Academic literature on the topic 'Uranium Absorption and adsorption'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Uranium Absorption and adsorption.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Uranium Absorption and adsorption"

1

He, Dianxiong, Ni Tan, Xiaomei Luo, Xuechun Yang, Kang Ji, Jingwen Han, Can Chen, and Yaqing Liu. "Preparation, uranium (VI) absorption and reuseability of marine fungus mycelium modified by the bis-amidoxime-based groups." Radiochimica Acta 108, no. 1 (December 18, 2019): 37–49. http://dx.doi.org/10.1515/ract-2018-3063.

Full text
Abstract:
Abstract Bis-amidoxime-based claw-like-functionalized marine fungus material (ZZF51-GPTS-DCDA-AM) was prepared for study to absorb the low concentration uranium (VI) from aqueous solution. A series of characterization methods such as SEM, TGA and FT-IR were applied for the functionalized materials before and after modification and adsorption. The experimental results suggested that the amidoxime groups were successfully grafted onto the surface of mycelium powder and provided the special binding sites for the absorption of uranium (VI). In the absorption research, uranium (VI) initial concentration, pH and equilibrium time were optimized as 40 mg L−1, 6.0, and 110 min by L43 orthogonal experiment, respectively, and the maximum absorption capacity of the prepared material was 370.85 mg g−1 under the optimum batch conditions. After five cycling process, the desorption rate and regeneration efficiency of the modified mycelium were found to be 80.29 % and 94.51 %, respectively, which indicated that the material had an adequately high reusability property as a cleanup tool. The well known Langmuir and Freundlich isotherm adsorption model fitting found that the modified materials had both monolayer and bilayer adsorption to uranium (VI) ions. Simultaneously, the pseudo-second-order model was better to illustrated the adsorption kinetics process. The enhanced adsorption capacity of uranium (VI) by the modified fungus materials over raw biomass was mainly owing to the strong chelation of amidoxime groups and uranium (VI) ions.
APA, Harvard, Vancouver, ISO, and other styles
2

Tian, Kun, Shuting Zhuang, Jinling Wu, and Jianlong Wang. "Metal organic framework (La-PDA) as an effective adsorbent for the removal of uranium(VI) from aqueous solution." Radiochimica Acta 108, no. 3 (March 26, 2020): 195–206. http://dx.doi.org/10.1515/ract-2019-3145.

Full text
Abstract:
AbstractA two-dimensional lanthanum(III) porous coordination polymer was prepared, characterized and applied as an efficient adsorbent for the removal of uranium from aqueous solution. Lanthanum(III) was the metal center of MOFs, and the deprotonated anions of pyridine-2,6-dicarboxylic acid (H2PDA), PDA2− was the organic ligand, this MOF was name as La-PDA, which was synthesized by hydrothermal reaction method. Scanning electron microscope (SEM), Fourier transform infrared (FTIR), powder X-ray diffraction (PXRD) and thermal gravimetric (TG) analysis were used for characterization, and the results indicated that the La-PDA composites were successfully prepared. Compared with traditional adsorbents of uranium, La-PDA showed excellent adsorption properties. The adsorption capacity was 247.6 mg g−1 at 298 K and pH 4.0. The adsorption equilibrium achieved within 120 min, and the adsorption process was exothermic and spontaneous. The absorption mechanism of La-PDA was also explored, from the XPS spectra, the pyridine-like nitrogen atoms (C=N–C) and carboxyl oxygen atoms (–COO–) contributed to the adsorption of uranium. The results suggested that PDA2− was a potential ligand of uranium adsorption, La-PDA composites were effective adsorbents for the removal of uranium from aqueous solution.
APA, Harvard, Vancouver, ISO, and other styles
3

Shen, Jiang Nan, Jie Yu, Yue Xia Chu, Yong Zhou, and Wei Jun Chen. "Preparation and Uranium Sorption Performance of Amidoximated Polyacrylonitrile/Organobentonite Nano Composite." Advanced Materials Research 476-478 (February 2012): 2317–22. http://dx.doi.org/10.4028/www.scientific.net/amr.476-478.2317.

Full text
Abstract:
Polyacrylonitrile/montmorillonite (PAN/MMT) nanocomposite with amidoxime functionality was prepared from acrylonitrile monomer(AN) and montmorillonite(MMT) through in-situ intercalation polymerization. Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction patter (XRD) were employed to characterize the obtained Na-MMT、Organ-MMT、PAN/MMT、APAN/MMT. Effects of preparing conditions of APAN/MMT on adsorption of uranium were investigated. The FT-IR spectra show that the new absorption band at 1653 cm-1( ) appears and the absorption band at 2243 cm-1(-CN) disappears on the spectrum of APAN/MMT, it indicates that the AN and MMT are successfully polymerized by in-situ polymerization and the PAN/MMT is amidoxime functionalized. The APAN/MMT nanocomposite completely lose the X-ray diffraction. The adsorption results show that the obtained APAN-MMT gives uranium adsorption capacity of 3.06 mg.g-1 under following conditions: uranium ion concentration of 10 mg/L, AM mass concentration of 80.0%, initiator of 4.5%, polymerization temperature of 70 °C,polymerization time of 3 h, pH of 7 and amidoxime functionalized reaction time of 2 h.
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Juan, Jin Wang, Wei Wang, and Xuetong Zhang. "Symbiotic Aerogel Fibers Made via In-Situ Gelation of Aramid Nanofibers with Polyamidoxime for Uranium Extraction." Molecules 24, no. 9 (May 11, 2019): 1821. http://dx.doi.org/10.3390/molecules24091821.

Full text
Abstract:
The uranium reserve in seawater is enormous, but its concentration is extremely low and plenty of interfering ions exist; therefore, it is a great challenge to extract uranium from seawater with high efficiency and high selectivity. In this work, a symbiotic aerogel fiber (i.e., PAO@ANF) based on polyamidoxime (PAO) and aramid nanofiber (ANF) is designed and fabricated via in-situ gelation of ANF with PAO in dimethyl sulfoxide and subsequent freeze-drying of the corresponding fibrous gel precursor. The resulting flexible porous aerogel fiber possesses high specific surface area (up to 165 m2·g−1), excellent hydrophilicity and high tensile strength (up to 4.56 MPa) as determined by BET, contact angle, and stress-strain measurements. The batch adsorption experiments indicate that the PAO@ANF aerogel fibers possess a maximal adsorption capacity of uranium up to 262.5 mg·g−1, and the absorption process is better fitted by the pseudo-second-order kinetics model and Langmuir isotherm model, indicating an adsorption mechanism of the monolayer chemical adsorption. Moreover, the PAO@ANF aerogel fibers exhibit selective adsorption to uranium in the presence of coexisting ions, and they could well maintain good adsorption ability and integrated porous architecture after five cycles of adsorption–desorption process. It would be expected that the symbiotic aerogel fiber could be produced on a large scale and would find promising application in uranium ion extraction from seawater.
APA, Harvard, Vancouver, ISO, and other styles
5

Wei, Qing Peng, Shi You Li, Shui Bo Xie, Jian Biao Liao, and Yin Li. "The Research of Absorption on U(VI) by Nanometer α-Fe2O3 Microsphere." Advanced Materials Research 1010-1012 (August 2014): 817–20. http://dx.doi.org/10.4028/www.scientific.net/amr.1010-1012.817.

