Journal articles on the topic 'Up-conversion photoluminescence'

To see the other types of publications on this topic, follow the link: Up-conversion photoluminescence.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Up-conversion photoluminescence.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Morozov, Yurii V., Shubin Zhang, Michael C. Brennan, Boldizsar Janko, and Masaru Kuno. "Photoluminescence Up-Conversion in CsPbBr3 Nanocrystals." ACS Energy Letters 2, no. 10 (October 5, 2017): 2514–15. http://dx.doi.org/10.1021/acsenergylett.7b00902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wagner, Matthias, Ivan G. Ivanov, L. Storasta, Peder Bergman, Björn Magnusson, W. M. Chen, and Erik Janzén. "Photoluminescence Up-Conversion Processes in SiC." Materials Science Forum 433-436 (September 2003): 309–12. http://dx.doi.org/10.4028/www.scientific.net/msf.433-436.309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cheong, Hyeonsik M., Brian Fluegel, Mark C. Hanna, and Angelo Mascarenhas. "Photoluminescence up-conversion inGaAs/AlxGa1−xAsheterostructures." Physical Review B 58, no. 8 (August 15, 1998): R4254—R4257. http://dx.doi.org/10.1103/physrevb.58.r4254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Morozov, Yurii V., Sergiu Draguta, Shubin Zhang, Alejandro Cadranel, Yuanxing Wang, Boldizsar Janko, and Masaru Kuno. "Defect-Mediated CdS Nanobelt Photoluminescence Up-Conversion." Journal of Physical Chemistry C 121, no. 30 (July 21, 2017): 16607–16. http://dx.doi.org/10.1021/acs.jpcc.7b05095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

DONG Guo-ya, 董国亚, 赵. 翔. ZHAO Xiang, 张. 燕. ZHANG Yan, and 孙传强 SUN Chuan-qiang. "Development of portable up-conversion photoluminescence strip detector." Optics and Precision Engineering 25, no. 3 (2017): 584–90. http://dx.doi.org/10.3788/ope.20172503.0584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cassabois, G., C. Kammerer, C. Voisin, C. Delalande, Ph Roussignol, and J. M. Gérard. "Photoluminescence up-conversion of single InAs/GaAs quantum dots." Physica E: Low-dimensional Systems and Nanostructures 13, no. 2-4 (March 2002): 105–8. http://dx.doi.org/10.1016/s1386-9477(01)00497-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Park, Ta-Ryeong, Tae Yang Park, Suk Hwan Youn, and N. M. Khaidukov. "Photoluminescence investigation of energy up-conversion in KY1−xErxF4." Journal of Luminescence 106, no. 3-4 (April 2004): 281–89. http://dx.doi.org/10.1016/j.jlumin.2003.10.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Huang, Yinpeng, Laihui Luo, Jia Wang, Qianghui Zuo, Yongjie Yao, and Weiping Li. "The down-conversion and up-conversion photoluminescence properties of Na0.5Bi0.5TiO3:Yb3+/Pr3+ ceramics." Journal of Applied Physics 118, no. 4 (July 28, 2015): 044101. http://dx.doi.org/10.1063/1.4927278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Steeds, John W., S. A. Furkert, W. Sullivan, and Günter Wagner. "Origin of the Up-Conversion Process in 4H SiC." Materials Science Forum 527-529 (October 2006): 473–76. http://dx.doi.org/10.4028/www.scientific.net/msf.527-529.473.

Full text
Abstract:
The unusual behaviour of two optical centres with zero phonon lines close to 463nm has been investigated by means of low-temperature photoluminescence microscopy using 488nm and 325nm laser excitation. The experiments were performed on as-irradiated samples and also after annealing isochronally to various temperatures up to 1300°C.
APA, Harvard, Vancouver, ISO, and other styles
10

