Academic literature on the topic 'Upconverting nanomaterials'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Upconverting nanomaterials.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Upconverting nanomaterials":

1

Shah, Shreyas, Jing-Jing Liu, Nicholas Pasquale, Jinping Lai, Heather McGowan, Zhiping P. Pang, and Ki-Bum Lee. "Hybrid upconversion nanomaterials for optogenetic neuronal control." Nanoscale 7, no. 40 (2015): 16571–77. http://dx.doi.org/10.1039/c5nr03411f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chan, Emory M. "Combinatorial approaches for developing upconverting nanomaterials: high-throughput screening, modeling, and applications." Chemical Society Reviews 44, no. 6 (2015): 1653–79. http://dx.doi.org/10.1039/c4cs00205a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gulzar, Arif, Jiating Xu, Piaoping Yang, Fei He, and Liangge Xu. "Upconversion processes: versatile biological applications and biosafety." Nanoscale 9, no. 34 (2017): 12248–82. http://dx.doi.org/10.1039/c7nr01836c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Zhen, Xiao-Lian Zhang, and Bin Li. "Mesoporous Silica-Coated Upconverting Nanorods for Singlet Oxygen Generation: Synthesis and Performance." Materials 14, no. 13 (June 30, 2021): 3660. http://dx.doi.org/10.3390/ma14133660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Photodynamic therapy (PDT) has been reported as a possible pathway for the treatment of tumors. The exploration for promising PDT systems thus attracts continuous research efforts. This work focused on an ordered core–shell structure encapsulated by mesoporous SiO2 with the upconverting emission property following a surfactant-assisted sol–gel technique. The mesoporous silica shell possessed a high surface area-to-volume ratio and uniform distribution in pore size, favoring photosensitizer (rose bengal) loading. Simultaneously, upconverting nanocrystals were synthesized and used as the core. After modification via hydrophobic silica, the hydrophobic upconverting nanocrystals became hydrophilic ones. Under near-infrared (NIR) light irradiation, the nanomaterials exhibited strong green upconverting luminescence so that rose bengal could be excited to produce singlet oxygen. The photodynamic therapy (PDT) feature was evaluated using a 1O2 fluorescent indicator. It was found that this core–shell structure generates 1O2 efficiently. The novelty of this core–shell structure was the combination of upconverting nanocrystals with a mesoporous SiO2 shell so that photosensitizer rose bengal could be effectively adsorbed in the SiO2 shell and then excited by the upconverting core.
5

Hilderbrand, Scott A., Fangwei Shao, Christopher Salthouse, Umar Mahmood, and Ralph Weissleder. "Upconverting luminescent nanomaterials: application to in vivo bioimaging." Chemical Communications, no. 28 (2009): 4188. http://dx.doi.org/10.1039/b905927j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Xiaomin, Fan Zhang, and Dongyuan Zhao. "Highly efficient lanthanide upconverting nanomaterials: Progresses and challenges." Nano Today 8, no. 6 (December 2013): 643–76. http://dx.doi.org/10.1016/j.nantod.2013.11.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ghazyani, Nahid, Mohammad Hossein Majles Ara, and Mohammad Raoufi. "Nonlinear photoresponse of NaYF4:Yb,Er@NaYF4 nanocrystals under green CW excitation: a comprehensive study." RSC Advances 10, no. 43 (2020): 25696–702. http://dx.doi.org/10.1039/d0ra01380c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
NaYF4:Yb,Er@NaYF4 is an efficient and well-known upconverting nanomaterials at 980 nm, also it has strong optical nonlinearity at 532 nm related to energy states of the Yb/Er system which is determined by a unique approach.
8