Full text
Abstract:
Adsorption of uranium(VI) ions by Sodium alginate (SA) immobilized nano-α-Fe2O3 particles beads were investigated in the batch experiments.The influences of the nano-ferric oxide content in beads,cross-linking time, solution pH, initial U(VI) concentration, temperature and contact time on U(VI) sorption were studied. The results indicated that the adsorption capacities are strongly affected by the solution pH, the best adsorption rate can be thought of to be at pH 3. The adsorption was rather fast in the initial 1.5 h, and the equilibrium was established in 9 h with the sorption capacity 2.64 mg/g. The kinetic adsorption data was simulated better by a pseudo-second-order equation. The removal rate increased slowly with temperature ascending . The adsorption process conformed to the Langmuir and Freundlich isothermal adsorption models, and the data fitted the latter better.
APA, Harvard, Vancouver, ISO, and other styles
6

Troyer, Lyndsay D., James J. Stone, and Thomas Borch. "Effect of biogeochemical redox processes on the fate and transport of As and U at an abandoned uranium mine site: an X-ray absorption spectroscopy study." Environmental Chemistry 11, no. 1 (2014): 18. http://dx.doi.org/10.1071/en13129.

Full text
Abstract:
Environmental context Uranium and arsenic, two elements of human health concern, are commonly found at sites of uranium mining, but little is known about processes influencing their environmental behaviour. Here we focus on understanding the chemical and physical processes controlling uranium and arsenic transport at an abandoned uranium mine. We find that the use of sedimentation ponds limits the mobility of uranium; however, pond conditions at our site resulted in arsenic mobilisation. Our findings will help optimise restoration strategies for mine tailings. Abstract Although As can occur in U ore at concentrations up to 10wt-%, the fate and transport of both U and As at U mine tailings have not been previously investigated at a watershed scale. The major objective of this study was to determine primary chemical and physical processes contributing to transport of both U and As to a down gradient watershed at an abandoned U mine site in South Dakota. Uranium is primarily transported by erosion at the site, based on decreasing concentrations in sediment with distance from the tailings. Sequential extractions and U X-ray absorption near-edge fine structure (XANES) fitting indicate that U is immobilised in a near-source sedimentation pond both by prevention of sediment transport and by reduction of UVI to UIV. In contrast to U, subsequent release of As to the watershed takes place from the pond partially due to reductive dissolution of Fe oxy(hydr)oxides. However, As is immobilised by adsorption to clays and Fe oxy(hydr)oxides in oxic zones and by formation of As–sulfide mineral phases in anoxic zones down gradient, indicated by sequential extractions and As XANES fitting. This study indicates that As should be considered during restoration of uranium mine sites in order to prevent transport.
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Zimeng, Sung-Woo Lee, Jeffrey G. Catalano, Juan S. Lezama-Pacheco, John R. Bargar, Bradley M. Tebo, and Daniel E. Giammar. "Adsorption of Uranium(VI) to Manganese Oxides: X-ray Absorption Spectroscopy and Surface Complexation Modeling." Environmental Science & Technology 47, no. 2 (December 20, 2012): 850–58. http://dx.doi.org/10.1021/es304454g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Van Veelen, A., O. Preedy, J. Qi, G. T. W. Law, K. Morris, J. F. W. Mosselmans, M. P. Ryan, N. D. M. Evans, and R. A. Wogelius. "Uranium and technetium interactions with wüstite [Fe1–xO] and portlandite [Ca(OH)2] surfaces under geological disposal facility conditions." Mineralogical Magazine 78, no. 5 (October 2014): 1097–113. http://dx.doi.org/10.1180/minmag.2014.078.5.02.

Full text
Abstract:
AbstractIron oxides resulting from the corrosion of large quantities of steel that are planned to be installed throughout a deep geological disposal facility (GDF) are expected to be one of the key surfaces of interest for controlling radionuclide behaviour under disposal conditions. Over the lengthy timescales associated with a GDF, the system is expected to become anoxic so that reduced Fe(II) phases will dominate. Batch experiments have therefore been completed in order to investigate how a model reduced Fe-oxide surface (wüstite, Fe1–xO) alters as a function of exposure to aqueous solutions with compositions representative of conditions expected within a GDF. Additional experiments were performed to constrain the effect that highly alkaline solutions (up to pH 13) have on the adsorption behaviour of the uranyl (UO22+) ion onto the surfaces of both wüstite and portlandite [Ca(OH)2; representative of the expected cementitious phases]. Surface co-ordination chemistry and speciation were determined by ex situ X-ray absorption spectroscopy measurements (both X-ray absorption near-edge structure analysis (XANES) and extended X-ray absorption fine structure analysis (EXAFS)). Diffraction, elemental analysis and XANES showed that the bulk solid composition and Fe oxidation state remained relatively unaltered over the time frame of these experiments (120 h), although under alkaline conditions possible surface hydroxylation is observed, due presumably to the formation of surface hydroxyl complexes. The surface morphology, however, is altered significantly with a large degree of roughening and an observed decrease in the average particle size. Reduction of U(VI) to U(IV) occurs during adsorption in almost all cases and this is interpreted to indicate that wüstite may be an effective reductant of U during surface adsorption. This work also shows that increasing the carbonate concentration in reactant solutions dramatically decreases the adsorption coefficients for U on both wüstite and portlandite, consistent with U speciation and surface reactivity determined in other studies. Finally, the EXAFS results include new details about exactly how U bonds to this metal oxide surface.
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, Shao You, and Qing Ge Feng. "Synthesis of Uranium Doped TiO2 Nanomaterial and its Visible Light Degradation Property." Advanced Materials Research 148-149 (October 2010): 1208–11. http://dx.doi.org/10.4028/www.scientific.net/amr.148-149.1208.

Full text
Abstract:
Uranium doped TiO2 (U-TiO2) nanomaterials, determined by scanning electron micro- graphy (SEM), were successfully synthesized via a simple, effective and environmental benign solid state reaction route. The characterizations via XRD and XPS showed that the uranium has been entered into the framework of anatase TiO2. The DRUV-Vis revealed that the adsorption region of U-TiO2 nanomaterials shifts to the visible light region compared with the pure TiO2. Moreover, the U-TiO2 nanomaterials for photodegradation of quinoline showed a good photocatalytic properties under visible light irradiation. At 298K, within 60 min visible light irradiation, 54.9 % of the initial quinoline was degraded by the U-TiO2 (U/Ti=3:20) catalyst. The visible light degradation rate of the U-TiO2 nanomaterials is negative to the pH value of surface but positive to the visible light absorption range.
APA, Harvard, Vancouver, ISO, and other styles
10

Lack, Joseph G., Swades K. Chaudhuri, Shelly D. Kelly, Kenneth M. Kemner, Susan M. O'Connor, and John D. Coates. "Immobilization of Radionuclides and Heavy Metals through Anaerobic Bio-Oxidation of Fe(II)." Applied and Environmental Microbiology 68, no. 6 (June 2002): 2704–10. http://dx.doi.org/10.1128/aem.68.6.2704-2710.2002.

Full text
Abstract:
ABSTRACT Adsorption of heavy metals and radionuclides (HMR) onto iron and manganese oxides has long been recognized as an important reaction for the immobilization of these compounds. However, in environments containing elevated concentrations of these HMR the adsorptive capacity of the iron and manganese oxides may well be exceeded, and the HMR can migrate as soluble compounds in aqueous systems. Here we demonstrate the potential of a bioremediative strategy for HMR stabilization in reducing environments based on the recently described anaerobic nitrate-dependent Fe(II) oxidation by Dechlorosoma species. Bio-oxidation of 10 mM Fe(II) and precipitation of Fe(III) oxides by these organisms resulted in rapid adsorption and removal of 55 μM uranium and 81 μM cobalt from solution. The adsorptive capacity of the biogenic Fe(III) oxides was lower than that of abiotically produced Fe(III) oxides (100 μM for both metals), which may have been a result of steric hindrance by the microbial cells on the iron oxide surfaces. The binding capacity of the biogenic oxides for different heavy metals was indirectly correlated to the atomic radius of the bound element. X-ray absorption spectroscopy indicated that the uranium was bound to the biogenically produced Fe(III) oxides as U(VI) and that the U(VI) formed bidentate and tridentate inner-sphere complexes with the Fe(III) oxide surfaces. Dechlorosoma suillum oxidation was specific for Fe(II), and the organism did not enzymatically oxidize U(IV) or Co(II). Small amounts (less than 2.5 μM) of Cr(III) were reoxidized by D. suillum; however, this appeared to be inversely dependent on the initial concentration of the Cr(III). The results of this study demonstrate the potential of this novel approach for stabilization and immobilization of HMR in the environment.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Uranium Absorption and adsorption"

1

Payne, Timothy Ernest Civil &amp Environmental Engineering Faculty of Engineering UNSW. "URANIUM (VI) INTERACTIONS WITH MINERAL SURFACES: CONTROLLING FACTORS AND SURFACE COMPLEXATION MODELLING." Awarded by:University of New South Wales. School of Civil and Environmental Engineering, 1999. http://handle.unsw.edu.au/1959.4/17482.

Full text
Abstract:
The objective of the work described in this thesis was to improve the scientific basis for modelling the migration of U in the sub-surface environment. The project involved: ?? studying the sorption of U on model minerals (Georgia kaolinite and ferrihydrite) in laboratory experiments ?? carrying out experimental studies of U sorption on complex natural substrates ?? studying the mechanisms influencing U retardation in the natural environment, including transformation processes of iron oxides ?? identifying chemical factors which control U sorption on model and natural substrates ?? developing a mechanistic model for U sorption on ferrihydrite and kaolinite using the surface complexation adsorption model , and ?? assessing and modelling the effect of complexing ligands on uranyl adsorption. Uranium (VI) sorption on geological materials is influenced by a large number of factors including: pH, ionic strength, partial pressure of CO2, adsorbent loading, total amount of U present, and the presence of inorganic and organic ligands. The sorption of UO22+ typically increases with increasing pH (the 'low pH sorption edge') up to about pH 7. In systems equilibrated with air, there is a sharp decrease in sorption above this pH value (the 'high pH edge'), due to strong complexation between uranyl and carbonate. The adsorption model being used for ferrihydrite is a surface complexation model with a diffuse double layer, and both strong and weak sites for U sorption. Based on the analysis of EXAFS data, the U surface complexes were modelled as mononuclear bidentate surface complexes of the form (>FeO2)UO20. Ternary surface complexes involving carbonate with the form (>FeO2)UO2CO32- were also required for the best simulation of U sorption data. There was a slight decrease in U sorption on ferrihydrite in systems that contained sulfate. It was necessary to consider competition between UO22+ and SO42- for surface sites, as well as complexation between UO22+ and SO42- to model the data. The presence of citrate considerably reduced U sorption and caused dissolution of ferrihydrite. Complexation of citrate with both uranyl and ferric ions was taken into account in modelling this system. The model required the optimisation of the formation constant for a postulated mixed metal (U/Fe/citrate) aqueous complex. Humic acid increased U uptake at pH values below 7, with little effect at higher pH values. In terms of the amount of U sorbed per gram of adsorbent, U uptake on kaolinites KGa-1 and KGa-1B was much weaker than U uptake on ferrihydrite under similar experimental conditions. Electron microscope examination showed that titanium-rich impurity phases played a major role in the sorption of U by these standard kaolinites. A relatively simple model for uranyl sorption on the model kaolinites was able to account for U sorption under a wide range of experimental conditions. The model involved only three surface reactions on two sites (>TiOH and >AlOH), with a non-electrostatic surface complexation model. The relative amounts of the sites were estimated from AEM results. Precipitation was taken into account in modelling the experimental data obtained with high U concentrations. The effects of sulfate and citrate on U sorption by kaolinite were also assessed and modelled. Sulfate had a small effect on U sorption, which may be explained by aqueous complexation. Citrate had a greater effect, and this was not wholly explained by the formation of aqueous U-citrate complexes. The most likely explanation would also involve competition for surface sites between U and citrate. Uranyl uptake on ferrihydrite was greatly increased by the presence of phosphate. This was not due to precipitation, and was attributed to the formation of a ternary surface complex with a proposed structure of (>FeO2)UO2PO43-. The log K value for the formation of this complex was optimised using FITEQL. Phosphate also increased uptake of uranyl on kaolinite, and this was also attributed to the formation of ternary uranyl phosphate surface species. Uranium sorption on weathered schist samples from the vicinity of the Koongarra U deposit in northern Australia was generally similar to the model minerals (in terms of the effects of pH, ionic strength, total U, etc). Many experiments with the natural materials were spiked with an artificial U isotope (236U), which allowed adsorption (of 236U) and desorption (of 238U) to be distinguished, and provided a means of estimating the 'labile' or 'accessible' portion of the natural U content. A significant advantage of this method is that (unlike chemical extractions) it does not rely on the assumptions about the phases extracted by 'selective' reagents. Uranium sorption experiments were also carried out with Koongarra samples which had been treated with citrate / dithionite / bicarbonate (CDB) reagent to remove iron oxides. Uranium sorption was greatly decreased by the CDB extraction, which reduced the surface area of the samples by about 30-40%. To further elucidate the impact of iron minerals on U mobility in the natural environment, the transformation of synthetic ferrihydrite containing adsorbed natural uranium was studied. In these experiments, the ferrihydrite was partially converted to crystalline forms such as hematite and goethite. The uptake of an artificial uranium isotope (236U) and the leaching of 238U from the samples were then studied in adsorption / desorption experiments. The transformation of ferrihydrite to crystalline minerals substantially reduced the ability of the samples to adsorb 236U from solution. Some of the previously adsorbed 238U was irreversibly incorporated within the mineral structure during the transformation process. Therefore, transformation of iron minerals from amorphous to crystalline forms provides a possible mechanism for uranium immobilisation in the groundwater environment. In considering the overall effect on U migration, this must be balanced against the reduced ability of the transformed iron oxide to adsorb U. The experiments with the model and natural substrates demonstrated that trace impurities (such as Ti-oxides) and mineral coatings (such as ferrihydrite) can play a dominant role in U adsorption in both environmental and model systems. Although the various substrates had different affinities for adsorbing U, the effects of chemical factors, including pH, ionic strength, and carbonate complexation were similar for the different materials. This suggests that a mechanistic model for U sorption on model minerals may eventually be incorporated in geochemical transport models, and used to describe U sorption in the natural environment.
APA, Harvard, Vancouver, ISO, and other styles
2