Mironova-Ulmane, N., A. Sarakovskis, and V. Skvortsova. "Up-conversion and Photoluminescence in Er3+ Single Crystal MgAl-spinel." Physics Procedia 76 (2015): 106–10. http://dx.doi.org/10.1016/j.phpro.2015.10.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Meng, Xiaoqi, Lianqiang Li, Kaishun Zou, and Juncheng Liu. "The effect of SiO2 on TiO2 up-conversion photoluminescence film." Optical Materials 37 (November 2014): 367–70. http://dx.doi.org/10.1016/j.optmat.2014.06.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Paskov, P. P., P. O. Holtz, B. Monemar, J. M. Garcia, W. V. Schoenfeld, and P. M. Petroff. "Photoluminescence up-conversion in InAs/GaAs self-assembled quantum dots." Applied Physics Letters 77, no. 6 (August 7, 2000): 812–14. http://dx.doi.org/10.1063/1.1306653.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Gao, Feng, Gangjin Ding, Hong Zhou, Guangheng Wu, Ni Qin, and Dinghua Bao. "Bright up-conversion photoluminescence of Bi4−xErxTi3O12 ferroelectric thin films." Journal of Applied Physics 109, no. 4 (February 15, 2011): 043106–043106. http://dx.doi.org/10.1063/1.3549836.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Gao, Yuan-Fei, Qing-Hai Tan, Xue-Lu Liu, Shu-Liang Ren, Yu-Jia Sun, Da Meng, Ying-Jie Lu, Ping-Heng Tan, Chong-Xin Shan, and Jun Zhang. "Phonon-Assisted Photoluminescence Up-Conversion of Silicon-Vacancy Centers in Diamond." Journal of Physical Chemistry Letters 9, no. 22 (October 24, 2018): 6656–61. http://dx.doi.org/10.1021/acs.jpclett.8b02862.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Trojánek, F., K. Neudert, P. Malý, K. Dohnalová, and I. Pelant. "Ultrafast photoluminescence in silicon nanocrystals studied by femtosecond up-conversion technique." Journal of Applied Physics 99, no. 11 (June 2006): 116108. http://dx.doi.org/10.1063/1.2206848.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Cassabois, G., C. Kammerer, R. Sopracase, C. Voisin, C. Delalande, Ph Roussignol, and J. M. Gérard. "Disorder-induced photoluminescence up-conversion in InAs/GaAs quantum-dot samples." Journal of Applied Physics 91, no. 8 (April 15, 2002): 5489–91. http://dx.doi.org/10.1063/1.1459622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Keivanidis, P. E., S. Baluschev, T. Miteva, G. Nelles, U. Scherf, A. Yasuda, and G. Wegner. "Up-Conversion Photoluminescence in Polyfluorene Doped with Metal(II)–Octaethyl Porphyrins." Advanced Materials 15, no. 24 (December 17, 2003): 2095–98. http://dx.doi.org/10.1002/adma.200305717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Granados del Águila, Andrés, T. Thu Ha Do, Jun Xing, Wen Jie Jee, Jacob B. Khurgin, and Qihua Xiong. "Efficient up-conversion photoluminescence in all-inorganic lead halide perovskite nanocrystals." Nano Research 13, no. 7 (May 23, 2020): 1962–69. http://dx.doi.org/10.1007/s12274-020-2840-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Yadav, Amar Nath, Pramod Kumar, and Kedar Singh. "Femtosecond photoluminescence up-conversion spectroscopy in Cu doped CdS quantum dots." Materials Letters 297 (August 2021): 129925. http://dx.doi.org/10.1016/j.matlet.2021.129925.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Cao, Jing, Ji Zhou, Bo Li, Ming Fu, and Rui Long Zong. "Up-Conversion Luminescence in Thulium Doped Barium Titanate Inverted Opal." Key Engineering Materials 336-338 (April 2007): 561–63. http://dx.doi.org/10.4028/www.scientific.net/kem.336-338.561.

Full text
Abstract:
The synthesis, infiltration into a polystyrene opal and luminescence spectroscopy of BaTiO3: Tm3+ were reported in this paper. A photonic band gap and blue up-conversion photoluminescence were achieved in the synthesized inverted opal, respectively demonstrated by reflection spectrum and emission spectrum excited by 650nm laser source at room temperature. Changes of the emission spectroscopy compared with the thulium doped barium titanate reference sample were observed and thus provided evidence for the light inhibition effect of the photonic structure.
APA, Harvard, Vancouver, ISO, and other styles
21

Maeda, Yutaka, Shun Minami, Yuya Takehana, Jing-Shuang Dang, Shun Aota, Kazunari Matsuda, Yuhei Miyauchi, et al. "Tuning of the photoluminescence and up-conversion photoluminescence properties of single-walled carbon nanotubes by chemical functionalization." Nanoscale 8, no. 38 (2016): 16916–21. http://dx.doi.org/10.1039/c6nr04214g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Zhang, Yue, and Junhui He. "Facile synthesis of S, N co-doped carbon dots and investigation of their photoluminescence properties." Physical Chemistry Chemical Physics 17, no. 31 (2015): 20154–59. http://dx.doi.org/10.1039/c5cp03498a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Deng, Taoli, and Xianbang Jiang. "Comparison of the up-conversion photoluminescence for GAP, GAG and GAM phosphors." Optical Materials 78 (April 2018): 27–34. http://dx.doi.org/10.1016/j.optmat.2018.01.033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Vagos, P., P. Boucaud, F. H. Julien, J. M. Lourtioz, and R. Planel. "Photoluminescence up-conversion induced by intersubband absorption in asymmetric coupled quantum wells." Physical Review Letters 70, no. 7 (February 15, 1993): 1018–21. http://dx.doi.org/10.1103/physrevlett.70.1018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

LI, Jinping, Tingting ZHANG, Gangqiang ZHU, and ZHENG Hairong. "Up-conversion photoluminescence emissions of CaMoO 4 :Pr 3+ /Yb 3+ powder." Journal of Rare Earths 35, no. 7 (July 2017): 645–51. http://dx.doi.org/10.1016/s1002-0721(17)60958-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Peng, Dengfeng, Hua Zou, Chaonan Xu, Xusheng Wang, and Xi Yao. "Er doped BaBi4Ti4O15 multifunctional ferroelectrics: Up-conversion photoluminescence, dielectric and ferroelectric properties." Journal of Alloys and Compounds 552 (March 2013): 463–68. http://dx.doi.org/10.1016/j.jallcom.2012.10.194.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Jaime-Acuña, Oscar E., Roberto E. San-Juan Farfán, Humberto Villavicencio, Manuel Herrera, and Oscar Raymond Herrera. "Photoluminescence up-conversion and cathodoluminescence in quaternary CdxZnyOγSδ nanoparticles embedded on zeolite." Journal of Physics and Chemistry of Solids 153 (June 2021): 110004. http://dx.doi.org/10.1016/j.jpcs.2021.110004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Zhang, Wanyu, Lihua Jia, Xiangfeng Guo, Rui Yang, Yu Zhang, and Zhenlong Zhao. "Green synthesis of up- and down-conversion photoluminescent carbon dots from coffee beans for Fe3+ detection and cell imaging." Analyst 144, no. 24 (2019): 7421–31. http://dx.doi.org/10.1039/c9an01953g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Yamamoto, Aishi, Takeo Kido, Takenari Goto, Yefan Chen, Takafumi Yao, and Atsuo Kasuya. "Time-resolved photoluminescence in ZnO epitaxial thin films studied by up-conversion method." Journal of Crystal Growth 214-215 (June 2000): 308–11. http://dx.doi.org/10.1016/s0022-0248(00)00098-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Wang, Danping, Boxu Xu, Kaishun Zou, Min Sun, Guangzong Dong, and Juncheng Liu. "Effect of Er3+ concentration on the photoluminescence of Y2O3/ZnO up-conversion films." Optical Materials 83 (September 2018): 124–30. http://dx.doi.org/10.1016/j.optmat.2018.06.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Liu, Peng, Guohong Zhou, Shi Chen, and Shiwei Wang. "Synthesis and up-conversion photoluminescence properties of NaYF4:Yb3+, Er3+@sSiO2@mSiO2 nanoparticles." Optical Materials 36, no. 8 (June 2014): 1443–48. http://dx.doi.org/10.1016/j.optmat.2013.11.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Li, Xianglin, Bingbing Liu, Zepeng Li, Quanjun Li, Yonggang Zou, Dedi Liu, Dongmei Li, Bo Zou, Tian Cui, and Guangtian Zou. "Photoluminescence Up-conversion of CdSe/ZnS Core/shell Quantum Dots under High Pressure." Journal of Physical Chemistry C 113, no. 12 (March 3, 2009): 4737–40. http://dx.doi.org/10.1021/jp810750r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Ren, Junkai, Jibin Sun, Xingming Sun, Rui Song, Zheng Xie, and Shuyun Zhou. "Precisely Controlled Up/Down‐Conversion Liquid and Solid State Photoluminescence of Carbon Dots." Advanced Optical Materials 6, no. 14 (May 7, 2018): 1800115. http://dx.doi.org/10.1002/adom.201800115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Jeon, Young-Sun, Seung Hwangbo, and Kyu-Seog Hwang. "Up-Conversion Photoluminescence of Sol–Gel Derived CaY2O4 Powders Under 980 nm Excitation." Journal of Nanoscience and Nanotechnology 19, no. 3 (March 1, 2019): 1709–13. http://dx.doi.org/10.1166/jnn.2019.16205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Fan, Y., M. Bauer, L. Kador, K. R. Allakhverdiev, and E. Yu Salaev. "Photoluminescence frequency up-conversion in GaSe single crystals as studied by confocal microscopy." Journal of Applied Physics 91, no. 3 (February 2002): 1081–86. http://dx.doi.org/10.1063/1.1421215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Poole, P. J., J. Hong, Albert Stolow, and S. Charbonneau. "Time and frequency-resolved photoluminescence up conversion using broadly tuneable picosecond infrared pulses." Review of Scientific Instruments 69, no. 5 (May 1998): 1943–48. http://dx.doi.org/10.1063/1.1148877.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Zhang, Jiachi, Qingsong Qin, Minghui Yu, Meijiao Zhou, and Yuhua Wang. "The photoluminescence, afterglow and up conversion photostimulated luminescence of Eu3+ doped Mg2SnO4 phosphors." Journal of Luminescence 132, no. 1 (January 2012): 23–26. http://dx.doi.org/10.1016/j.jlumin.2011.07.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Jia, Hong, Cheng Xu, Juecheng Wang, Ping Chen, Xiaofeng Liu, and Jianrong Qiu. "Synthesis of NaYF4:Yb–Tm thin film with strong NIR photon up-conversion photoluminescence using electro-deposition method." CrystEngComm 16, no. 19 (2014): 4023–28. http://dx.doi.org/10.1039/c4ce00078a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Park, Ta Ryeong. "Physical Properties of KY1-xErxF4 Investigated by Photoluminescence." Advanced Materials Research 717 (July 2013): 129–32. http://dx.doi.org/10.4028/www.scientific.net/amr.717.129.

Full text
Abstract:
Trivalent erbium ions, Er3+, in KY1-xErxF4 crystal produce up-converted photoluminescence (PL) band around 406 nm when excited by 488 or 532 nm photons. By using time-resolved spectroscopy, it was found that the up-conversion arises from the energy transfer processes between the excited Er3+ ions. Thermal behavior reveals that the 406 nm up-conversion is a phonon-assisted process. There is also a secondary up-conversion by level-crossing where a PL band around 520 nm is produced by the 532 nm excitation. High pressure causes the crystal to undergo a structural phase transition, as monitored by the PL it produces.
APA, Harvard, Vancouver, ISO, and other styles
40

Yi, Juan, Zong-Yan Zhao, and Yu-An Wang. "Systematic studies on YbxBi1−xVO4:Tm3+ solid solutions: experiments and DFT calculations on up-conversion photoluminescence properties." RSC Advances 8, no. 2 (2018): 596–605. http://dx.doi.org/10.1039/c7ra10534g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Liu, Mengli, Fengying Lei, Na Jiang, Qiaoji Zheng, and Dunmin Lin. "Enhanced piezoelectricity, bright up-conversion and down-conversion photoluminescence in Er3+ doped 0.94(BiNa)0.5TiO3–0.06BaTiO3 multifunctional ceramics." Materials Research Bulletin 74 (February 2016): 62–69. http://dx.doi.org/10.1016/j.materresbull.2015.10.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Deng, Taoli, Shirun Yan, and Jianguo Hu. "Effect of Calcination Temperature on Up-Conversion Photoluminescence of the GdAlO3: Er3+,Yb3+Phosphor." ECS Journal of Solid State Science and Technology 4, no. 3 (December 31, 2014): R48—R53. http://dx.doi.org/10.1149/2.0101503jss.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Zou, Hua, Jun Li, Qiufeng Cao, Xusheng Wang, Xinwei Hui, Yanxia Li, Yao Yu, and Xi Yao. "Intensive up-conversion photoluminescence of Er3+-doped Bi7Ti4NbO21 ferroelectric ceramics and its temperature sensing." Journal of Advanced Dielectrics 04, no. 04 (October 2014): 1450028. http://dx.doi.org/10.1142/s2010135x14500283.

Full text
Abstract:
The intensive up-conversion (UC) photoluminescence and temperature sensing behavior of Er 3+-doped Bi 7 Ti 4 NbO 21( BTN ) ferroelectric ceramics prepared by a conventional solid-state reaction technique have been investigated. The X-ray diffraction and field emission scanning electron microscope analyses demonstrated that the Er 3+-doped BTN ceramics are single phase and uniform flake-like structure. With the Er 3+ ions doping, the intensive UC emission was observed without obviously changing the properties of ferroelectric. The optimal emission intensity was obtained when Er doping level was 15 mol.%. The temperature sensing behavior was studied by fluorescence intensity ratio (FIR) technique of two green UC emission bands, and the experimental data fitted very well with the function of temperature in a range of 133–573 K. It suggested that the Er 3+-doped BTN ferroelectric ceramics are very good candidates for applications such as optical thermometry, electro-optical devices and bio-imaging ceramics.
APA, Harvard, Vancouver, ISO, and other styles
44