Myers, Peter. "Claudia Altavilla (Ed): Upconverting Nanomaterials. Perspectives, Synthesis and Application." Chromatographia 80, no. 5 (March 20, 2017): 833–34. http://dx.doi.org/10.1007/s10337-017-3278-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Joshi, Tanmaya, Constantin Mamat, and Holger Stephan. "Contemporary Synthesis of Ultrasmall (sub‐10 nm) Upconverting Nanomaterials." ChemistryOpen 9, no. 6 (June 2020): 703–12. http://dx.doi.org/10.1002/open.202000073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hyppänen, Iko, Jorma Hölsä, Jouko Kankare, Mika Lastusaari, and Laura Pihlgren. "Upconversion Properties of Nanocrystalline ZrO2:Yb3+, Er3+Phosphors." Journal of Nanomaterials 2007 (2007): 1–8. http://dx.doi.org/10.1155/2007/16391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Combustion and sol-gel methods were used to prepare the upconverting nanocrystallineZrO2:Yb3+,Er3+phosphors. The crystal structure was studied by X-ray powder diffraction and the crystallite sizes were estimated with the Scherrer formula. Impurities and nanomaterials' thermal degradation were analyzed with FT-IR spectroscopy and thermal analysis, respectively. Upconversion luminescence and luminescence decays were studied with IR-laser excitation at 977 nm. All nanomaterials possessed the cubicZrO2fluorite-type structure except for a small monoclinic impurity obtained with the sol-gel method. The conventionalNO3−andOH−impurities were observed for the combustion synthesis products. TheZrO2:Yb3,Er3+nanomaterials showed red (630–710 nm) and green (510–570 nm) upconversion luminescence due to the4F9/2→4I15/2and(2H11/2,4S3/2)→4I15/2transitions ofEr3+, respectively. The products of the combustion synthesis exhibited the most intense luminescence intensity and showed considerable afterglow. It was concluded that excitation energy is partially trapped in the system and subsequently bleached thermally to the luminescentEr3+center to yield “persistent upconversion”.

Dissertations / Theses on the topic "Upconverting nanomaterials":

1

Purohit, Bhagyesh. "Precursors-guided synthesis of upconverting nanomaterials for near-infrared driven photocatalysis." Electronic Thesis or Diss., Lyon, 2021. https://n2t.net/ark:/47881/m6sn08q4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
L'utilisation de l'énergie solaire pour résoudre des problèmes environnementaux tels que la détoxification de l'eau, la purification de l'air et la production d'hydrogène a suscité un grand intérêt de la part de la communauté scientifique au cours des deux dernières décennies. La photocatalyse solaire est une piste intéressante pour cibler toutes ces questions environnementales. Actuellement, les technologies ne permettent pas encore d'utiliser efficacement une partie importante du spectre solaire, à savoir l'infrarouge, qui correspond à près de ~48 % du spectre solaire total. Cette thèse vise à préparer des matériaux nanocomposites qui utilisent ces photons solaires à faible énergie en les convertissant en photons UV et visibles à haute énergie et en les utilisant ensuite pour la photocatalyse classique. Pour y parvenir, l'accent a été mis sur deux aspects majeurs de la préparation de ce photocatalyseur modifié. Premièrement, la synthèse de matériaux qui pourraient convertir efficacement les photons actuellement inutilisés et deuxièmement, la préparation de leur composite avec TiO2, le photocatalyseur le plus largement utilisé. Cette thèse de doctorat se concentre sur une approche basée sur l’ « upconversion » afin d’étendre la gamme d'utilisation du spectre solaire. Pour atteindre cet objectif, deux stratégies d’optimisation ont été abordée. L’'optimisation du rendement quantique des nanoparticules à upconversion en utilisant de nouveaux précurseurs anhydres et, la préparation de photo-catalyseur nanocomposite UCNPs-TiO2 en utilisant des métallogels et/ou des structures coeur-coquille. Pour finir nous testons l’objectif de l'utilisation des photons solaires infrarouges à faible énergie en réalisant une photocatalyse sous irradiation IR uniquement en utilisant la plate-forme développée dans ce travail
The utilization of solar energy to solve environmental problems such as water detoxification, air purification and hydrogen production has attracted great interest from the scientific community over the last two decades. Solar photocatalysis is an interesting avenue to target all these environmental issues. Currently, technologies do not yet allow for the efficient use of a significant portion of the solar spectrum, namely the infrared, which corresponds to nearly ~48% of the total solar spectrum. This thesis aims at preparing nanocomposite materials that use these low energy solar photons by converting them into high energy UV and visible photons and then using them for classical photocatalysis. To achieve this, two major aspects of the preparation of this modified photocatalyst were emphasized. Firstly, the synthesis of materials that could efficiently convert currently unused photons and secondly, the preparation of their composite with TiO2, the most widely used photocatalyst.This doctoral thesis focuses on an approach based on "upconversion" in order to extend the range of use of the solar spectrum. To achieve this goal, two optimization strategies were addressed. The optimization of the quantum efficiency of upconversion nanoparticles (UCNPs) using new anhydrous precursors and, the preparation of UCNPs-TiO2 nanocatalyst using metallogels and/or core-shell structures. Finally, we test the objective of using low energy infrared solar photons by performing photocatalysis under IR irradiation only using the platform developed in this work
2

Rafiei, Miandashti Ali. "Synthesis, Characterization, and Photothermal Study of Plasmonic Nanostructures using Luminescence Nanomaterials." Ohio University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1553788360252461.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Upconverting nanomaterials":

1

Altavilla, Claudia, ed. Upconverting Nanomaterials. Boca Raton : Taylor & Francis, 2016. | Series: Nanomaterials and: CRC Press, 2016. http://dx.doi.org/10.1201/9781315371535.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Afolayan, Mudiwa. Upconverting Nanomaterials. Scitus Academics LLC, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Altavilla, Claudia. Upconverting Nanomaterials. Taylor & Francis Group, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Altavilla, Claudia. Upconverting Nanomaterials: Perspectives, Synthesis, and Applications. Taylor & Francis Group, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Altavilla, Claudia. Upconverting Nanomaterials: Perspectives, Synthesis, and Applications. Taylor & Francis Group, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Altavilla, Claudia. Upconverting Nanomaterials: Perspectives, Synthesis, and Applications. Taylor & Francis Group, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Altavilla, Claudia. Upconverting Nanomaterials: Perspectives, Synthesis, and Applications. Taylor & Francis Group, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Altavilla, Claudia. Upconverting Nanomaterials: Perspectives, Synthesis, and Applications. Taylor & Francis Group, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Upconverting nanomaterials":

1

Hemmer, Eva, and Fiorenzo Vetrone. "11 Nanothermometry Using Upconverting Nanoparticles." In Nanomaterials and their Applications, 319–58. CRC Press, 2016. http://dx.doi.org/10.1201/9781315371535-12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Baride, A., and J. Meruga. "10 Upconverting Nanoparticles for Security Applications." In Nanomaterials and their Applications, 291–318. CRC Press, 2016. http://dx.doi.org/10.1201/9781315371535-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Speghini, Adolfo, Marco Pedroni, Nelsi Zaccheroni, and Enrico Rampazzo. "3 Synthesis of Upconverting Nanomaterials: Designing the Composition and Nanostructure." In Nanomaterials and their Applications, 37–68. CRC Press, 2016. http://dx.doi.org/10.1201/9781315371535-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Prorok, K., D. Wawrzyńczyk, M. Misiak, and A. Bednarkiewicz. "8 Active–Core–Active-Shell Upconverting Nanoparticles: Novel Mechanisms, Features, and Perspectives for Biolabeling." In Nanomaterials and their Applications, 195–254. CRC Press, 2016. http://dx.doi.org/10.1201/9781315371535-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Upconverting nanomaterials":

1

Zhang, Jin, and Longyi Chen. "Facile synthesis of amine functionalized NaGdF4: Yb3+, Er3+ upconverting nanoparticles (Conference Presentation)." In Physical Chemistry of Interfaces and Nanomaterials XV, edited by Artem A. Bakulin, Natalie Banerji, and Robert Lovrincic. SPIE, 2016. http://dx.doi.org/10.1117/12.2238360.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography