Academic literature on the topic 'Unsupervised categorization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Unsupervised categorization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Unsupervised categorization"
Pothos, Emmanuel M., and Nick Chater. "Unsupervised Categorization and Category Learning." Quarterly Journal of Experimental Psychology Section A 58, no. 4 (May 2005): 733–52. http://dx.doi.org/10.1080/02724980443000322.
Full textHeidemann, Gunther. "Unsupervised image categorization." Image and Vision Computing 23, no. 10 (September 2005): 861–76. http://dx.doi.org/10.1016/j.imavis.2005.05.016.
Full textClapper, John P., and Gordon H. Bower. "Adaptive categorization in unsupervised learning." Journal of Experimental Psychology: Learning, Memory, and Cognition 28, no. 5 (September 2002): 908–23. http://dx.doi.org/10.1037/0278-7393.28.5.908.
Full textWang, Xiaozhe, Liang Wang, Anthony Wirth, and Leonardo Lopes. "Unsupervised categorization of human motion sequences." Intelligent Data Analysis 17, no. 6 (November 6, 2013): 1057–74. http://dx.doi.org/10.3233/ida-130620.
Full textYuchi Huang, Qingshan Liu, Fengjun Lv, Yihong Gong, and Dimitris N. Metaxas. "Unsupervised Image Categorization by Hypergraph Partition." IEEE Transactions on Pattern Analysis and Machine Intelligence 33, no. 6 (June 2011): 1266–73. http://dx.doi.org/10.1109/tpami.2011.25.
Full textDolgikh, Serge. "Categorization in Unsupervised Generative Selflearning Systems." International Journal of Modern Education and Computer Science 13, no. 3 (June 8, 2021): 68–78. http://dx.doi.org/10.5815/ijmecs.2021.03.06.
Full textGliozzo, Alfio, Carlo Strapparava, and Ido Dagan. "Improving text categorization bootstrapping via unsupervised learning." ACM Transactions on Speech and Language Processing 6, no. 1 (October 2009): 1–24. http://dx.doi.org/10.1145/1596515.1596516.
Full textPothos, Emmanuel M., and Nick Chater. "A simplicity principle in unsupervised human categorization." Cognitive Science 26, no. 3 (May 2002): 303–43. http://dx.doi.org/10.1207/s15516709cog2603_6.
Full textYANG, SHICAI, GEORGE BEBIS, MUHAMMAD HUSSAIN, GHULAM MUHAMMAD, and ANWAR M. MIRZA. "UNSUPERVISED DISCOVERY OF VISUAL FACE CATEGORIES." International Journal on Artificial Intelligence Tools 22, no. 01 (February 2013): 1250029. http://dx.doi.org/10.1142/s0218213012500297.
Full textEll, Shawn W., and F. Gregory Ashby. "The impact of category separation on unsupervised categorization." Attention, Perception, & Psychophysics 74, no. 2 (November 9, 2011): 466–75. http://dx.doi.org/10.3758/s13414-011-0238-z.
Full textDissertations / Theses on the topic "Unsupervised categorization"
Colreavy, Erin Patricia. "Unsupervised categorization : perceptual shift, strategy development, and general principles." University of Western Australia. School of Psychology, 2008. http://theses.library.uwa.edu.au/adt-WU2008.0232.
Full textDoan, Charles A. "Connecting Unsupervised and Supervised Categorization Behavior from a Parainformative Perspective." Ohio University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1521548439515138.
Full textMiller, Benjamin Alan. "Distance Effects in Similarity Based Free Categorization." CSUSB ScholarWorks, 2015. https://scholarworks.lib.csusb.edu/etd/238.
Full textHuckle, Christopher Cedric. "Unsupervised categorization of word meanings using statistical and neural network methods." Thesis, University of Edinburgh, 1996. http://hdl.handle.net/1842/21308.
Full textPereira, Dennis V. "Automatic Lexicon Generation for Unsupervised Part-of-Speech Tagging Using Only Unannotated Text." Thesis, Virginia Tech, 1999. http://hdl.handle.net/10919/10094.
Full textMaster of Science
Liliemark, Adam, and Viktor Enghed. "Categorization of Customer Reviews Using Natural Language Processing." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-299882.
Full textDatabaser med användargenererad data kan snabbt bli ohanterbara. Klarna stod inför detta problem, med en databas innehållande cirka 700 000 recensioner från kunder. De såg helst att databasen skulle rensas från ointressanta recensioner och att de kvarvarande kategoriseras. Eftersom att kategorierna var okända initialt, var tanken att använda en oövervakad grupperingsalgoritm. Denna rapport beskriver det arbete som utfördes för att lösa detta problem, och föreslår en lösning till Klarna som involverar artificiella neurala nätverk istället för oövervakad gruppering. Implementationen skapad av oss är kapabel till att kategorisera recensioner som intressanta eller ointressanta. Vi föreslår ett arbetsflöde som skulle skapa möjlighet att kategorisera recensioner inte bara i dessa två kategorier, utan i flera. Metoden kretsar kring experimentering med grupperingsalgoritmer och artificiella neurala nätverk. Tidigare forskning visar att texter kan grupperas oövervakat, dock med ingångsdata som väsentligt skiljer sig från Klarnas data. Recensionerna i Klarnas data är generellt sett korta och en stor andel av dem kan ses som ointressanta. Oövervakad grupperingen gav otillräckliga resultat, då inga skönjbara kategorier stod att finna. I vissa fall skapades grupperingar av ointressanta recensioner. Dessa användes som träningsdata för ett artificiellt neuralt nätverk. Till träningsdatan lades intressanta recensioner som tagits fram manuellt. Resultaten från detta var positivt; med en träffsäkerhet om cirka 86% avgörs om en recension är intressant eller inte. Detta uppnåddes genom den tidigare skapade träningsdatan samt fem återkopplingsprocesser, där modellens felaktiga prediktioner av evalueringsdata matades in som träningsdata. Vår uppfattning är att den korta längden på recensionerna gör att den oövervakade grupperingen inte fungerar. Andra forskare har lyckats gruppera textdata med snittlängder om hundratals ord per text. Dessa texter rymmer fler meningsfulla enheter än de korta recensionerna i Klarnas data. Det finns lösningar som innefattar artificiella neurala nätverk å andra sidan kan upptäcka dessa meningsfulla enheter, tack vare sin grundläggande utformning. Vårt arbete visar att ett artificiellt neuralt nätverk kan upptäcka dessa meningsfulla enheter, trots den korta längden per recension. Extrahering av meningsfulla enheter ur korta texter är ett ¨ämne som behöver mer forskning för att underlätta problem som detta. Om meningsfulla enheter kan extraheras ur texter, kan grupperingen göras på dessa enheter istället för orden i sig. Vårt artificiella neurala nätverk visar att de arbiträra enheterna intressant och ointressant kan extraheras, vilket gör oss hoppfulla om att framtida forskare kan finna sätt att extrahera fler enheter ur korta texter. I teorin innebär detta att texter av alla längder kan grupperas oövervakat.
Tsai, Cheng-han, and 蔡承翰. "Unsupervised Text Categorization Method Using Wikipedia Content and Linking Information." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/25779286117141393805.
Full text國立雲林科技大學
資訊管理系碩士班
101
With the rapid growth of the Internet, huge amount of text documents has been generated. How to classify the huge quantity of text documents into correct categories is a complex task. Scores of supervised learning algorithms have been proposed for text categorization. However, the supervised learning algorithms have some weaknesses. One of them is that they need a large number of labeled training documents for computing term similarity in order to obtain high accuracy performance. Generally, collecting labeled documents is difficult and costly. In this paper, we proposed an unsupervised learning method, which automatically extracts keywords from unlabeled documents for text categorization. We regard Wikipedia as knowledge resource, and extract words which appeared with keywords for enhancing the keyword list. The experimental results show that our method is better than other term weighting methods based on frequency in text classification.
"Types of Bots: Categorization of Accounts Using Unsupervised Machine Learning." Master's thesis, 2019. http://hdl.handle.net/2286/R.I.55528.
Full textDissertation/Thesis
Presentation Materials for Thesis Defense
Masters Thesis Computer Science 2019
Chang, Chun-Chih, and 張駿志. "Enhance Performance of Unsupervised Text Categorization by Using External Information." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/60800446714501803893.
Full text國立雲林科技大學
資訊管理系
102
With swift growth of online text, how to organize text data effectively has become a major issue. Text classification is the task of classifying documents into pre-defined categories. For this, many supervised classification methods have been proposed. But supervised learning methods have some disadvantage. The biggest bottleneck is the requirement of a large amount of training data for better classification performance. While unlabeled documents are simply collected and abundant, labeled documents are difficult to collect because labeling is usually done manually. The task is time-consuming. To overcome those disadvantages and achieve better classification accuracy without labeled data, we propose the combination of three external sources “Wikipedia”, ”WordNet” and ”Google distance” for text classification on unsupervised learning. The result of experiments shows that the combination of Wikipedia with WordNet achieves better performance than the individual methods
Book chapters on the topic "Unsupervised categorization"
Saux, Bertrand Le, and Nozha Boujemaa. "Unsupervised Categorization for Image Database Overview." In Recent Advances in Visual Information Systems, 163–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45925-1_15.
Full textLi, Keqian, Hanwen Zha, Yu Su, and Xifeng Yan. "Unsupervised Neural Categorization for Scientific Publications." In Proceedings of the 2018 SIAM International Conference on Data Mining, 37–45. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2018. http://dx.doi.org/10.1137/1.9781611975321.5.
Full textDai, Dengxin, Mukta Prasad, Christian Leistner, and Luc Van Gool. "Ensemble Partitioning for Unsupervised Image Categorization." In Computer Vision – ECCV 2012, 483–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33712-3_35.
Full textDolgikh, Serge. "On Unsupervised Categorization in Deep Autoencoder Models." In Advances in Computer Science for Engineering and Education III, 255–65. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55506-1_23.
Full textLevine, Daniel S. "Models of Coding, Categorization, and Unsupervised Learning." In Introduction to Neural and Cognitive Modeling, 216–49. Third edition. | New York, NY : Routledge, 2019.: Routledge, 2018. http://dx.doi.org/10.4324/9780429448805-7.
Full textTao, Linmi, and Atif Mughees. "Unsupervised Hyperspectral Image Noise Reduction and Band Categorization." In Engineering Applications of Computational Methods, 35–65. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4420-4_3.
Full textShin, Jiwon, Rudolph Triebel, and Roland Siegwart. "Unsupervised 3D Object Discovery and Categorization for Mobile Robots." In Springer Tracts in Advanced Robotics, 61–76. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29363-9_4.
Full textMesnil, Grégoire, Salah Rifai, Antoine Bordes, Xavier Glorot, Yoshua Bengio, and Pascal Vincent. "Unsupervised Learning of Semantics of Object Detections for Scene Categorization." In Advances in Intelligent Systems and Computing, 209–24. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12610-4_13.
Full textKlami, Mikaela, and Krista Lagus. "Unsupervised Word Categorization Using Self-Organizing Maps and Automatically Extracted Morphs." In Intelligent Data Engineering and Automated Learning – IDEAL 2006, 912–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11875581_109.
Full textLu, Zhiwu, Xiaoqing Lu, and Zhiyuan Ye. "Unsupervised Image Categorization Using Constrained Entropy-Regularized Likelihood Learning with Pairwise Constraints." In Advances in Neural Networks – ISNN 2007, 1193–200. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-72383-7_139.
Full textConference papers on the topic "Unsupervised categorization"
Escobar-Avila, Javier, Mario Linares-Vasquez, and Sonia Haiduc. "Unsupervised Software Categorization Using Bytecode." In 2015 IEEE 23rd International Conference on Program Comprehension (ICPC). IEEE, 2015. http://dx.doi.org/10.1109/icpc.2015.33.
Full textLimsettho, Nachai, Hideaki Hata, Akito Monden, and Kenichi Matsumoto. "Automatic Unsupervised Bug Report Categorization." In 2014 6th International Workshop on Empirical Software Engineering in Practice (IWESEP). IEEE, 2014. http://dx.doi.org/10.1109/iwesep.2014.8.
Full textKo, Youngjoong, and Jungyun Seo. "Automatic text categorization by unsupervised learning." In the 18th conference. Morristown, NJ, USA: Association for Computational Linguistics, 2000. http://dx.doi.org/10.3115/990820.990886.
Full textWetzker, Robert, Tansu Alpcan, Christian Bauckhage, Winfried Umbrath, and Sahin Albayrak. "An unsupervised hierarchical approach to document categorization." In IEEE/WIC/ACM International Conference on Web Intelligence (WI'07). IEEE, 2007. http://dx.doi.org/10.1109/wi.2007.144.
Full textYang, Jie, Zhenjiang Miao, and Hao Wu. "Unsupervised image categorization with improved spectral clustering." In 2014 12th International Conference on Signal Processing (ICSP 2014). IEEE, 2014. http://dx.doi.org/10.1109/icosp.2014.7015226.
Full textIrfan, Danish, Xu Xiaofei, Deng Shengchun, and Ye Yunming. "Feature-based unsupervised clustering for supplier categorization." In 2008 IEEE 16th International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2008. http://dx.doi.org/10.1109/fuzzy.2008.4630655.
Full textFleming, M. K., and G. W. Cottrell. "Categorization of faces using unsupervised feature extraction." In 1990 IJCNN International Joint Conference on Neural Networks. IEEE, 1990. http://dx.doi.org/10.1109/ijcnn.1990.137696.
Full textGliozzo, Alfio, Carlo Strapparava, and Ido Dagan. "Investigating unsupervised learning for text categorization bootstrapping." In the conference. Morristown, NJ, USA: Association for Computational Linguistics, 2005. http://dx.doi.org/10.3115/1220575.1220592.
Full textDiemert, Eustache, and Gilles Vandelle. "Unsupervised query categorization using automatically-built concept graphs." In the 18th international conference. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1526709.1526772.
Full textDueck, Delbert, and Brendan J. Frey. "Non-metric affinity propagation for unsupervised image categorization." In 2007 IEEE 11th International Conference on Computer Vision. IEEE, 2007. http://dx.doi.org/10.1109/iccv.2007.4408853.
Full text