Dissertations / Theses on the topic 'Unsupervised Neural Network'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Unsupervised Neural Network.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
McConnell, Sabine. "An unsupervised neural network for the clustering of extragalactic objects." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2002. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/MQ65638.pdf.
Full textESTEU, BRUNO ROMANELLI MENECHINI. "CLUSTERING VIBRATION DATA FROM OIL WELLS THROUGH UNSUPERVISED NEURAL NETWORK." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2014. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=25049@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
A perfuração de poços de petróleo em águas profundas tem como objetivo atingir o melhor ponto de extração de óleo e gás natural presentes em reservatórios a alguns milhares de metros no fundo do mar. Um melhor entendimento da dinâmica de perfuração através da análise de parâmetros operacionais em tempo real é importante para otimizar os processos de perfuração e reduzir seus tempos de operação. Com esse objetivo, operadoras de petróleo têm realizado grandes investimentos no desenvolvimento de ferramentas de medição e transmissão de parâmetros durante a perfuração, tais como, entre outros, o peso sobre broca, rotação da coluna e vazão do fluido de perfuração. Dentre as vantagens em se monitorar estes dados em tempo real, destaca-se a otimização de parâmetros operacionais buscando obter uma taxa de penetração satisfatória com o menor gasto de energia possível. Em uma perfuração rotativa, essa energia é muitas vezes parcialmente dissipada devido à vibração da coluna causada pela interação entre broca e formação. Nesta dissertação, com o objetivo de extrair características comuns que pudessem vir a ajudar na otimização da atividade de perfuração, foi utilizada uma técnica de redes neurais não supervisionadas para análise de uma extensa base de dados levantados ao longo de campanhas de perfuração de poços em um mesmo campo de petróleo. Os dados de campo analisados foram obtidos ao longo de perfurações de poços verticais, exclusivamente empregando brocas tipo PDC e exibindo elevados níveis de vibração torcional. O estudo realizado a partir de registros de parâmetros de perfuração, características dos poços e respostas de vibração obtidas em tempo real por ferramentas de poço, e empregando o código de mineração de dados WEKA e a plataforma computacional de análise TIBCO Spotfire, permitiu a determinação de uma curva de desgaste de broca e a influência das ferramentas de navegação no nível de severidade de vibração ao longo da perfuração.
Drilling oil wells in deep waters aims to achieve the best point of extraction of oil and natural gas reservoirs present in a few thousand meters in the seabed. A better understanding of the drilling dynamics through the analysis of real time operation parameters is important to optimize drilling process and reduce operation time. For this purpose petroleum operator companies have been made great investments in developing tools that measure and transmit parameters during drilling operation, such as the weight on bit, pipes rotation per minute and drilling fluid flow. Among the advantages to monitor this real time data there is the operational parameters optimization looking for the least expenditure of energy as possible. In a rotary drilling operation this energy is often lost partially due to column vibration caused by the interaction between bit and formation.In this master s thesis in order to extract common features that could help on the drilling operation optimization a technique using unsupervised neural networks for analyze an extensive database which was built over drilling campaigns in a big oil field . The field data analyzed were obtained during drilling vertical wells exclusively employing PDC bits and presented high levels of torcional vibration. The study was made from drilling parameters records, wells characteristics and vibration responses obtained in real time by downhole tools. Employing the WEKA data mining code and the computing analysis platform TIBCO potfire it was possible determine a bit wear curve and the real influence of navigation tools on the severity levels of vibration during drilling operations.
Mackenzie, Mathew David. "CDUL Class Directed Unsupervised Learning : an enhanced neural network classification system." Thesis, University of Kent, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.360970.
Full textHuckle, Christopher Cedric. "Unsupervised categorization of word meanings using statistical and neural network methods." Thesis, University of Edinburgh, 1996. http://hdl.handle.net/1842/21308.
Full textSrinivasan, BadriNarayanan. "Unsupervised learning to cluster the disease stages in parkinson's disease." Thesis, Högskolan Dalarna, Datateknik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:du-5499.
Full textSani, Lorenzo. "Unsupervised clustering of MDS data using federated learning." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25591/.
Full textMici, Luiza [Verfasser], and Stefan [Akademischer Betreuer] Wermter. "Unsupervised Learning of Human-Object Interactions with Neural Network Self-Organization / Luiza Mici ; Betreuer: Stefan Wermter." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2018. http://d-nb.info/117430653X/34.
Full textDi, Felice Marco. "Unsupervised anomaly detection in HPC systems." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.
Find full textAckerman, Wesley. "Semantic-Driven Unsupervised Image-to-Image Translation for Distinct Image Domains." BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8684.
Full textLin, Brian K. "An unsupervised neural network fault discriminating system implementation for on-line condition monitoring and diagnostics of induction machines." Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/14957.
Full textFlores, Quiroz Martín. "Descriptive analysis of the acquisition of the base form, third person singular, present participle regular past, irregular past, and past participle in a supervised artificial neural network and an unsupervised artificial neural network." Tesis, Universidad de Chile, 2013. http://www.repositorio.uchile.cl/handle/2250/115653.
Full textStudying children’s language acquisition in natural settings is not cost and time effective. Therefore, language acquisition may be studied in an artificial setting reducing the costs related to this type of research. By artificial, I do not mean that children will be placed in an artificial setting, first because this would not be ethical and second because the problem of the time needed for this research would still be present. Thus, by artificial I mean that the tools of simulation found in artificial intelligence can be used. Simulators as artificial neural networks (ANNs) possess the capacity to simulate different human cognitive skills, as pattern or speech recognition, and can also be implemented in personal computers with software such as MATLAB, a numerical computing software. ANNs are computer simulation models that try to resemble the neural processes behind several human cognitive skills. There are two main types of ANNs: supervised and unsupervised. The learning processes in the first are guided by the computer programmer, while the learning processes of the latter are random.
Donati, Lorenzo. "Domain Adaptation through Deep Neural Networks for Health Informatics." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14888/.
Full textDe, Vine Lance. "Analogical frames by constraint satisfaction." Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/198036/1/Lance_De%20Vine_Thesis.pdf.
Full textLundberg, Emil. "Adding temporal plasticity to a self-organizing incremental neural network using temporal activity diffusion." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-180346.
Full textVektorkvantisering (VQ; eng: Vector Quantization) är ett klassiskt problem och en enkel metod för mönsterigenkänning. Bland tillämpningar finns förstörande datakompression, klustring och igenkänning av tal och talare. Även om VQ i stort har ersatts av tidsmedvetna tekniker såsom dolda Markovmodeller (HMM, eng: Hidden Markov Models) och dynamisk tidskrökning (DTW, eng: Dynamic Time Warping) i vissa tillämpningar, som tal- och talarigenkänning, har VQ ännu viss relevans tack vare sin mycket lägre beräkningsmässiga kostnad — särskilt för exempelvis inbyggda system. En ny studie demonstrerar också ett VQ-system med flera sektioner som åstadkommer prestanda i klass med DTW i en tillämpning på igenkänning av handskrivna signaturer, men till en mycket lägre beräkningsmässig kostnad. Att dra nytta av temporala mönster i en VQ-algoritm skulle kunna hjälpa till att förbättra sådana resultat ytterligare. SOTPAR2 är en sådan utökning av Neural Gas, en artificiell neural nätverk-algorithm för VQ. SOTPAR2 använder en konceptuellt enkel idé, baserad på att lägga till sidleds anslutningar mellan nätverksnoder och skapa “temporal aktivitet” som diffunderar genom anslutna noder. Aktiviteten gör sedan så att närmaste-granne-klassificeraren föredrar noder med hög aktivitet, och författarna till SOTPAR2 rapporterar förbättrade resultat jämfört med Neural Gas i en tillämpning på förutsägning av en tidsserie. I denna rapport undersöks hur samma utökning påverkar kvantiserings- och förutsägningsprestanda hos algoritmen självorganiserande inkrementellt neuralt nätverk (SOINN, eng: self-organizing incremental neural network). SOINN är en VQ-algorithm som automatiskt väljer en lämplig kodboksstorlek och också kan användas för klustring med godtyckliga klusterformer. Experimentella resultat visar att denna utökning inte förbättrar prestandan hos SOINN, istället försämrades prestandan i alla experiment som genomfördes. Detta resultat diskuteras, liksom inverkan av parametervärden på prestandan, och möjligt framtida arbete för att förbättra resultaten föreslås.
Belharbi, Soufiane. "Neural networks regularization through representation learning." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMIR10/document.
Full textNeural network models and deep models are one of the leading and state of the art models in machine learning. They have been applied in many different domains. Most successful deep neural models are the ones with many layers which highly increases their number of parameters. Training such models requires a large number of training samples which is not always available. One of the fundamental issues in neural networks is overfitting which is the issue tackled in this thesis. Such problem often occurs when the training of large models is performed using few training samples. Many approaches have been proposed to prevent the network from overfitting and improve its generalization performance such as data augmentation, early stopping, parameters sharing, unsupervised learning, dropout, batch normalization, etc. In this thesis, we tackle the neural network overfitting issue from a representation learning perspective by considering the situation where few training samples are available which is the case of many real world applications. We propose three contributions. The first one presented in chapter 2 is dedicated to dealing with structured output problems to perform multivariate regression when the output variable y contains structural dependencies between its components. Our proposal aims mainly at exploiting these dependencies by learning them in an unsupervised way. Validated on a facial landmark detection problem, learning the structure of the output data has shown to improve the network generalization and speedup its training. The second contribution described in chapter 3 deals with the classification task where we propose to exploit prior knowledge about the internal representation of the hidden layers in neural networks. This prior is based on the idea that samples within the same class should have the same internal representation. We formulate this prior as a penalty that we add to the training cost to be minimized. Empirical experiments over MNIST and its variants showed an improvement of the network generalization when using only few training samples. Our last contribution presented in chapter 4 showed the interest of transfer learning in applications where only few samples are available. The idea consists in re-using the filters of pre-trained convolutional networks that have been trained on large datasets such as ImageNet. Such pre-trained filters are plugged into a new convolutional network with new dense layers. Then, the whole network is trained over a new task. In this contribution, we provide an automatic system based on such learning scheme with an application to medical domain. In this application, the task consists in localizing the third lumbar vertebra in a 3D CT scan. A pre-processing of the 3D CT scan to obtain a 2D representation and a post-processing to refine the decision are included in the proposed system. This work has been done in collaboration with the clinic "Rouen Henri Becquerel Center" who provided us with data
Nyamapfene, Abel. "Unsupervised multimodal neural networks." Thesis, University of Surrey, 2006. http://epubs.surrey.ac.uk/844064/.
Full textCeylan, Ciwan. "Conditional Noise-Contrastive Estimation : With Application to Natural Image Statistics." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-213847.
Full textIcke-normaliserade parametriska modeller utgör en viktig klass av svåruppskattade statistiska modeller. Dessa modeller är viktiga eftersom de uppträder inom många olika tillämpningsområden, t.ex. vid modellering av bilder, tal och skrift och associativt minne. Dessa modeller är svåruppskattade eftersom den vanliga maximum likelihood-metoden inte är tillämpbar på icke-normaliserade modeller. Noise-contrastive estimation (NCE) har föreslagits som en effektiv metod för uppskattning av icke-normaliserade modeller. Grundidén är att transformera det icke-handledda uppskattningsproblemet till ett handlett klassificeringsproblem. Den icke-normaliserade modellens parametrar blir inlärda genom att träna modellen på att skilja det givna dataprovet från ett genererat brusprov. Dock har valet av brusdistribution lämnats öppet för användaren. Eftersom uppskattningens prestanda är känslig gentemot det här valet är det önskvärt att få det automatiserat. I det här examensarbetet behandlas valet av brusdistribution genom att presentera den tidigare opublicerade metoden conditional noise-contrastive estimation (CNCE). Liksom NCE uppskattar CNCE icke-normaliserade modeller via klassificering av data- och brusprov. I det här fallet är emellertid brusdistributionen delvis automatiserad genom att använda en betingad brusdistribution som är beroende på dataprovet. Förutom att introducera kärnteorin för CNCE valideras även metoden med hjälp av data och modeller vars genererande parametrar är kända. Vidare appliceras CNCE på bilddata för att demonstrera dess tillämpbarhet.
Yogeswaran, Arjun. "Self-Organizing Neural Visual Models to Learn Feature Detectors and Motion Tracking Behaviour by Exposure to Real-World Data." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/37096.
Full textLabonne, Maxime. "Anomaly-based network intrusion detection using machine learning." Electronic Thesis or Diss., Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAS011.
Full textIn recent years, hacking has become an industry unto itself, increasing the number and diversity of cyber attacks. Threats on computer networks range from malware to denial of service attacks, phishing and social engineering. An effective cyber security plan can no longer rely solely on antiviruses and firewalls to counter these threats: it must include several layers of defence. Network-based Intrusion Detection Systems (IDSs) are a complementary means of enhancing security, with the ability to monitor packets from OSI layer 2 (Data link) to layer 7 (Application). Intrusion detection techniques are traditionally divided into two categories: signatured-based (or misuse) detection and anomaly detection. Most IDSs in use today rely on signature-based detection; however, they can only detect known attacks. IDSs using anomaly detection are able to detect unknown attacks, but are unfortunately less accurate, which generates a large number of false alarms. In this context, the creation of precise anomaly-based IDS is of great value in order to be able to identify attacks that are still unknown.In this thesis, machine learning models are studied to create IDSs that can be deployed in real computer networks. Firstly, a three-step optimization method is proposed to improve the quality of detection: 1/ data augmentation to rebalance the dataset, 2/ parameters optimization to improve the model performance and 3/ ensemble learning to combine the results of the best models. Flows detected as attacks can be analyzed to generate signatures to feed signature-based IDS databases. However, this method has the disadvantage of requiring labelled datasets, which are rarely available in real-life situations. Transfer learning is therefore studied in order to train machine learning models on large labeled datasets, then finetune them on benign traffic of the network to be monitored. This method also has flaws since the models learn from already known attacks, and therefore do not actually perform anomaly detection. Thus, a new solution based on unsupervised learning is proposed. It uses network protocol header analysis to model normal traffic behavior. Anomalies detected are then aggregated into attacks or ignored when isolated. Finally, the detection of network congestion is studied. The bandwidth utilization between different links is predicted in order to correct issues before they occur
Macdonald, Donald. "Unsupervised neural networks for visualisation of data." Thesis, University of the West of Scotland, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.395687.
Full textBerry, Ian Michael. "Data classification using unsupervised artificial neural networks." Thesis, University of Sussex, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390079.
Full textHarpur, George Francis. "Low entropy coding with unsupervised neural networks." Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627227.
Full textBishop, Griffin R. "Unsupervised Semantic Segmentation through Cross-Instance Representation Similarity." Digital WPI, 2020. https://digitalcommons.wpi.edu/etd-theses/1371.
Full textWalcott, Terry Hugh. "Market prediction for SMEs using unsupervised neural networks." Thesis, University of East London, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.532991.
Full textVetcha, Sarat Babu. "Fault diagnosis in pumps by unsupervised neural networks." Thesis, University of Sussex, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.300604.
Full textPlumbley, Mark David. "An information-theoretic approach to unsupervised connectionist models." Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387051.
Full textLiliemark, Adam, and Viktor Enghed. "Categorization of Customer Reviews Using Natural Language Processing." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-299882.
Full textDatabaser med användargenererad data kan snabbt bli ohanterbara. Klarna stod inför detta problem, med en databas innehållande cirka 700 000 recensioner från kunder. De såg helst att databasen skulle rensas från ointressanta recensioner och att de kvarvarande kategoriseras. Eftersom att kategorierna var okända initialt, var tanken att använda en oövervakad grupperingsalgoritm. Denna rapport beskriver det arbete som utfördes för att lösa detta problem, och föreslår en lösning till Klarna som involverar artificiella neurala nätverk istället för oövervakad gruppering. Implementationen skapad av oss är kapabel till att kategorisera recensioner som intressanta eller ointressanta. Vi föreslår ett arbetsflöde som skulle skapa möjlighet att kategorisera recensioner inte bara i dessa två kategorier, utan i flera. Metoden kretsar kring experimentering med grupperingsalgoritmer och artificiella neurala nätverk. Tidigare forskning visar att texter kan grupperas oövervakat, dock med ingångsdata som väsentligt skiljer sig från Klarnas data. Recensionerna i Klarnas data är generellt sett korta och en stor andel av dem kan ses som ointressanta. Oövervakad grupperingen gav otillräckliga resultat, då inga skönjbara kategorier stod att finna. I vissa fall skapades grupperingar av ointressanta recensioner. Dessa användes som träningsdata för ett artificiellt neuralt nätverk. Till träningsdatan lades intressanta recensioner som tagits fram manuellt. Resultaten från detta var positivt; med en träffsäkerhet om cirka 86% avgörs om en recension är intressant eller inte. Detta uppnåddes genom den tidigare skapade träningsdatan samt fem återkopplingsprocesser, där modellens felaktiga prediktioner av evalueringsdata matades in som träningsdata. Vår uppfattning är att den korta längden på recensionerna gör att den oövervakade grupperingen inte fungerar. Andra forskare har lyckats gruppera textdata med snittlängder om hundratals ord per text. Dessa texter rymmer fler meningsfulla enheter än de korta recensionerna i Klarnas data. Det finns lösningar som innefattar artificiella neurala nätverk å andra sidan kan upptäcka dessa meningsfulla enheter, tack vare sin grundläggande utformning. Vårt arbete visar att ett artificiellt neuralt nätverk kan upptäcka dessa meningsfulla enheter, trots den korta längden per recension. Extrahering av meningsfulla enheter ur korta texter är ett ¨ämne som behöver mer forskning för att underlätta problem som detta. Om meningsfulla enheter kan extraheras ur texter, kan grupperingen göras på dessa enheter istället för orden i sig. Vårt artificiella neurala nätverk visar att de arbiträra enheterna intressant och ointressant kan extraheras, vilket gör oss hoppfulla om att framtida forskare kan finna sätt att extrahera fler enheter ur korta texter. I teorin innebär detta att texter av alla längder kan grupperas oövervakat.
Al, Chami Zahi. "Estimation de la qualité des données multimedia en temps réel." Thesis, Pau, 2021. http://www.theses.fr/2021PAUU3066.
Full textOver the past decade, data providers have been generating and streaming a large amount of data, including images, videos, audio, etc. In this thesis, we will be focusing on processing images since they are the most commonly shared between the users on the global inter-network. In particular, treating images containing faces has received great attention due to its numerous applications, such as entertainment and social media apps. However, several challenges could arise during the processing and transmission phase: firstly, the enormous number of images shared and produced at a rapid pace requires a significant amount of time to be processed and delivered; secondly, images are subject to a wide range of distortions during the processing, transmission, or combination of many factors that could damage the images’content. Two main contributions are developed. First, we introduce a Full-Reference Image Quality Assessment Framework in Real-Time, capable of:1) preserving the images’content by ensuring that some useful visual information can still be extracted from the output, and 2) providing a way to process the images in real-time in order to cope with the huge amount of images that are being received at a rapid pace. The framework described here is limited to processing those images that have access to their reference version (a.k.a Full-Reference). Secondly, we present a No-Reference Image Quality Assessment Framework in Real-Time. It has the following abilities: a) assessing the distorted image without having its distortion-free image, b) preserving the most useful visual information in the images before publishing, and c) processing the images in real-time, even though the No-Reference image quality assessment models are considered very complex. Our framework offers several advantages over the existing approaches, in particular: i. it locates the distortion in an image in order to directly assess the distorted parts instead of processing the whole image, ii. it has an acceptable trade-off between quality prediction accuracy and execution latency, andiii. it could be used in several applications, especially these that work in real-time. The architecture of each framework is presented in the chapters while detailing the modules and components of the framework. Then, a number of simulations are made to show the effectiveness of our approaches to solve our challenges in relation to the existing approaches
Zeltner, Felix. "Autonomous Terrain Classification Through Unsupervised Learning." Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-60893.
Full textGaltier, Mathieu. "A mathematical approach to unsupervised learning in recurrent neural networks." Paris, ENMP, 2011. https://pastel.hal.science/pastel-00667368.
Full textIn this thesis, we propose to give a mathematical sense to the claim: the neocortex builds itself a model of its environment. We study the neocortex as a network of spiking neurons undergoing slow STDP learning. By considering that the number of neurons is close to infinity, we propose a new mean-field method to find the ''smoother'' equation describing the firing-rate of populations of these neurons. Then, we study the dynamics of this averaged system with learning. By assuming the modification of the synapses' strength is very slow compared the activity of the network, it is possible to use tools from temporal averaging theory. They lead to showing that the connectivity of the network always converges towards a single equilibrium point which can be computed explicitely. This connectivity gathers the knowledge of the network about the world. Finally, we analyze the equilibrium connectivity and compare it to the inputs. By seeing the inputs as the solution of a dynamical system, we are able to show that the connectivity embedded the entire information about this dynamical system. Indeed, we show that the symmetric part of the connectivity leads to finding the manifold over which the inputs dynamical system is defined, and that the anti-symmetric part of the connectivity corresponds to the vector field of the inputs dynamical system. In this context, the network acts as a predictor of the future events in its environment
Haddad, Josef, and Carl Piehl. "Unsupervised anomaly detection in time series with recurrent neural networks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-259655.
Full textArtificiella neurala nätverk (ANN) har tillämpats på många problem. Däremot försöker inte de flesta ANN-modeller efterlikna hjärnan i detalj. Ett exempel på ett ANN som är begränsat till att efterlikna hjärnan är Hierarchical Temporal Memory (HTM). Denna studie tillämpar HTM och Long Short-Term Memory (LSTM) på avvikelsedetektionsproblem i tidsserier för att undersöka vilka styrkor och svagheter de har för detta problem. Avvikelserna i denna studie är begränsade till punktavvikelser och tidsserierna är i endast en variabel. Redan existerande implementationer som utnyttjar dessa nätverk för oövervakad avvikelsedetektionsproblem i tidsserier används i denna studie. Vi använder främst våra egna syntetiska tidsserier för att undersöka hur nätverken hanterar brus och hur de hanterar olika egenskaper som en tidsserie kan ha. Våra resultat visar att båda nätverken kan hantera brus och prestationsskillnaden rörande brusrobusthet var inte tillräckligt stor för att urskilja modellerna. LSTM presterade bättre än HTM på att upptäcka punktavvikelser i våra syntetiska tidsserier som följer en sinuskurva men en slutsats angående vilket nätverk som presterar bäst överlag är fortfarande oavgjord.
Mohammed, Derek. "A Comparative Study of Unsupervised Neural Networks in Detecting Financial Misstatements." NSUWorks, 2005. http://nsuworks.nova.edu/gscis_etd/730.
Full textYang, Li. "Biologically inspired visual models by sparse and unsupervised learning : a dissertation /." Full text open access at:, 2007. http://content.ohsu.edu/u?/etd,163.
Full textManne, Mihira. "MACHINE VISION FOR AUTOMATICVISUAL INSPECTION OF WOODENRAILWAY SLEEPERS USING UNSUPERVISED NEURAL NETWORKS." Thesis, Högskolan Dalarna, Datateknik, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:du-3977.
Full textSuits, David B. "A simplified drive-reinforcement model for unsupervised learning in artificial neural networks /." Online version of thesis, 1992. http://hdl.handle.net/1850/11087.
Full textGeigel, Arturo. "Unsupervised Learning Trojan." NSUWorks, 2014. http://nsuworks.nova.edu/gscis_etd/17.
Full textVendramin, Nicoló. "Unsupervised Anomaly Detection on Multi-Process Event Time Series." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254885.
Full textAtt fastställa huruvida observerade data är avvikande eller inte är en viktig uppgift som har studerats ingående i litteraturen och problemet blir ännu mer komplext, om detta kombineras med högdimensionella representationer och flera källor som oberoende genererar de mönster som ska analyseras. Arbetet som presenteras i denna uppsats använder en data-driven pipeline för definitionen av en återkommande auto-encoderarkitektur för att analysera, på ett oövervakat sätt, högdimensionella händelsetidsserier som genereras av flera och variabla processer som interagerar med ett system. Mot bakgrund av ovanstående problem undersöker arbetet om det är möjligt eller inte att använda en enda modell för att analysera mönster som producerats av olika källor. Analys av loggfiler som registrerar händelser av interaktion mellan användare och radionätverksinfrastruktur används som en fallstudie för det angivna problemet. Undersökningen syftar till att verifiera prestandan hos en enda maskininlärningsmodell som tillämpas för inlärning av flera mönster som utvecklats över tid från olika källor. Arbetet föreslår en pipeline för att hantera den komplexa representationen hos datakällorna och definitionen och avstämningen av anomalidetektionsmodellen, som inte är baserad på domänspecifik kunskap och därför kan anpassas till olika probleminställningar. Modellen har implementerats i fyra olika varianter som har utvärderats med avseende på både normala och avvikande data, som delvis har samlats in från verkliga nätverksceller och delvis från simulering av avvikande beteenden. De empiriska resultaten visar modellens tillämplighet för detektering av avvikande sekvenser och händelser i det föreslagna ramverket, med F1-score över 80%, varierande beroende på den specifika tröskelinställningen. Dessutom ger deras djupare tolkning insikter om skillnaden mellan olika varianter av modellen och därmed deras begränsningar och styrkor.
Abidogun, Olusola Adeniyi. "Data mining, fraud detection and mobile telecommunications: call pattern analysis with unsupervised neural networks." Thesis, University of the Western Cape, 2005. http://etd.uwc.ac.za/index.php?module=etd&.
Full textmarketing and fraud detection. One of the strategies for fraud detection checks for signs of questionable changes in user behavior. Although the intentions of the mobile phone users cannot be observed, their intentions are reflected in the call data which define usage patterns. Over a period of time, an individual phone generates a large pattern of use. While call data are recorded for subscribers for billing purposes, we are making no prior assumptions about the data indicative of fraudulent call patterns, i.e. the calls made for billing purpose are unlabeled. Further analysis is thus, required to be able to isolate fraudulent usage. An unsupervised learning algorithm can analyse and cluster call patterns for each subscriber in order to facilitate the fraud detection process.
This research investigates the unsupervised learning potentials of two neural networks for the profiling of calls made by users over a period of time in a mobile telecommunication network. Our study provides a comparative analysis and application of Self-Organizing Maps (SOM) and Long Short-Term Memory (LSTM) recurrent neural networks algorithms to user call data records in order to conduct a descriptive data mining on users call patterns.
Our investigation shows the learning ability of both techniques to discriminate user call patterns
the LSTM recurrent neural network algorithm providing a better discrimination than the SOM algorithm in terms of long time series modelling. LSTM discriminates different types of temporal sequences and groups them according to a variety of features. The ordered features can later be interpreted and labeled according to specific requirements of the mobile service provider. Thus, suspicious call behaviours are isolated within the mobile telecommunication network and can be used to to identify fraudulent call patterns. We give results using masked call data
from a real mobile telecommunication network.
Charles, Eugene Yougarajah Andrew. "Supervised and unsupervised weight and delay adaptation learning in temporal coding spiking neural networks." Thesis, Cardiff University, 2006. http://orca.cf.ac.uk/56168/.
Full textChavez, Wesley. "An Exploration of Linear Classifiers for Unsupervised Spiking Neural Networks with Event-Driven Data." PDXScholar, 2018. https://pdxscholar.library.pdx.edu/open_access_etds/4439.
Full textLe, Lan Gaël. "Analyse en locuteurs de collections de documents multimédia." Thesis, Le Mans, 2017. http://www.theses.fr/2017LEMA1020/document.
Full textThe task of speaker diarization and linking aims at answering the question "who speaks and when?" in a collection of multimedia recordings. It is an essential step to index audiovisual contents. The task of speaker diarization and linking firstly consists in segmenting each recording in terms of speakers, before linking them across the collection. Aim is, to identify each speaker with a unique anonymous label, even for speakers appearing in multiple recordings, without any knowledge of their identity or number. The challenge of the cross-recording linking is the modeling of the within-speaker/across-recording variability: depending on the recording, a same speaker can appear in multiple acoustic conditions (in a studio, in the street...). The thesis proposes two methods to overcome this issue. Firstly, a novel neural variability compensation method is proposed, using the triplet-loss paradigm for training. Secondly, an iterative unsupervised domain adaptation process is presented, in which the system exploits the information (even inaccurate) about the data it processes, to enhance its performances on the target acoustic domain. Moreover, novel ways of analyzing the results in terms of speaker are explored, to understand the actual performance of a diarization and linking system, beyond the well-known Diarization Error Rate (DER). Systems and methods are evaluated on two TV shows of about 40 episodes, using either a global, or longitudinal linking architecture, and state of the art speaker modeling (i-vector)
Schneider, C. "Using unsupervised machine learning for fault identification in virtual machines." Thesis, University of St Andrews, 2015. http://hdl.handle.net/10023/7327.
Full textBoschini, Matteo. "Unsupervised Learning of Scene Flow." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16226/.
Full textHalsey, Phillip A. "The Nature of Modality and Learning Task: Unsupervised Learning of Auditory Categories." Ohio University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1433406793.
Full textAyodele, Taiwo Oladipupo. "An integrated framework for solving email management problems with unsupervised machine learning techniques and artificial neural networks." Thesis, University of Portsmouth, 2010. https://researchportal.port.ac.uk/portal/en/theses/an-integrated-framework-for-solving-email-management-problems-with-unsupervised-machine-learning-techniques-and-artificial-neural-networks(7bb647da-3759-47e2-812a-e1adc5e36af0).html.
Full textKilinc, Ismail Ozsel. "Graph-based Latent Embedding, Annotation and Representation Learning in Neural Networks for Semi-supervised and Unsupervised Settings." Scholar Commons, 2017. https://scholarcommons.usf.edu/etd/7415.
Full textNikbakht, Silab Rasoul. "Unsupervised learning for parametric optimization in wireless networks." Doctoral thesis, Universitat Pompeu Fabra, 2021. http://hdl.handle.net/10803/671246.
Full textAqueta tesis estudia l’optimització paramètrica a les xarxes cel.lulars i xarxes cell-free, explotant els paradigmes basats en dades i basats en experts. L’assignació i control de la potencia, que ajusten la potencia de transmissió per complir amb diferents criteris d’equitat com max-min o max-product, son tasques crucials en les telecomunicacions inalàmbriques pertanyents a la categoria d’optimització paramètrica. Les tècniques d’última generació per al control i assignació de la potència solen exigir enormes costos computacionals i no son adequats per aplicacions en temps real. Per abordar aquesta qüestió, desenvolupem una tècnica de propòsit general utilitzant aprenentatge no supervisat per resoldre optimitzacions paramètriques; i al mateix temps ampliem el reconegut algoritme de control de potencia fraccionada. En el paradigma basat en dades, creem un marc d’aprenentatge no supervisat que defineix una xarxa neuronal (NN, sigles de Neural Network en Anglès) especifica, incorporant coneixements experts a la funció de cost de la NN per resoldre els problemes de control i assignació de potència. Dins d’aquest enfocament, s’entrena una NN de tipus feedforward mitjançant el mostreig repetit en l’espai de paràmetres, però, en lloc de resoldre completament el problema d’optimització associat, es pren un sol pas en la direcció del gradient de la funció objectiu. El mètode resultant ´es aplicable tant als problemes d’optimització convexos com no convexos. Això ofereix una acceleració de dos a tres ordres de magnitud en els problemes de control i assignació de potencia en comparació amb un algoritme de resolució convexa—sempre que sigui aplicable. En el paradigma dirigit per experts, investiguem l’extensió del control de potencia fraccionada a les xarxes sense cèl·lules. La solució tancada resultant pot ser avaluada per a l’enllaç de pujada i el de baixada sense esforç i assoleix una solució (gaire) òptima en el cas de l’enllaç de pujada. En ambdós paradigmes, ens centrem especialment en els guanys a gran escala—la quantitat d’atenuació que experimenta la potencia mitja local rebuda. La naturalesa de variació lenta dels guanys a gran escala relaxa la necessitat d’una actualització freqüent de les solucions tant en el paradigma basat en dades com en el basat en experts, permetent d’aquesta manera l’ús dels dos mètodes en aplicacions en temps real.
Esta tesis estudia la optimización paramétrica en las redes celulares y redes cell-free, explorando los paradigmas basados en datos y en expertos. La asignación y el control de la potencia, que ajustan la potencia de transmisión para cumplir con diferentes criterios de equidad como max-min o max-product, son tareas cruciales en las comunicaciones inalámbricas pertenecientes a la categoría de optimización paramétrica. Los enfoques más modernos de control y asignación de la potencia suelen exigir enormes costes computacionales y no son adecuados para aplicaciones en tiempo real. Para abordar esta cuestión, desarrollamos un enfoque de aprendizaje no supervisado de propósito general que resuelve las optimizaciones paramétricas y a su vez ampliamos el reconocido algoritmo de control de potencia fraccionada. En el paradigma basado en datos, creamos un marco de aprendizaje no supervisado que define una red neuronal (NN, por sus siglas en inglés) específica, incorporando conocimiento de expertos a la función de coste de la NN para resolver los problemas de control y asignación de potencia. Dentro de este enfoque, se entrena una NN de tipo feedforward mediante el muestreo repetido del espacio de parámetros, pero, en lugar de resolver completamente el problema de optimización asociado, se toma un solo paso en la dirección del gradiente de la función objetivo. El método resultante es aplicable tanto a los problemas de optimización convexos como no convexos. Ofrece una aceleración de dos a tres órdenes de magnitud en los problemas de control y asignación de potencia, en comparación con un algoritmo de resolución convexo—siempre que sea aplicable. Dentro del paradigma dirigido por expertos, investigamos la extensión del control de potencia fraccionada a las redes cell-free. La solución de forma cerrada resultante puede ser evaluada para el enlace uplink y el downlink sin esfuerzo y alcanza una solución (casi) óptima en el caso del enlace uplink. En ambos paradigmas, nos centramos especialmente en las large-scale gains— la cantidad de atenuación que experimenta la potencia media local recibida. La naturaleza lenta y variable de las ganancias a gran escala relaja la necesidad de una actualización frecuente de las soluciones tanto en el paradigma basado en datos como en el basado en expertos, permitiendo el uso de ambos métodos en aplicaciones en tiempo real.
Jouini, Mohamed Soufiane. "Caractérisation des réservoirs basée sur des textures des images scanners de carottes." Thesis, Bordeaux 1, 2009. http://www.theses.fr/2009BOR13769/document.
Full textCores extracted, during wells drilling, are essential data for reservoirs characterization. A medical scanner is used for their acquisition. This feature provide high resolution images improving the capacity of interpretation. The main goal of the thesis is to establish links between these images and petrophysical data. Then parametric texture modelling can be used to achieve this goal and should provide reliable set of descriptors. A possible solution is to focus on parametric methods allowing synthesis. Even though, this method is not a proven mathematically, it provides high confidence on set of descriptors and allows interpretation into synthetic textures. In this thesis methods and algorithms were developed to achieve the following goals : 1. Segment main representative texture zones on cores. This is achieved automatically through learning and classifying textures based on parametric model. 2. Find links between scanner images and petrophysical parameters. This is achieved though calibrating and predicting petrophysical data with images (Supervised Learning Process)
Mirzaei, Golrokh. "Data Fusion of Infrared, Radar, and Acoustics Based Monitoring System." University of Toledo / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1396564236.
Full textThang, Ka Fei. "An improved approach to data analysis & interpretation in transformer condition assessment based on unsupervised neutral network." Thesis, University of Bath, 2002. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.760820.
Full text