Strelchuk, V. V. "High-efficient up-conversion of photoluminescence in CdSe quantum dots grown in ZnSe matrix." Semiconductor Physics, Quantum Electronics and Optoelectronics 5, no. 4 (December 17, 2002): 343–46. http://dx.doi.org/10.15407/spqeo5.04.343.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Xu, Hengxing, Wei Qin, Mingxing Li, Ting Wu, and Bin Hu. "Magneto-Photoluminescence Based on Two-Photon Excitation in Lanthanide-Doped Up-Conversion Crystal Particles." Small 13, no. 16 (February 20, 2017): 1603363. http://dx.doi.org/10.1002/smll.201603363.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Ding, Gangjin, Feng Gao, Guangheng Wu, and Dinghua Bao. "Bright up-conversion green photoluminescence in Ho3+-Yb3+ co-doped Bi4Ti3O12 ferroelectric thin films." Journal of Applied Physics 109, no. 12 (June 15, 2011): 123101. http://dx.doi.org/10.1063/1.3596597.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Wang, Danping, Xiaoqi Meng, Boxu Xu, Kaishun Zou, Changjiang Zhao, and Juncheng Liu. "Effects of Ho 3+ concentration on the photoluminescence of the ZnO Up-conversion films." Chemical Physics Letters 677 (June 2017): 148–51. http://dx.doi.org/10.1016/j.cplett.2017.03.083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Wang, Xuejiao, Meng Sun, Zhipeng Hu, Panpan Du, Weigang Liu, Fan Zhang, and Ji-Guang Li. "Synthesis of NaLn(WO4)2 phosphors via a new phase-conversion protocol and investigation of up/down conversion photoluminescence." Advanced Powder Technology 31, no. 10 (October 2020): 4231–40. http://dx.doi.org/10.1016/j.apt.2020.08.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Zhang, Jun, Hai Ou Shen, Shun Hao Wang, Yan Li Li, Hui Xin, Chun Tao Zhu, and Xiang Da Peng. "Preparation and Characterization of Rare Earth Ions Doped Fluoride Core-Shell up-Conversion Luminescence Nanomaterials." Advanced Materials Research 512-515 (May 2012): 1972–75. http://dx.doi.org/10.4028/www.scientific.net/amr.512-515.1972.

Full text
Abstract:
Coating a heterogeneous layer outside the core nanoparticles has become a common method to protect the properties of nanoparticles and may extend the application range of core nanoparticles. Rare earth ion-doped nanoparticles NaYF4:Yb 3+ ,Er 3+ is one of the most efficient up-conversion nanosystems. In this work, a multi-functional NaYF4:Yb 3+ ,Er 3+ @TiO2 core-shell structure nanocomposite was synthesized. The structure, optical and photoluminescence properties of the up-converting nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and room temperature up-conversion luminescence (UCL) spectrofluorimetric measurements.
APA, Harvard, Vancouver, ISO, and other styles
50

He, Chongjun, Yang An, Chenguang Deng, Xiaorong Gu, Jiming Wang, Tong Wu, Youwen Liu, Yuangang Lu, Rong Mao, and Ziyun Chen. "Tunable photoluminescent properties of rare-earth co-doped (Na0.5Bi0.5)TiO3 ceramics by Pr3+ concentration." Modern Physics Letters B 33, no. 26 (September 20, 2019): 1950323. http://dx.doi.org/10.1142/s0217984919503238.

Full text
Abstract:
Lead-free piezoelectric ceramic materials have received extensive attention due to their potential application in new optoelectronic devices. The outstanding advantages of lead-free piezoelectric materials are nontoxicity and environmental-friendliness. Photoluminescence is one of the important properties of ceramics. This property is widely used in printing, testing materials, medical and other technologies. At the same time, materials with up-conversion luminescence can also be used to detect infrared light. Here, we had made [Formula: see text] and [Formula: see text] co-doped [Formula: see text] (NBT) ceramics. Photoluminescence properties of [Formula: see text] and [Formula: see text] co-doped NBT were studied. The structure of the doped ceramics was characterized by the X-ray diffraction pattern which shows that the doping had little effect on the ceramic structure. Studies on luminescent spectra show that [Formula: see text] has an inhibitory effect on the up-conversion luminescence of [Formula: see text], and a certain concentration of [Formula: see text] promotes the luminescence of [Formula: see text] in the mid-infrared region. Intensity of the up-conversion luminescence was substantially linear with the power of the excitation source. These findings are expected to improve the performance of the NBT-based optoelectronic devices.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography