Academic literature on the topic 'Upconverting nanomaterials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Upconverting nanomaterials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Upconverting nanomaterials"
Shah, Shreyas, Jing-Jing Liu, Nicholas Pasquale, Jinping Lai, Heather McGowan, Zhiping P. Pang, and Ki-Bum Lee. "Hybrid upconversion nanomaterials for optogenetic neuronal control." Nanoscale 7, no. 40 (2015): 16571–77. http://dx.doi.org/10.1039/c5nr03411f.
Full textChan, Emory M. "Combinatorial approaches for developing upconverting nanomaterials: high-throughput screening, modeling, and applications." Chemical Society Reviews 44, no. 6 (2015): 1653–79. http://dx.doi.org/10.1039/c4cs00205a.
Full textGulzar, Arif, Jiating Xu, Piaoping Yang, Fei He, and Liangge Xu. "Upconversion processes: versatile biological applications and biosafety." Nanoscale 9, no. 34 (2017): 12248–82. http://dx.doi.org/10.1039/c7nr01836c.
Full textZhang, Zhen, Xiao-Lian Zhang, and Bin Li. "Mesoporous Silica-Coated Upconverting Nanorods for Singlet Oxygen Generation: Synthesis and Performance." Materials 14, no. 13 (June 30, 2021): 3660. http://dx.doi.org/10.3390/ma14133660.
Full textHilderbrand, Scott A., Fangwei Shao, Christopher Salthouse, Umar Mahmood, and Ralph Weissleder. "Upconverting luminescent nanomaterials: application to in vivo bioimaging." Chemical Communications, no. 28 (2009): 4188. http://dx.doi.org/10.1039/b905927j.
Full textLi, Xiaomin, Fan Zhang, and Dongyuan Zhao. "Highly efficient lanthanide upconverting nanomaterials: Progresses and challenges." Nano Today 8, no. 6 (December 2013): 643–76. http://dx.doi.org/10.1016/j.nantod.2013.11.003.
Full textGhazyani, Nahid, Mohammad Hossein Majles Ara, and Mohammad Raoufi. "Nonlinear photoresponse of NaYF4:Yb,Er@NaYF4 nanocrystals under green CW excitation: a comprehensive study." RSC Advances 10, no. 43 (2020): 25696–702. http://dx.doi.org/10.1039/d0ra01380c.
Full textMyers, Peter. "Claudia Altavilla (Ed): Upconverting Nanomaterials. Perspectives, Synthesis and Application." Chromatographia 80, no. 5 (March 20, 2017): 833–34. http://dx.doi.org/10.1007/s10337-017-3278-2.
Full textJoshi, Tanmaya, Constantin Mamat, and Holger Stephan. "Contemporary Synthesis of Ultrasmall (sub‐10 nm) Upconverting Nanomaterials." ChemistryOpen 9, no. 6 (June 2020): 703–12. http://dx.doi.org/10.1002/open.202000073.
Full textHyppänen, Iko, Jorma Hölsä, Jouko Kankare, Mika Lastusaari, and Laura Pihlgren. "Upconversion Properties of Nanocrystalline ZrO2:Yb3+, Er3+Phosphors." Journal of Nanomaterials 2007 (2007): 1–8. http://dx.doi.org/10.1155/2007/16391.
Full textDissertations / Theses on the topic "Upconverting nanomaterials"
Purohit, Bhagyesh. "Precursors-guided synthesis of upconverting nanomaterials for near-infrared driven photocatalysis." Electronic Thesis or Diss., Lyon, 2021. https://n2t.net/ark:/47881/m6sn08q4.
Full textThe utilization of solar energy to solve environmental problems such as water detoxification, air purification and hydrogen production has attracted great interest from the scientific community over the last two decades. Solar photocatalysis is an interesting avenue to target all these environmental issues. Currently, technologies do not yet allow for the efficient use of a significant portion of the solar spectrum, namely the infrared, which corresponds to nearly ~48% of the total solar spectrum. This thesis aims at preparing nanocomposite materials that use these low energy solar photons by converting them into high energy UV and visible photons and then using them for classical photocatalysis. To achieve this, two major aspects of the preparation of this modified photocatalyst were emphasized. Firstly, the synthesis of materials that could efficiently convert currently unused photons and secondly, the preparation of their composite with TiO2, the most widely used photocatalyst.This doctoral thesis focuses on an approach based on "upconversion" in order to extend the range of use of the solar spectrum. To achieve this goal, two optimization strategies were addressed. The optimization of the quantum efficiency of upconversion nanoparticles (UCNPs) using new anhydrous precursors and, the preparation of UCNPs-TiO2 nanocatalyst using metallogels and/or core-shell structures. Finally, we test the objective of using low energy infrared solar photons by performing photocatalysis under IR irradiation only using the platform developed in this work
Rafiei, Miandashti Ali. "Synthesis, Characterization, and Photothermal Study of Plasmonic Nanostructures using Luminescence Nanomaterials." Ohio University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1553788360252461.
Full textBooks on the topic "Upconverting nanomaterials"
Altavilla, Claudia, ed. Upconverting Nanomaterials. Boca Raton : Taylor & Francis, 2016. | Series: Nanomaterials and: CRC Press, 2016. http://dx.doi.org/10.1201/9781315371535.
Full textAfolayan, Mudiwa. Upconverting Nanomaterials. Scitus Academics LLC, 2018.
Find full textAltavilla, Claudia. Upconverting Nanomaterials. Taylor & Francis Group, 2020.
Find full textUpconverting Nanomaterials: Perspectives, Synthesis, and Applications. Taylor & Francis Group, 2016.
Find full textAltavilla, Claudia. Upconverting Nanomaterials: Perspectives, Synthesis, and Applications. Taylor & Francis Group, 2016.
Find full textAltavilla, Claudia. Upconverting Nanomaterials: Perspectives, Synthesis, and Applications. Taylor & Francis Group, 2016.
Find full textAltavilla, Claudia. Upconverting Nanomaterials: Perspectives, Synthesis, and Applications. Taylor & Francis Group, 2016.
Find full textAltavilla, Claudia. Upconverting Nanomaterials: Perspectives, Synthesis, and Applications. Taylor & Francis Group, 2016.
Find full textBook chapters on the topic "Upconverting nanomaterials"
Hemmer, Eva, and Fiorenzo Vetrone. "11 Nanothermometry Using Upconverting Nanoparticles." In Nanomaterials and their Applications, 319–58. CRC Press, 2016. http://dx.doi.org/10.1201/9781315371535-12.
Full textBaride, A., and J. Meruga. "10 Upconverting Nanoparticles for Security Applications." In Nanomaterials and their Applications, 291–318. CRC Press, 2016. http://dx.doi.org/10.1201/9781315371535-11.
Full textSpeghini, Adolfo, Marco Pedroni, Nelsi Zaccheroni, and Enrico Rampazzo. "3 Synthesis of Upconverting Nanomaterials: Designing the Composition and Nanostructure." In Nanomaterials and their Applications, 37–68. CRC Press, 2016. http://dx.doi.org/10.1201/9781315371535-4.
Full textProrok, K., D. Wawrzyńczyk, M. Misiak, and A. Bednarkiewicz. "8 Active–Core–Active-Shell Upconverting Nanoparticles: Novel Mechanisms, Features, and Perspectives for Biolabeling." In Nanomaterials and their Applications, 195–254. CRC Press, 2016. http://dx.doi.org/10.1201/9781315371535-9.
Full textConference papers on the topic "Upconverting nanomaterials"
Zhang, Jin, and Longyi Chen. "Facile synthesis of amine functionalized NaGdF4: Yb3+, Er3+ upconverting nanoparticles (Conference Presentation)." In Physical Chemistry of Interfaces and Nanomaterials XV, edited by Artem A. Bakulin, Natalie Banerji, and Robert Lovrincic. SPIE, 2016. http://dx.doi.org/10.1117/12.2238360.
Full text