Journal articles on the topic 'Unsupervised anomaly detection'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Unsupervised anomaly detection.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
倪, 一鸣, and 松灿 陈. "Continual unsupervised anomaly detection." SCIENTIA SINICA Informationis 52, no. 1 (January 1, 2022): 75. http://dx.doi.org/10.1360/ssi-2021-0192.
Full textShi, Chengming, Bo Luo, Hongqi Li, Bin Li, Xinyong Mao, and Fangyu Peng. "Anomaly Detection via Unsupervised Learning for Tool Breakage Monitoring." International Journal of Machine Learning and Computing 6, no. 5 (October 2016): 256–59. http://dx.doi.org/10.18178/ijmlc.2016.6.5.607.
Full textFarzad, Amir, and T. Aaron Gulliver. "Unsupervised log message anomaly detection." ICT Express 6, no. 3 (September 2020): 229–37. http://dx.doi.org/10.1016/j.icte.2020.06.003.
Full textGoernitz, N., M. Kloft, K. Rieck, and U. Brefeld. "Toward Supervised Anomaly Detection." Journal of Artificial Intelligence Research 46 (February 20, 2013): 235–62. http://dx.doi.org/10.1613/jair.3623.
Full textAlmalawi, Abdulmohsen, Adil Fahad, Zahir Tari, Asif Irshad Khan, Nouf Alzahrani, Sheikh Tahir Bakhsh, Madini O. Alassafi, Abdulrahman Alshdadi, and Sana Qaiyum. "Add-On Anomaly Threshold Technique for Improving Unsupervised Intrusion Detection on SCADA Data." Electronics 9, no. 6 (June 18, 2020): 1017. http://dx.doi.org/10.3390/electronics9061017.
Full textTian, Yu, Haihua Liao, Jing Xu, Ya Wang, Shuai Yuan, and Naijin Liu. "Unsupervised Spectrum Anomaly Detection Method for Unauthorized Bands." Space: Science & Technology 2022 (February 21, 2022): 1–10. http://dx.doi.org/10.34133/2022/9865016.
Full textLok, Lai Kai, Vazeerudeen Abdul Hameed, and Muhammad Ehsan Rana. "Hybrid machine learning approach for anomaly detection." Indonesian Journal of Electrical Engineering and Computer Science 27, no. 2 (August 1, 2022): 1016. http://dx.doi.org/10.11591/ijeecs.v27.i2.pp1016-1024.
Full textGoldstein, Markus. "Special Issue on Unsupervised Anomaly Detection." Applied Sciences 13, no. 10 (May 11, 2023): 5916. http://dx.doi.org/10.3390/app13105916.
Full textZhou, Wei, Yuan Gao, Jianhang Ji, Shicheng Li, and Yugen Yi. "Unsupervised Anomaly Detection for Glaucoma Diagnosis." Wireless Communications and Mobile Computing 2021 (October 1, 2021): 1–14. http://dx.doi.org/10.1155/2021/5978495.
Full textChung, Hwehee, Jongho Park, Jongsoo Keum, Hongdo Ki, and Seokho Kang. "Unsupervised Anomaly Detection Using Style Distillation." IEEE Access 8 (2020): 221494–502. http://dx.doi.org/10.1109/access.2020.3043473.
Full textVincent, Vercruyssen, Meert Wannes, and Davis Jesse. "Transfer Learning for Anomaly Detection through Localized and Unsupervised Instance Selection." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (April 3, 2020): 6054–61. http://dx.doi.org/10.1609/aaai.v34i04.6068.
Full textAmarbayasgalan, Tsatsral, Van Huy Pham, Nipon Theera-Umpon, and Keun Ho Ryu. "Unsupervised Anomaly Detection Approach for Time-Series in Multi-Domains Using Deep Reconstruction Error." Symmetry 12, no. 8 (July 29, 2020): 1251. http://dx.doi.org/10.3390/sym12081251.
Full textGuo, Jiahao, Xiaohuo Yu, and Lu Wang. "Unsupervised Anomaly Detection and Segmentation on Dirty Datasets." Future Internet 14, no. 3 (March 13, 2022): 86. http://dx.doi.org/10.3390/fi14030086.
Full textWen-Jen Ho, Wen-Jen Ho, Hsin-Yuan Hsieh Wen-Jen Ho, and Chia-Wei Tsai Hsin-Yuan Hsieh. "Anomaly Detection Model of Time Segment Power Usage Behavior Using Unsupervised Learning." 網際網路技術學刊 25, no. 3 (May 2024): 455–63. http://dx.doi.org/10.53106/160792642024052503011.
Full textSong, Yide. "Weakly-Supervised and Unsupervised Video Anomaly Detection." Highlights in Science, Engineering and Technology 12 (August 26, 2022): 160–70. http://dx.doi.org/10.54097/hset.v12i.1444.
Full textZHOU, JUNLIN, ALEKSANDAR LAZAREVIC, KUO-WEI HSU, JAIDEEP SRIVASTAVA, YAN FU, and YUE WU. "UNSUPERVISED LEARNING BASED DISTRIBUTED DETECTION OF GLOBAL ANOMALIES." International Journal of Information Technology & Decision Making 09, no. 06 (November 2010): 935–57. http://dx.doi.org/10.1142/s0219622010004172.
Full textZhang, Shen Qi, Wei Yuan, Ran Yi, and Li Chen. "DC operating circuit anomaly detection based on node voltage unsupervised time series." Journal of Physics: Conference Series 2474, no. 1 (April 1, 2023): 012030. http://dx.doi.org/10.1088/1742-6596/2474/1/012030.
Full textYang, Zhengqiang, Junwei Tian, and Ning Li. "Flow Graph Anomaly Detection Based on Unsupervised Learning." Mobile Information Systems 2022 (March 31, 2022): 1–9. http://dx.doi.org/10.1155/2022/4194714.
Full textLiu, Jiaqi, Kai Wu, Qiang Nie, Ying Chen, Bin-Bin Gao, Yong Liu, Jinbao Wang, Chengjie Wang, and Feng Zheng. "Unsupervised Continual Anomaly Detection with Contrastively-Learned Prompt." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 4 (March 24, 2024): 3639–47. http://dx.doi.org/10.1609/aaai.v38i4.28153.
Full textNakao, Takahiro, Shouhei Hanaoka, Yukihiro Nomura, Masaki Murata, Tomomi Takenaga, Soichiro Miki, Takeyuki Watadani, Takeharu Yoshikawa, Naoto Hayashi, and Osamu Abe. "Unsupervised Deep Anomaly Detection in Chest Radiographs." Journal of Digital Imaging 34, no. 2 (February 8, 2021): 418–27. http://dx.doi.org/10.1007/s10278-020-00413-2.
Full textLiu, Boyang, Pang-Ning Tan, and Jiayu Zhou. "Unsupervised Anomaly Detection by Robust Density Estimation." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 4 (June 28, 2022): 4101–8. http://dx.doi.org/10.1609/aaai.v36i4.20328.
Full textLópez-Vizcaíno, Manuel, Carlos Dafonte, Francisco Nóvoa, Daniel Garabato, and M. Álvarez. "Network Data Unsupervised Clustering to Anomaly Detection." Proceedings 2, no. 18 (September 17, 2018): 1173. http://dx.doi.org/10.3390/proceedings2181173.
Full textLi, H., A. Achim, and D. Bull. "Unsupervised video anomaly detection using feature clustering." IET Signal Processing 6, no. 5 (2012): 521. http://dx.doi.org/10.1049/iet-spr.2011.0074.
Full textKhan, Samir, Chun Fui Liew, Takehisa Yairi, and Richard McWilliam. "Unsupervised anomaly detection in unmanned aerial vehicles." Applied Soft Computing 83 (October 2019): 105650. http://dx.doi.org/10.1016/j.asoc.2019.105650.
Full textOlson, C. C., K. P. Judd, and J. M. Nichols. "Manifold learning techniques for unsupervised anomaly detection." Expert Systems with Applications 91 (January 2018): 374–85. http://dx.doi.org/10.1016/j.eswa.2017.08.005.
Full textErgen, Tolga, and Suleyman Serdar Kozat. "Unsupervised Anomaly Detection With LSTM Neural Networks." IEEE Transactions on Neural Networks and Learning Systems 31, no. 8 (August 2020): 3127–41. http://dx.doi.org/10.1109/tnnls.2019.2935975.
Full textWang, Pei, Wei Zhai, and Yang Cao. "Robustness Benchmark for Unsupervised Anomaly Detection Models." JUSTC 53 (2023): 1. http://dx.doi.org/10.52396/justc-2022-0165.
Full textXu, Haohao, Shuchang Xu, and Wenzhen Yang. "Unsupervised industrial anomaly detection with diffusion models." Journal of Visual Communication and Image Representation 97 (December 2023): 103983. http://dx.doi.org/10.1016/j.jvcir.2023.103983.
Full textBulut, Okan, Guher Gorgun, and Surina He. "Unsupervised Anomaly Detection in Sequential Process Data." Zeitschrift für Psychologie 232, no. 2 (April 2024): 74–94. http://dx.doi.org/10.1027/2151-2604/a000558.
Full textDai, Songmin, Yifan Wu, Xiaoqiang Li, and Xiangyang Xue. "Generating and Reweighting Dense Contrastive Patterns for Unsupervised Anomaly Detection." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 2 (March 24, 2024): 1454–62. http://dx.doi.org/10.1609/aaai.v38i2.27910.
Full textHu, Jingtao, En Zhu, Siqi Wang, Xinwang Liu, Xifeng Guo, and Jianping Yin. "An Efficient and Robust Unsupervised Anomaly Detection Method Using Ensemble Random Projection in Surveillance Videos." Sensors 19, no. 19 (September 24, 2019): 4145. http://dx.doi.org/10.3390/s19194145.
Full textHang, Feilu, Wei Guo, Hexiong Chen, Linjiang Xie, Xiaoyu Bai, and Yao Liu. "Network Intrusion Anomaly Detection Model Based on Multiclassifier Fusion Technology." Mobile Information Systems 2023 (April 8, 2023): 1–11. http://dx.doi.org/10.1155/2023/1594622.
Full textShao, Yingzhao, Yunsong Li, Li Li, Yuanle Wang, Yuchen Yang, Yueli Ding, Mingming Zhang, Yang Liu, and Xiangqiang Gao. "RANet: Relationship Attention for Hyperspectral Anomaly Detection." Remote Sensing 15, no. 23 (November 30, 2023): 5570. http://dx.doi.org/10.3390/rs15235570.
Full textRashid, A. N. M. Bazlur, Mohiuddin Ahmed, Leslie F. Sikos, and Paul Haskell-Dowland. "Anomaly Detection in Cybersecurity Datasets via Cooperative Co-evolution-based Feature Selection." ACM Transactions on Management Information Systems 13, no. 3 (September 30, 2022): 1–39. http://dx.doi.org/10.1145/3495165.
Full textKlarák, Jaromír, Robert Andok, Peter Malík, Ivan Kuric, Mário Ritomský, Ivana Klačková, and Hung-Yin Tsai. "From Anomaly Detection to Defect Classification." Sensors 24, no. 2 (January 10, 2024): 429. http://dx.doi.org/10.3390/s24020429.
Full textQu, YanZe, HaiLong Ma, and YiMing Jiang. "CRND: An Unsupervised Learning Method to Detect Network Anomaly." Security and Communication Networks 2022 (October 28, 2022): 1–9. http://dx.doi.org/10.1155/2022/9509417.
Full textLiu, Wenqiang, Li Yan, Ningning Ma, Gaozhou Wang, Xiaolong Ma, Peishun Liu, and Ruichun Tang. "Unsupervised Deep Anomaly Detection for Industrial Multivariate Time Series Data." Applied Sciences 14, no. 2 (January 16, 2024): 774. http://dx.doi.org/10.3390/app14020774.
Full textKatser, Iurii, Viacheslav Kozitsin, Victor Lobachev, and Ivan Maksimov. "Unsupervised Offline Changepoint Detection Ensembles." Applied Sciences 11, no. 9 (May 9, 2021): 4280. http://dx.doi.org/10.3390/app11094280.
Full textZoppi, Tommaso, Andrea Ceccarelli, Tommaso Capecchi, and Andrea Bondavalli. "Unsupervised Anomaly Detectors to Detect Intrusions in the Current Threat Landscape." ACM/IMS Transactions on Data Science 2, no. 2 (April 2, 2021): 1–26. http://dx.doi.org/10.1145/3441140.
Full textDu, Yan, Yuanyuan Huang, Guogen Wan, and Peilin He. "Deep Learning-Based Cyber–Physical Feature Fusion for Anomaly Detection in Industrial Control Systems." Mathematics 10, no. 22 (November 20, 2022): 4373. http://dx.doi.org/10.3390/math10224373.
Full textApostol, Ioana, Marius Preda, Constantin Nila, and Ion Bica. "IoT Botnet Anomaly Detection Using Unsupervised Deep Learning." Electronics 10, no. 16 (August 4, 2021): 1876. http://dx.doi.org/10.3390/electronics10161876.
Full textArjunan, Tamilselvan. "A Comparative Study of Deep Neural Networks and Support Vector Machines for Unsupervised Anomaly Detection in Cloud Computing Environments." International Journal for Research in Applied Science and Engineering Technology 12, no. 2 (February 29, 2024): 983–90. http://dx.doi.org/10.22214/ijraset.2024.58496.
Full textLe, Duc C., and Nur Zincir-Heywood. "Anomaly Detection for Insider Threats Using Unsupervised Ensembles." IEEE Transactions on Network and Service Management 18, no. 2 (June 2021): 1152–64. http://dx.doi.org/10.1109/tnsm.2021.3071928.
Full textSpiekermann, Daniel, and Jörg Keller. "Unsupervised packet-based anomaly detection in virtual networks." Computer Networks 192 (June 2021): 108017. http://dx.doi.org/10.1016/j.comnet.2021.108017.
Full textAnitha Kumari, K., Avinash Sharma, R. Barani Priyanga, and A. Kevin Paul. "ENERGY DATA ANOMALY DETECTION USING UNSUPERVISED LEARNING TECHNIQUES." Advances in Mathematics: Scientific Journal 9, no. 9 (August 25, 2020): 6687–98. http://dx.doi.org/10.37418/amsj.9.9.26.
Full textJeong, Woodon, Mohammed S. Almubarak, and Constantinos Tsingas. "Seismic erratic noise attenuation using unsupervised anomaly detection." Geophysical Prospecting 69, no. 7 (June 11, 2021): 1473–86. http://dx.doi.org/10.1111/1365-2478.13123.
Full textWang, Jin, Changqing Zhao, Shiming He, Yu Gu, Osama Alfarraj, and Ahed Abugabah. "LogUAD: Log Unsupervised Anomaly Detection Based on Word2Vec." Computer Systems Science and Engineering 41, no. 3 (2022): 1207–22. http://dx.doi.org/10.32604/csse.2022.022365.
Full textKandanaarachchi, Sevvandi. "Unsupervised anomaly detection ensembles using item response theory." Information Sciences 587 (March 2022): 142–63. http://dx.doi.org/10.1016/j.ins.2021.12.042.
Full textWang, Zhipeng, Chunping Hou, Bangbang Ge, Yang Liu, Zhicheng Dong, and Zhiqiang Wu. "Unsupervised anomaly detection via dual transformation‐aware embeddings." IET Image Processing 16, no. 6 (February 8, 2022): 1657–68. http://dx.doi.org/10.1049/ipr2.12438.
Full textSon, Jonghwan, Chayoung Kim, and Minjoong Jeong. "Unsupervised Learning for Anomaly Detection of Electric Motors." International Journal of Precision Engineering and Manufacturing 23, no. 4 (March 10, 2022): 421–27. http://dx.doi.org/10.1007/s12541-022-00635-0.
Full text