Kowal-Fouchard, Armelle. "Etude des mécanismes de rétention des ions U(VI) et Eu(III) sur les argiles : influence des silicates." Paris 11, 2002. http://www.theses.fr/2002PA112265.

Full text
Abstract:
Les argiles, comme la bentonite MX-80, sont des matériaux constitutifs de la roche d'accueil, ou potentiellement utilisés pour la conception des barrières ouvragées d'un site de stockage de déchets radioactifs en couche géologique profonde. Dans ce contexte, nous nous sommes intéressés à l'identification des mécanismes de rétention des ions europium(III) et uranium(VI) par des argiles. La démarche adoptée consiste à associer une étude thermodynamique et une étude structurale des équilibres de rétention mis en jeu, afin d'accéder aux valeurs des constantes associées. La complexité structurale des argiles nous a conduit à étudier en parallèle la sorption des ions U(VI) et Eu(III) sur une silice et une alumine, souvent considérées comme les briques constitutives des matériaux aluminosilicatés, qui présentent respectivement à leur surface des sites silanols et aluminols, également présents à la surface des argiles. Les courbes de sorption de Eu(III) et U(VI) sur les différents matériaux ont été réalisées pour différentes concentrations en ions, à différentes force ioniques et en présence de ligands inorganiques comme les silicates dissous ou les anions nitrate, tandis que la caractérisation structurale des complexes de surface formés a été réalisée par deux techniques spectroscopiques : l'XPS et la SLRT. Ainsi, nous avons montré que les ions europium et uranyle se sorbent sur la montmorillonite par l'interrnédiaire des sites d'échange, mais aussi sur les sites amphotères. De plus, si l'europium présente une affinité particulière pour les sites de type échangeur, nous avons observé que l'ion uranyle se fixe préférentiellement sur les sites de type silanol (=SiOH) de la montmorillonite. Par ailleurs, nous avons également démontré que la présence de carbonates dissous diminue significativement la rétention de l'ion uranyle sur la bentonite MX-80
Bentonite clay has been selected as a potential buffer or backfill material in a number of disposal programs for high level waste. In order to enhance the thermodynamic database of sorption phenomena at the solid-water interface, we have investigated sorption mechanisms of europium(III) and uranium(VI) ions onto montmorillonite and bentonite. Thermodynamic data were obtained for different ions concentrations, different background electrolytes and different ionic strengths. The structural identification of the surface complexes and sorption sites was carried out using two spectroscopies, XPS and TRLIFS, while sorption edges were performed using batch experiments. However, clays are complex minerals and in order to understand these sorption mechanisms we have studied europium(III) and uranium(VI) retention on a silica and an alumina because these solids are often considered as basic components of clays. The comparison of structural results shows that europium ions are significantly sorbed on permanently charged sites of clay until pH 7. But this ion is also sorbed on =SiOH and =AlOH sites of montmorillonite at pH higher than 6. Uranyl ions sorption on montmorillonite is mainly explained by retention of three complexes on =SiOH sites. Moreover, we have shown that nitrate ions and dissolved silicates affect on uranium(VI) sorption mechanisms onto alumina. Nevertheless, uranyl ions sorption on montmorillonite and bentonite only decreases with increasing carbonate concentration. Finally, all the sorption edges were then modeled using these results and a surface complexation model (2 pK and constant capacitance models)
APA, Harvard, Vancouver, ISO, and other styles
3

Charrier, Jansson Marielle. "Biosorption d'ions métalliques (uranium et vanadium) sur chitosane." Montpellier 2, 1996. http://www.theses.fr/1996MON20052.

Full text
Abstract:
Ce travail s'attache a l'etude des performances globales de fixation de l'uranium et du vanadium en regime statique et dynamique sur chitosane. Ce polymere fortement amine est un bon complexant des metaux en raison du doublet libre porte par l'azote. L'etude des isothermes d'adsorption a conduit a apprehender les parametres qui influencent notablement l'adsorption: le ph, la concentration en ions metalliques, la taille des particules qui influence significativement les capacites de fixation de ces adsorbants. Ainsi, il apparait que le chitosane est un polymere peu poreux et que les limitations diffusionnelles jouent un role important dans le controle cinetique: la diffusion intraparticulaire constitue en effet le mecanisme preponderant d'un point de vue cinetique. Une etude au microscope electronique permet de visualiser cette faible diffusion qui se traduit par une accumulation sur une tres faible epaisseur d'adsorbant. L'experimentation menee en regime dynamique a permis de degager l'influence des differents parametres sur les performances adsorbantes de ce support. Leur impact sur l'ecoulement dans les colonnes garnies et l'etude hydrodynamique ont permis de mettre en evidence des conditions optimales de fonctionnement qui ont ete mises en uvre sur site industriel pour traiter un effluent reel. Ces resultats ont conduit au dimensionnement d'une unite pilote de traitement d'un effluent uranifere lozerien. Celui-ci presente des performances de traitement competitives par rapport aux procedes classiques, une regeneration aisee et represente dans le domaine du traitement des effluents faiblement concentres une alternative prometteuse dans le cas de flux polluants de faibles debits
APA, Harvard, Vancouver, ISO, and other styles
4

Ma, Bin. "Sorption de Radionucléides dans des Barrières Cimentaires Renforcées." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAU027/document.

Full text
Abstract:
La sorption et les réactions redox des radionucléides (RN) sont des processus critiqués pour une évaluation de la sécurité des dépôts de déchets nucléaires. Dans les dépôts géologiques, ces procédés peuvent se produire dans (i) une couche de corrosion (acier), (ii) un béton armé, par exemple, sur le ciment hydraté et (iii) l'argilite, sur la pyrite et les argiles ou le granit. Les produits de corrosion de l'acier et la pyrite agissent comme des tampons de réduction locaux, contrôlant le potentiel redox (Eh) et donc le comportement de sorption des RN sensibles au rédox. En revanche, la sorption de RN n'impliquant pas de processus redox peut se produire sur des argiles, des oxydes de fer et des produits d'hydratation de ciment et impliquent souvent des processus d'adsorption de surface, d'échange d'ions ou de co-précipitations. Dans cette thèse de doctorat, des phases d'AFm cimentaires mineures, mais hautement réactives (acides gras AFm-Cl2 ou AFm-SO4, appartenant aux LDH CaAl) ont été utilisées pour adsorber MoO42- et SeO32- à diverses charges de surface. Une combinaison de la modélisation de l'équilibre chimique PHREEQC et des techniques de rayons X à base de synchrotron (par exemple, XRD, PDF et XAFS résolus dans le temps) révèle que les sites de sorption multiples, y compris deux types de sites de bord, des sites d'échange d'ions intercalaires et une précipitation de phase riche en Ca, sont des processus actifs dans la rétention des RN sur les phases AFm. Une relation linéaire permet de lier l'espacement basal AFm et le rayon d'anion intercalé hydraté. L'adsorption macroscopique MoO42 a été évaluée sur le ciment hydraté renforcé d'acier et de ses composants individuels (p. Ex. Fe0, CSH, ettringite, phase AFm, portlandite, gypse, pyrite, mackinawite) à pH 13,5 et le signal EXAFS ne pouvait être obtenu que pour Mo sorbed sur les phases AFm et les produits d'oxydation Fe0, en montrant qu'ils sont les absorbants les plus efficaces. La co-sorption de U et Mo sur le ciment-ciment hydraté renforcé par Fe0 a également été étudiée par cartographie micro-sonde, montrant que U doit être immobilisé instantanément par des matériaux de ciment tandis que Mo est préférentiellement sorbé sur des produits de réaction de Fe. La valeur Eh prédominant dans le béton est difficile à déterminer. Ici, les RN sensibles à la réduction rénale (par exemple, UVI, SeIV, MoVI et SbV) sont utilisées comme sondes, pour mesurer les valeurs Eh in-situ, en calculant l'équation de Nernst de la manière suivante. La concentration des espèces réduites a été mesurée en fonction de la concentration totale de RN précipitée par réduction et de la spéciation parmi ces espèces réduites, tel qu'obtenu par l'analyse LCF des données XANES. La concentration de l'espèce oxydée unique a été prise égale à la concentration chimique aqueuse totale, car toutes les espèces réduites identifiées sont extrêmement insolubles. Les valeurs Eh déterminées expérimentalement obtenues de cette façon étaient remarquablement fermées pour toutes les RN avec des valeurs centrées de -368 à -524 mV pour l'eau de pore de ciment (CPW) équilibrée avec Fe0 et des valeurs de -346 à -509 mV pour CPW équilibrées avec des produits de corrosion Fe - couples d'oxydes (magnetite / hématite ou magnetite / goethite) à pH ~ 13,5. Ni la valeur Eh calculée pour ces couples ni pour Fe0 / Fe (OH)2 correspond à ces données. Au lieu de cela, le potentiel redox semble être contrôlé par le couple Fe (OH)3 / Fe (OH)2 prédominant au début de la corrosion Fe0. Enfin, dans le domaine de l'argile ou du granit, plusieurs facteurs peuvent affecter de manière critique l'Eh imposé par la minérale mine de pyrite, à savoir les impuretés élémentaires dans le réseau de pyrite et les fractures résultant du broyage et de la présence de Fe3+et S2- à la surface de la pyrite. Les impuretés des éléments et la présence de S2- sur la surface de la pyrite ont largement accéléré la réduction des U (VI)
Sorption and redox reactions of radionuclides (RNs) are critical processes for a nuclear waste disposal repository safety assessment. In geological repositories, these process may occur in (i) canister (steel) corrosion layer, (ii) reinforced concrete, e.g. on hydrated cement and (iii) argillite, e.g. on pyrite and clays or granite. Both steel corrosion products and pyrite act as local reducing buffers, controlling the redox potential (Eh) and thus the sorption behavior of redox-sensitive RNs. In contrast, sorption of RNs not involving redox processes may occur on clays, iron oxides and cement hydration products, and often involve surface adsorption, ion exchange, or co-precipitations processes. In this PhD thesis, minor but highly reactive cementitious AFm phases (AFm-Cl2 or AFm-SO4 solids, belonging to CaAl LDHs) were employed to adsorb MoO42- and SeO32- at various surface loadings. A combination of PHREEQC chemical equilibrium modelling and synchrotron-based X-ray techniques (e.g., in-situ time-resolved XRD, PDF, and XAFS) reveals that multiple sorption sites, including two types of edge sites, interlayer ion exchange sites, and a Ca-rich phase precipitation, are active processes in the RNs retention on AFm phases. A linear relationship is shown to link AFm basal spacing and hydrated intercalated anion radius. MoO42- macroscopic adsorption was evaluated on steel-reinforced hydrated cement and its individual components (e.g., Fe0, C-S-H, ettringite, AFm phase, portlandite, gypsum, pyrite, mackinawite) at pH 13.5, and EXAFS signal could only be obtained for Mo sorbed on AFm phases and Fe0 oxidation products, showing they are the most effective absorbents. Co-sorption of U and Mo on Fe0-reinforced hydrated cement-core has also been investigated by micro-probe mapping, showing U to be instantly immobilized by cement materials while Mo is preferentially sorbed on Fe reaction products.The Eh value prevailing in concrete is hard to be determined. Here, redox-sensitive RNs (e.g., UVI, SeIV, MoVI, and SbV) are employed as probes, to measure in-situ Eh values, by computing the Nernst equation in the following way. Reduced species concentration were measured based on the total concentration of reductively precipitated RN and on speciation among these reduced species as obtained by LCF analysis of XANES data. The single oxidized species concentration was taken equal to the total aqueous chemical concentration, as all identified reduced species are extremely insoluble. The experimentally determined Eh values obtained that way were remarkably closed for all RNs with centered values of -368 to -524 mV for cement pore water (CPW) equilibrated with Fe0 and values of -346 to -509 mV for CPW equilibrated with corrosion products Fe-oxides couples (magnetite/hematite or magnetite/goethite) at pH ~13.5. Neither the Eh value computed for these couples or for Fe0/Fe(OH)2 match these data. Instead, the redox potential appear to be controlled by the Fe(OH)3/Fe(OH)2 couple predominating at the beginning of Fe0 corrosion. Finally, within clay or granite far field, several factors may critically affect the Eh imposed by pyrite minor mineral, namely element impurities in pyrite lattice and fractures resulting from grinding and presence of Fe3+ and S2- at the pyrite surface. Element impurities and presence of S2- on the pyrite surface were shown to largely speed up U(VI) reduction. The experimental results obtained above could provide fundamental data for the safety assessment of nuclear waste disposal
APA, Harvard, Vancouver, ISO, and other styles
5

Yang, Wei. "Interactions de radionucléides et de CO2 avec les argiles : mécanismes à élucider à l’échelle nanométrique." Thesis, Lille 1, 2014. http://www.theses.fr/2014LIL10027/document.

Full text
Abstract:
Afin de prévoir et réglementer l'impact environnemental des activités humaines telle que l'exploitation minière de l'uranium et des déchets radioactifs, il est nécessaire de comprendre le comportement des actinides, la migration des radionucléides dans l'environnement et analyser leur interaction avec l'argile minérale. Le comportement des actinides dans le sol concerne principalement les interactions et les adsorptions dans les surfaces qui changent les formes des éléments radioactifs et réduisent la mobilité des actinides dans les systèmes naturels. Par conséquent, il est important de comprendre comment les actinides interagissent avec l'argile minérale et étudier le processus fondamental de précipitation de surface.L'uranium est la teneur en métal lourd la plus prépondérante des déchets ultimes dans le cycle du combustible nucléaire ( > 95 % de UO2 ). En outre, l'uranium est un contaminant majeur dans le sol, le sous-sol et les eaux souterraines en raison de l'activité humaine. Dans des conditions environnementales standards, la forme chimique la plus stable de U ( VI ) est l' ion uranyle UO22+, qui est potentiellement très mobile et se combine facilement avec la matière organique et inorganique.D’un autre côté, le dioxyde de carbone est un important gaz à effet de serre, réchauffant la surface de la terre à une température plus élevée en réduisant vers l'extérieur le rayonnement. Toutefois, des problèmes peuvent se produire lorsque la concentration atmosphérique des gaz à effet de serre augmente. Des quantités importantes d'émissions de dioxyde de carbone ont été produites depuis la révolution industrielle, ce qui est derrière l’important réchauffement climatique et l’augmentation du niveau de la mer. Les minéraux argileux sont d'une grande importance pratique, particulièrement dans le stockage du dioxyde de carbone en raison de sa perméabilité hydraulique et sa capacité de conserver les particules mobiles. Nous avons choisi la kaolinite et la montmorillonite comme des prototypes de minéraux argileux de type 1:1 et 2:1. Les méthodes de Monte Carlo (MC) et la dynamique moléculaire (MD) ont été utilisées dans ce travail afin de comprendre le comportement d'adsorption des radionucléides et de dioxyde de carbone à la surface des argiles. Dans cette thèse, nous étudierons d'abord l'adsorption de l’uranyle à la surface de la kaolinite par le biais de la dynamique moléculaire et de la Monte Carlo. Plusieurs sites d'adsorption ont été modélisés en considérant des défauts de surface dans le but d'avoir des complexes inter ou externe-sphère. Ensuite, les adsorptions des particules d'uranyle sur des surfaces de la montmorillonite en présence des différents ions seront effectuées. L'énergie d'interaction entre des feuilles de montmorillonite et le travail d'adhérence entre le radionucléide et surface MMT seront également discutés. Enfin, nous présenterons l’étude du comportement d'adsorption de dioxyde de carbone dans le MMT, en détaillant au passage les propriétés thermodynamiques, structurales et dynamiques
In order to predict and regulate the environmental impact of human activities such as uranium mining and radioactive waste disposal, it is necessary to understand the behavior of actinides in the environment because their interaction with clay mineral is an important factor to control the migration of radionuclide in the environment. The behavior of actinides in the soil is mainly the surface adsorption interactions, which change the forms of radioactive elements and reduces the mobility of actinides in the natural systems. Therefore, it is important to search how the actinides interact with clay mineral such as the fundamental process of surface precipitation. Uranium is the predominant heavy metal content of the final waste in the nuclear fuel cycle (>95% UO2). In addition, uranium is a major contaminant in the soil, subsurface and groundwater as a result of human activity. Under standard environmental conditions, the most stable chemical form of U(VI) is the uranyl ion UO22+, which is potentially very mobile and readily complexates with organic and inorganic matter. On the other hand, Carbon dioxide is an important greenhouse gas, warming the earth’s surface to a higher temperature by reducing outward radiation. However, problems may occur when the atmospheric concentration of greenhouse gases increases. Amounts of carbon dioxide were produced since the industrial revolution, which is behind the significant global warming and rising sea level. Clay minerals are of great practical importance here, in storage of carbon dioxide due to its hydraulic permeability and ability to retain mobile species. We have chosen kaolinite and montmorillonite as prototypes of clay minerals of 1:1 and 2:1. Classical Monte Carlo (MC) and molecular dynamics (MD) methods have been used in this work in order to understand the adsorption behaviour of radionuclide and carbon dioxide in clays surface. In this thesis, we will investigate –first- the adsorption of uranyl on kaolinite surface by means of Monte Carlo and Molecular Dynamics simulation methods. Several adsorption sites have been modeled by considering surface defects in order to have inner or outer-sphere complexes. Then, the adsorptions of uranyl species onto Montmorillonite surfaces in the presence of different counterions will be performed. Interaction energy between Montmorillonite sheets and work of adhesion between the radionuclide and MMT surface will be discussed as well. Finally, we will study the adsorption behavior of carbon dioxide in MMT, and investigate at the same time thermodynamics, structural and dynamical properties
APA, Harvard, Vancouver, ISO, and other styles
6

Hiltbrunner, Jean-Michel. "Purification de l'hexafluorure d'uranium." Thesis, Université Clermont Auvergne‎ (2017-2020), 2017. http://www.theses.fr/2017CLFAC009.

Full text
Abstract:
L’hexafluorure d’uranium, de formule chimique UF 6 , est un composé clé du cycle du combustible car il est utilisé pour l’étape d’enrichissement isotopique. Toutefois, des impuretés présentes et mélangées à l’UF 6 sont à éliminer afin de garantir un uranium de pureté nucléaire. Dans ce manuscrit, les réactions chimiques entre les polluants et les filtres chimiques retenus pour la purification sont étudiées. Par ailleurs, l’étude de la réactivité en milieu liquide est réalisée afin de se rapprocher des conditions industrielles. Une voie de recyclage des filtres chimiques est également investiguée afin de réutiliser les adsorbants sur plusieurs cycles de purification. L’ensemble des performances (taux de sorption des polluants, décontamination lors du recyclage) sont évaluées avant la mise au point du pilote à l’échelle industrielle
Uranium hexafluoride, which chemical formula is UF 6 , is a key compound of nuclear fuel cycle due to its use during isotopic enrichment process. Nethertheless, pollutants melted with UF 6 have to be removed in order to ensure a nuclear purity fuel. In this manuscript, the reactions occurring between pollutants and chemical filters selected for this application are studied. Then, the reactivity in liquid UF 6 is also examined with the aim of being close to the industrial process. The regeneration of adsorbents is investigated so that chemical filter can be used for several purification cycles. The performances (sorption rate of pollutants, purifying during recycling step) are evaluated before simulations at industrial scale
APA, Harvard, Vancouver, ISO, and other styles
7

Saucedo, Medina Teresa Imelda. "Adsorption de l'uranium et du vanadium sur chitosane et chitosane modifié." Aix-Marseille 1, 1993. http://www.theses.fr/1993AIX11049.

Full text
Abstract:
Cette etude a permis d'estimer les performances globales d'adsorption de l'uranium et du vanadium par le chitosane et ses formes substituees, dans la perspective de mise en uvre d'un procede d'epuration d'effluents metalliferes. Le greffage de fonctions derivees de l'acide ascorbique (ndtc) ou de l'acide oxo-2-glutarique (polymere de glutamate glucane), permet d'ameliorer les capacites maximales de fixation de l'uranium pour atteindre des capacites d'adsorption comprises entre 500 et 600 mg u g##1. Les performances d'adsorption du vanadium sont reduites par greffage, indiquant une selectivite accrue en matiere de fixation. Divers parametres comme le ph, la concentration en metal, la taille des particules, la vitesse d'agitation et la temperature ont ete etudies. Les etudes cinetiques ont montre que la principale etape limitante est la diffusion intraparticulaire. La modification du chitosane ou sa recristallisation, provoque une amelioration de la porosite qui limite les contraintes diffusionnelles et ameliore le taux de saturation de ces problemes
APA, Harvard, Vancouver, ISO, and other styles
8

Lewis, D. "Enzyme adsorption to polystyrene latex." Thesis, University of Strathclyde, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.382347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kalimtgis, Konstandinos. "ADSORPTION OF TRICHLOROETHYLENE AND CARBON TETRACHLORIDE ON SYNTHETIC AND NATURAL ADSORBENTS." Thesis, The University of Arizona, 1985. http://hdl.handle.net/10150/275355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Robinson, Andrew William. "Adsorption on platinum (110) : reflection-absorption infra-red studies." Thesis, University of Bath, 1988. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379555.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Uranium Absorption and adsorption"

1

Centre, Bhabha Atomic Research. Performance evaluation of indigenous controlled potential coulometer for the determination of uranium and plutonium. Mumbai: Bhabha Atomic Research Centre, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rachkova, N. G. Rolʹ sorbentov v prot︠s︡essakh transformat︠s︡ii soedineniĭ urana, radii︠a︡ i torii︠a︡ v podzolistoĭ pochve. Sankt-Peterburg: Nauka, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zarzycki, Roman. Absorption: Fundamentals & applications. Oxford: Pergamon Press, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Adsorption by carbons. Amsterdam: Elsevier, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gas separation by adsorption processes. London: Imperial College Press, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yang, R. T. Gas separation by adsorption processes. Singapore: World Scientific, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yang, R. T. Gas separation by adsorption processes. Boston: Butterworths, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

W, Cole Milton, and Zaremba Eugene 1946-, eds. Physical adsorption: Forces and phenomena. Oxford: Clarendon Press, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Collision-induced absorption in gases. Cambridge [England]: Cambridge University Press, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chattopadhyay, P. Absorption & stripping. New Delhi: Asian Books, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Uranium Absorption and adsorption"

1

Boyadjiev, Christo, Maria Doichinova, Boyan Boyadjiev, and Petya Popova-Krumova. "Absorption-Adsorption Method." In Modeling of Column Apparatus Processes, 283–94. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28259-6_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Boyadjiev, Christo, Maria Doichinova, Boyan Boyadjiev, and Petya Popova-Krumova. "Absorption–Adsorption Method." In Modeling of Column Apparatus Processes, 417–35. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89966-4_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Creutz, E. C., R. R. Wilson, and E. P. Wigner. "Absorption of Thermal Neutrons in Uranium." In Nuclear Energy, 188–218. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77425-6_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Götz, Christian, Gerhard Geipel, and Gert Bernhard. "Thermodynamical Data of uranyl carbonate complexes from Absorption Spectroscopy." In Uranium, Mining and Hydrogeology, 907–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-87746-2_118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Albusaidi, Hamed, and Allen W. Apblett. "Adsorption and Separation of Uranium Using Tungsten Oxides." In Ceramic Transactions Series, 39–46. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009. http://dx.doi.org/10.1002/9780470538371.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yang, Wansheng, Shuli Liu, Xiaoqiang Zhai, Yin Bi, Zhangyuan Wang, and Xudong Zhao. "Solar Desiccant (Absorption/Adsorption) Cooling/Dehumidification Technologies." In Advanced Energy Efficiency Technologies for Solar Heating, Cooling and Power Generation, 211–86. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17283-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sarma, D. D., S. Krumrnacher, F. U. Hillebrecht, and W. Gudat. "Soft X-ray Absorption Spectra of Uranium Intermetallics." In Theoretical and Experimental Aspects of Valence Fluctuations and Heavy Fermions, 387–90. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-0947-5_50.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kaplan, Drora. "Absorption and Adsorption of Heavy Metals by Microalgae." In Handbook of Microalgal Culture, 602–11. Oxford, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118567166.ch32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Miyabe, M., M. Oba, H. Iimura, K. Akaoka, Y. Maruyama, H. Ohba, M. Tampo, and I. Wakaida. "Laser ablation absorption spectroscopy for remote analysis of uranium." In LAP 2012, 71–77. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6495-8_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Creutz, E., H. Jupnik, T. Snyder, and E. P. Wigner. "Effect of Geometry on Resonance Absorption of Neutrons by Uranium." In Nuclear Energy, 179–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77425-6_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Uranium Absorption and adsorption"

1

Qian, Zeng, Li Na, Fan Jia, and Yang Fangting. "Adsorption of Uranium by Magnetic Composite Materials." In 2020 International Conference on Artificial Intelligence and Electromechanical Automation (AIEA). IEEE, 2020. http://dx.doi.org/10.1109/aiea51086.2020.00155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Xin, Yi, and Wu Deng. "Adsorption of uranium-containing wastewater by Sugarcane Stalks." In 2014 International Conference on Computer Science and Electronic Technology. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/iccset-14.2015.14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

KANG, M. J., B. E. HAN, and P. S. HAHN. "ADSORPTION OF URANIUM(VI) ON KAOLINITE: SPECIATION AND MECHANISM." In Proceedings of the Third Pacific Basin Conference. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704320_0101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ferreira, V., A. L. Gonçalves, J. Pratas, and C. Canhoto. "Uranium adsorption by Articulospora tetracladia: can aquatic hyphomycetes be natural bioremediators of uranium contaminated streams?" In Proceedings of the III International Conference on Environmental, Industrial and Applied Microbiology (BioMicroWorld2009). WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814322119_0058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ginder-Vogel, Matthew, Wei-Min Wu, Shelly Kelly, Craig S. Criddle, Jack Carley, Phillip Jardine, Kenneth M. Kemner, and Scott Fendorf. "Micro-Scale Heterogeneity in Biogeochemical Uranium Cycling." In X-RAY ABSORPTION FINE STRUCTURE - XAFS13: 13th International Conference. AIP, 2007. http://dx.doi.org/10.1063/1.2644470.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Luo, Mingbiao, Hailu Lin, and Jinru Song. "Study on Adsorption Properties of Attapulgite Clay to Uranium in Waste Water." In 2008 2nd International Conference on Bioinformatics and Biomedical Engineering. IEEE, 2008. http://dx.doi.org/10.1109/icbbe.2008.1111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jiao Xueran and Zhang Xia. "Study of adsorption of uranium from wastewater by attapulgite - yeast powders adsorbent grains." In 2011 International Conference on Electric Technology and Civil Engineering (ICETCE). IEEE, 2011. http://dx.doi.org/10.1109/icetce.2011.5776179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yasim, Nurzulaifa Shaheera Erne Mohd, Nik Azlin Nik Ariffin, Noradila Mohammed, and Syafina Ayob. "Mechanism and kinetics of uranium adsorption onto soil around coal-fired power plant." In PROCEEDINGS OF THE 3RD INTERNATIONAL SYMPOSIUM ON APPLIED CHEMISTRY 2017. Author(s), 2017. http://dx.doi.org/10.1063/1.5011939.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Alvarez Merino, Jose Carlos, and Kazuo Hatakeyama. "Technology surveillance of the solar refrigeration by absorption/adsorption." In 2016 Portland International Conference on Management of Engineering and Technology (PICMET). IEEE, 2016. http://dx.doi.org/10.1109/picmet.2016.7806767.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kusrini, Eny, Maya Lukita, Misri Gozan, Bambang Heru Susanto, Dedy Alharis Nasution, Arif Rahman, and Cindy Gunawan. "Enrichment process of biogas using simultaneous Absorption - Adsorption methods." In RENEWABLE ENERGY TECHNOLOGY AND INNOVATION FOR SUSTAINABLE DEVELOPMENT: Proceedings of the International Tropical Renewable Energy Conference (i-TREC) 2016. Author(s), 2017. http://dx.doi.org/10.1063/1.4979244.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Uranium Absorption and adsorption"

1

Hobbs, D. T., and D. D. Walker. Plutonium and uranium adsorption on monosodium titanate. Office of Scientific and Technical Information (OSTI), August 1992. http://dx.doi.org/10.2172/7132200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Serne, R. Jeffrey, Christopher F. Brown, Herbert T. Schaef, Eric M. Pierce, Michael J. Lindberg, Zheming Wang, Paul L. Gassman, and J. G. Catalano. 300 Area Uranium Leach and Adsorption Project. Office of Scientific and Technical Information (OSTI), November 2002. http://dx.doi.org/10.2172/15010052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hobbs, D. T., and D. D. Walker. Plutonium and uranium adsorption on monosodium titanate. Office of Scientific and Technical Information (OSTI), August 1992. http://dx.doi.org/10.2172/10114343.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mattigod, Shas V., Elizabeth C. Golovich, Dawn M. Wellman, Elsa A. Cordova, and Ronald M. Smith. Uranium Adsorption on Ion-Exchange Resins - Batch Testing. Office of Scientific and Technical Information (OSTI), December 2010. http://dx.doi.org/10.2172/1009765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Parker, Kent E., Elizabeth C. Golovich, and Dawn M. Wellman. Uranium Adsorption on Granular Activated Carbon – Batch Testing. Office of Scientific and Technical Information (OSTI), September 2013. http://dx.doi.org/10.2172/1127293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Laul, J. C., M. C. Rupert, M. J. Harris, and A. Duran. Adsorption study for uranium in Rocky Flats groundwater. Office of Scientific and Technical Information (OSTI), January 1995. http://dx.doi.org/10.2172/10114542.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Macklin, R. L., and C. W. Alexander. Neutron absorption cross section of uranium-236. Office of Scientific and Technical Information (OSTI), November 1988. http://dx.doi.org/10.2172/6699291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tobin, J. X-Ray Absorption Spectroscopy of Uranium Dioxide. Office of Scientific and Technical Information (OSTI), December 2010. http://dx.doi.org/10.2172/1018793.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bargar, John R. Spectroscopic Confirmation of Uranium (VI)-Carbonato Adsorption Complexes on Hematite. Office of Scientific and Technical Information (OSTI), May 1999. http://dx.doi.org/10.2172/10076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Croft, David T., and David K. Friday. Predicting Absorption Equilibria of Mixtures: Comparison of Potential Theory and Ideal Adsorption Solution Theory. Fort Belvoir, VA: Defense Technical Information Center, October 1999. http://dx.doi.org/10.21236/ada370837.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography