018): 782–90. http://dx.doi.org/10.1016/j.crci.2018.05.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Hunt, Rodney D., Lester Andrews, and L. Mac Toth. "Matrix infrared spectra of hydrogen chloride complexes with uranium hexafluoride, tungsten hexafluoride and molybdenum hexafluoride." Inorganic Chemistry 30, no. 20 (October 1991): 3829–32. http://dx.doi.org/10.1021/ic00020a011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Hunt, Rodney D., Lester Andrews, and L. M. Toth. "Infrared spectra of uranium hexafluoride, tungsten hexafluoride, molybdenum hexafluoride, and sulfur hexafluoride complexes with hydrogen fluoride in solid argon." Journal of Physical Chemistry 95, no. 3 (February 1991): 1183–88. http://dx.doi.org/10.1021/j100156a028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Klouda, Karel, V/'alav Rak, Antonín Poŝta, and Václav Dêdek. "The intercalation of uranium hexafluoride into graphite." Journal of Fluorine Chemistry 29, no. 1-2 (August 1985): 63. http://dx.doi.org/10.1016/s0022-1139(00)83298-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Lind, Maria C., Stephen L. Garrison, and James M. Becnel. "Trimolecular Reactions of Uranium Hexafluoride with Water." Journal of Physical Chemistry A 114, no. 13 (April 8, 2010): 4641–46. http://dx.doi.org/10.1021/jp909368g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Achour, Mickaël, Laure Martinelli, Sylvie Chatain, Laurent Jouffret, Marc Dubois, Pierre Bonnet, Ania Selmi, Bertrand Morel, and Sylvie Delpech. "Corrosion of iron in liquid uranium hexafluoride." Corrosion Engineering, Science and Technology 52, no. 8 (October 9, 2017): 611–17. http://dx.doi.org/10.1080/1478422x.2017.1344039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

van der Merwe, P. du T. "On the infrared‐active overtonesnν3of uranium hexafluoride." Journal of Chemical Physics 99, no. 7 (October 1993): 5030–35. http://dx.doi.org/10.1063/1.466004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Menghini, M., A. Montone, P. Morales, L. Nencini, and P. Dore. "Effects of collisions on uranium hexafluoride fluorescence." Chemical Physics Letters 150, no. 3-4 (September 1988): 204–10. http://dx.doi.org/10.1016/0009-2614(88)80028-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Hubbard, Joshua A., Meng-Dawn Cheng, Lawrence Cheung, Jared R. Kirsch, Jason M. Richards, and Glenn A. Fugate. "UO2F2 particulate formation in an impinging jet gas reactor." Reaction Chemistry & Engineering 6, no. 8 (2021): 1428–47. http://dx.doi.org/10.1039/d1re00105a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Babenko, S. P., and Andrey V. Badin. "ABOUT CALCULATION OF THE DETERMINISTIC EFFECT OF PROTEINURIA IN EMPLOYEES OF ENRICHMENT PLANTS OF NUCLEAR INDUSTRY." Hygiene and sanitation 97, no. 4 (April 15, 2018): 315–21. http://dx.doi.org/10.18821/0016-9900-2018-97-4-315-321.

Full text
Abstract:
In this paper, we consider the impacts of gaseous uranium hexafluoride used at concentrating plants of the nuclear industry on the human body. The appearance of uranium hexafluoride in the air of the working premises is accompanied by hydrolysis and the formation of substances that can enter the human body and bring atoms of uranium and fluorine. The article describes the method of the determination of the working conditions preventing the development of occupational diseases in employees. The method is based both on the calculation of the number of toxic substances entering the human body in routine working conditions and comparison of this number with the threshold values for different deterministic effects. The proteinuria (protein content in urine) is selected as the considered deterministic effect. We used the published statistics on the threshold of the daily release from the human body toxic substances, long-entering the body in small doses and seem to be responsible for the occurrence of urologic diseases. The calculation was performed in the framework of a complex model describing the air pollution with products of hydrolysis of uranium hexafluoride entering of toxic substances in the human body, in working premises, as well as the passing of uranium and fluorine through the body. This model constructed by the authors of this article was described in previous publications. To ensure that the theoretical methods give the same results as the experimental, the results obtained by the standard method for employees of one of the enterprises of nuclear industry were compared with the data obtained using the theoretical method under the same working conditions. The considered theoretical method can complement and enrich the existing experimental methods for the identification of the onset of occupational diseases based on the sampling of different biomaterials from the employees working at enterprises.
APA, Harvard, Vancouver, ISO, and other styles
23

Babenko, S. P., and A. V. Bad'in. "Recommendations for Choosing a Model Describing the Human Exposure to Uranium Hexafluoride." Radio Engineering, no. 1 (March 5, 2020): 31–42. http://dx.doi.org/10.36027/rdeng.0120.0000161.

Full text
Abstract:
The article notes the fact that uranium hexafluoride (UHF) is the only uranium compound in a gaseous state under conditions close to normal to be used in the enrichment of natural uranium with an isotope. It is noted that during the hydrolysis of UHF in the air of a working room, this room is polluted with gases and aerosols that are carriers of uranium and fluorine atoms, which have a negative chemical and radiation effect on the human body. This, of course, poses problems when using uranium hexafluoride at the enterprises of the nuclear industry both in everyday work and, especially, in possible emergency situations. The problems lie with a need for protective measures, development of the quantitative assessment methods for the intake of toxic substances, and establishment of relationships between the amount of incorporated (ingested) substance and the measure of its effect on the body. A review of certain publications on the quantitative description of the uranium and fluorine intake in the body of employees is given. The paper notes an involvement of this article’s authors in solving this issue in their previous works too. Their calculation methods are described. The conditions under which they were carried out and the experimental results that they used were described. The article presents the calculation results both of the uranium mass intake in the body (by the time t) that characterizes the toxic effect of uranium and of the number Q of decays accumulated in the body that characterize the radiation effect. The uranium penetration through the skin (percutaneous intake) in an emergency and under normal production conditions is considered. There is given a description of two models suitable for calculations, which are distinguished by various accounting for metabolism when uranium moves from the UHF source to the exit from the human body in the natural way. It is indicated that one of the models was partially borrowed from publications of the International Commission on Radiological Protection (ICRP). The results obtained using two different models are compared and recommendations are made regarding their use depending on the tasks assigned to the researcher.
APA, Harvard, Vancouver, ISO, and other styles
24

Sherrow, Susan A., and Rodney D. Hunt. "FTIR spectra of the hydrolysis of uranium hexafluoride." Journal of Physical Chemistry 96, no. 3 (February 1992): 1095–99. http://dx.doi.org/10.1021/j100182a015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Benzi, V., and D. Mostacci. "Neutrons from (α, n) reactions in uranium hexafluoride." Applied Radiation and Isotopes 48, no. 2 (February 1997): 213–14. http://dx.doi.org/10.1016/s0969-8043(96)00180-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Croft, Stephen, Martyn T. Swinhoe, and Karen A. Miller. "Alpha particle induced gamma yields in uranium hexafluoride." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 698 (January 2013): 192–95. http://dx.doi.org/10.1016/j.nima.2012.10.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Menghini, M., P. Morales, P. Dore, and M. I. Schisano. "On the photodissociation of uranium hexafluoride in theBband." Journal of Chemical Physics 84, no. 11 (June 1986): 6521–22. http://dx.doi.org/10.1063/1.450699.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Vorster, S. W., and F. P. A. Robinson. "Corrosion of copper alloys by gaseous uranium hexafluoride." British Corrosion Journal 27, no. 2 (January 1992): 151–56. http://dx.doi.org/10.1179/bcj.1992.27.2.151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Gromov, O. B., A. A. Mikhalichenko, P. I. Mikheev, V. I. Nikonov, and V. G. Soloviov. "Reduction of uranium hexafluoride adsorbed on sodium fluoride." Atomic Energy 109, no. 2 (November 25, 2010): 96–101. http://dx.doi.org/10.1007/s10512-010-9329-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Asprey, Larned B., Scott A. Kinkead, and P. Gary Eller. "Low-Temperature Conversion of Uranium Oxides to Uranium Hexafluoride Using Dioxygen Difluoride." Nuclear Technology 73, no. 1 (April 1986): 69–71. http://dx.doi.org/10.13182/nt86-a16202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Orlov, Aleksey A., and Roman V. Malyugin. "Approaches to Modeling UF6 Desublimation Process." Advanced Materials Research 1084 (January 2015): 620–24. http://dx.doi.org/10.4028/www.scientific.net/amr.1084.620.

Full text
Abstract:
The article contains an overview and analysis of the existing approaches to mathematical modeling of uranium hexafluoride desublimation process. The drawbacks of the existing mathematical models have been shown. The concept of conducting theoretical researches and optimizing desublimation process has been developed.
APA, Harvard, Vancouver, ISO, and other styles
32

But, L. A., V. D. Vdovichenko, O. B. Gromov, A. N. Evdokimov, A. V. Ivanov, I. A. Logvinenko, P. I. Mikheev, D. V. Fedorova, and V. V. Shilov. "Synthesis of powder uranium tetrafluoride from depleted uranium hexafluoride in hydrogen fluoride flame." Theoretical Foundations of Chemical Engineering 50, no. 5 (September 2016): 884–89. http://dx.doi.org/10.1134/s0040579516050043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

But, L. A., V. D. Vdovichenko, O. B. Gromov, A. N. Evdokimov, A. V. Ivanov, I. A. Logvinenko, P. I. Mikheev, D. V. Fedorova, and V. V. Shilov. "Synthesis of powder uranium tetrafluoride from depleted uranium hexafluoride in hydrogen fluorine flame." Theoretical Foundations of Chemical Engineering 51, no. 4 (July 2017): 594–98. http://dx.doi.org/10.1134/s0040579517040030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Seneda, J. A., F. F. Figueiredo, A. Abrão, F. M. S. Carvalho, and E. U. C. Frajndlich. "Recovery of uranium from the filtrate of ‘ammonium diuranate’ prepared from uranium hexafluoride." Journal of Alloys and Compounds 323-324 (July 2001): 838–41. http://dx.doi.org/10.1016/s0925-8388(01)01156-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Avtandilashvili, Maia, Matthew Puncher, Stacey L. McComish, and Sergei Y. Tolmachev. "US Transuranium and Uranium Registries case study on accidental exposure to uranium hexafluoride." Journal of Radiological Protection 35, no. 1 (January 12, 2015): 129–51. http://dx.doi.org/10.1088/0952-4746/35/1/129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Brownstein, S. "Exchange between uranium hexafluoride and some of its complexes." Journal of Fluorine Chemistry 37, no. 1 (October 1987): 21–27. http://dx.doi.org/10.1016/s0022-1139(00)83082-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Kunakov, S. K., and E. E. Son. "Probe diagnostics of nuclear-excited plasma of uranium hexafluoride." High Temperature 48, no. 6 (December 2010): 789–805. http://dx.doi.org/10.1134/s0018151x10060052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Miyazawa, T., Y. Tezuka, A. Shimoda, H. Takahashi, and M. Aritomi. "Development of ‘MST-30’ Packaging for Enriched Uranium Hexafluoride." International Journal of Radioactive Materials Transport 12, no. 4 (January 2001): 225–32. http://dx.doi.org/10.1179/rmt.2001.12.4.225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Kalinin, B. A., V. E. Atanov, and O. E. Aleksandrov. "Metastable ions in the mass spectrum of uranium hexafluoride." Technical Physics 47, no. 5 (May 2002): 648–50. http://dx.doi.org/10.1134/1.1479997.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Lyman, John L., and Glenn Laguna. "Reactions of methyl and ethyl radicals with uranium hexafluoride." Journal of Chemical Physics 82, no. 1 (January 1985): 183–87. http://dx.doi.org/10.1063/1.448780.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Ursu, I., D. E. Demco, M. Bogdan, P. Fitori, and A. Darabont. "Indirect NMR detection of 235U in gaseous uranium hexafluoride." Journal de Physique Lettres 46, no. 11 (1985): 493–97. http://dx.doi.org/10.1051/jphyslet:019850046011049300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Richards, Jason M., Leigh R. Martin, Glenn A. Fugate, and Meng-Dawn Cheng. "Kinetic investigation of the hydrolysis of uranium hexafluoride gas." RSC Advances 10, no. 57 (2020): 34729–31. http://dx.doi.org/10.1039/d0ra05520d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

El-Sheikh, S. M. "The structure of different phases for solid uranium hexafluoride." Acta Crystallographica Section A Foundations of Crystallography 63, a1 (August 22, 2007): s162. http://dx.doi.org/10.1107/s0108767307096341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Ezhov, V. K. "Choice of Fine Packing for Rectification of Uranium Hexafluoride." Atomic Energy 123, no. 2 (December 2017): 111–16. http://dx.doi.org/10.1007/s10512-017-0310-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Ezhov, V. K. "Hydraulic Resistance of Fine Packing in Uranium Hexafluoride Rectification." Atomic Energy 128, no. 3 (July 2020): 151–54. http://dx.doi.org/10.1007/s10512-020-00666-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Okada, Y., S. Isomura, K. Ashimine, and K. Takeuchi. "Condensation of uranium hexafluoride in supersonic Laval nozzle flow." Applied Physics B: Lasers and Optics 67, no. 2 (August 1, 1998): 247–51. http://dx.doi.org/10.1007/s003400050501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Saniger, JoséM, Fernando Alba, Silvestre J. Garrido, and Evaristo Avendaño. "The kinetics of aluminum-7075 corrosion by uranium hexafluoride." Corrosion Science 30, no. 8-9 (January 1990): 903–13. http://dx.doi.org/10.1016/0010-938x(90)90012-t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Mialle, S., S. Richter, C. Hennessy, J. Truyens, U. Jacobsson, and Y. Aregbe. "Certification of uranium hexafluoride reference materials for isotopic composition." Journal of Radioanalytical and Nuclear Chemistry 305, no. 1 (December 20, 2014): 255–66. http://dx.doi.org/10.1007/s10967-014-3843-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

McGhee, Laurence, and John M. Winfield. "Oxidation of tellurium 'by molybdenum and uranium hexafluoride in acetonitrile and reactions between uranium hexafluoride and dichlorine or hydrogen chloride in acetonitrile." Journal of Fluorine Chemistry 57, no. 1-3 (April 1992): 147–54. http://dx.doi.org/10.1016/s0022-1139(00)82826-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Gagliardi, Laura, Andrew Willetts, Chris-Kriton Skylaris, Nicholas C. Handy, Steven Spencer, Andrew G. Ioannou, and Adrian M. Simper. "A Relativistic Density Functional Study on the Uranium Hexafluoride and Plutonium Hexafluoride Monomer and Dimer Species." Journal of the American Chemical Society 120, no. 45 (November 1998): 11727–31. http://dx.doi.org/10.1021/ja9811492.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography