Academic literature on the topic 'Unsteady computations'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Unsteady computations.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Unsteady computations"
Ramamurti, Ravi, William C. Sandberg, Rainald Löhner, Jeffrey A. Walker, and Mark W. Westneat. "Fluid dynamics of flapping aquatic flight in the bird wrasse:three-dimensional unsteady computations with fin deformation." Journal of Experimental Biology 205, no. 19 (October 1, 2002): 2997–3008. http://dx.doi.org/10.1242/jeb.205.19.2997.
Full textAllen, C. B. "Grid adaptation for unsteady flow computations." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 211, no. 4 (April 1, 1997): 237–50. http://dx.doi.org/10.1243/0954410971532640.
Full textWechsler, K., M. Breuer, and F. Durst. "Steady and Unsteady Computations of Turbulent Flows Induced by a 4/45° Pitched-Blade Impeller." Journal of Fluids Engineering 121, no. 2 (June 1, 1999): 318–29. http://dx.doi.org/10.1115/1.2822210.
Full textHuo, Chao, Peng Lv, and Anbang Sun. "Computational study on the aerodynamics of a long-shrouded contra-rotating rotor in hover." International Journal of Micro Air Vehicles 11 (January 2019): 175682931983368. http://dx.doi.org/10.1177/1756829319833686.
Full textJohansen, Stein T., Jiongyang Wu, and Wei Shyy. "Filter-based unsteady RANS computations." International Journal of Heat and Fluid Flow 25, no. 1 (February 2004): 10–21. http://dx.doi.org/10.1016/j.ijheatfluidflow.2003.10.005.
Full textAdami, P., and F. Martelli. "Three-dimensional unsteady investigation of HP turbine stages." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 220, no. 2 (March 1, 2006): 155–67. http://dx.doi.org/10.1243/095765005x69189.
Full textDe´nos, R., T. Arts, G. Paniagua, V. Michelassi, and F. Martelli. "Investigation of the Unsteady Rotor Aerodynamics in a Transonic Turbine Stage." Journal of Turbomachinery 123, no. 1 (February 1, 2000): 81–89. http://dx.doi.org/10.1115/1.1314607.
Full textLuo, Da Hai, Chao Yan, Wei Lin Zheng, and Wu Yuan. "A New PANS Model for Unsteady Separated Flow Simulations." Applied Mechanics and Materials 721 (December 2014): 182–86. http://dx.doi.org/10.4028/www.scientific.net/amm.721.182.
Full textChen, C. P., and M. J. Sheu. "Unsteady transonic computations on porous aerofoils." AIAA Journal 29, no. 1 (January 1991): 148–50. http://dx.doi.org/10.2514/3.10557.
Full textKorakianitis, T., P. Papagiannidis, and N. E. Vlachopoulos. "Unsteady Flow/Quasi-Steady Heat Transfer Computations on a Turbine Rotor and Comparison With Experiments." Journal of Turbomachinery 124, no. 1 (August 1, 2001): 152–59. http://dx.doi.org/10.1115/1.1405419.
Full textDissertations / Theses on the topic "Unsteady computations"
Hellström, Fredrik. "Numerical computations of the unsteady flow in turbochargers." Doctoral thesis, KTH, Strömningsfysik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-12742.
Full textQC20100622
Wu, Jiongyang. "Filter-based modeling of unsteady turbulent cavitating flow computations." [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0011587.
Full textHellström, Fredrik. "Numerical computations of the unsteady flow in a radial turbine." Licentiate thesis, KTH, Mechanics, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4660.
Full textNon-pulsatile and pulsatile flow in bent pipes and radial turbine has been assessed with numerical simulations. The flow field in a single bent pipe has been computed with different turbulence modelling approaches. A comparison with measured data shows that Implicit Large Eddy Simulation (ILES) gives the best agreement in terms of mean flow quantities. All computations with the different turbulence models qualitatively capture the so called Dean vortices. The Dean vortices are a pair of counter-rotating vortices that are created in the bend, due to inertial effects in combination with a radial pressure gradient. The pulsatile flow in a double bent pipe has also been considered. In the first bend, the Dean vortices are formed and in the second bend a swirling motion is created, which will together with the Dean vortices create a complex flow field downstream of the second bend. The strength of these structures will vary with the amplitude of the axial flow. For pulsatile flow, a phase shift between the velocity and the pressure occurs and the phase shift is not constant during the pulse depending on the balance between the different terms in the Navier- Stokes equations.
The performance of a radial turbocharger turbine working under both non-pulsatile and pulsatile flow conditions has also been investigated by using ILES. To assess the effect of pulsatile inflow conditions on the turbine performance, three different cases have been considered with different frequencies and amplitude of the mass flow pulse and different rotational speeds of the turbine wheel. The results show that the turbine cannot be treated as being quasi-stationary; for example, the shaft power varies with varying frequency of the pulses for the same amplitude of mass flow. The pulsatile flow also implies that the incidence angle of the flow into the turbine wheel varies during the pulse. For the worst case, the relative incidence angle varies from approximately −80° to +60°. A phase shift between the pressure and the mass flow at the inlet and the shaft torque also occurs. This phase shift increases with increasing frequency, which affects the accuracy of the results from 1-D models based on turbine maps measured under non-pulsatile conditions.
For a turbocharger working under internal combustion engine conditions, the flow into the turbine is pulsatile and there are also unsteady secondary flow components, depending on the geometry of the exhaust manifold situated upstream of the turbine. Therefore, the effects of different perturbations at the inflow conditions on the turbine performance have been assessed. For the different cases both turbulent fluctuations and different secondary flow structures are added to the inlet velocity. The results show that a non-disturbed inlet flow gives the best performance, while an inflow condition with a certain large scale eddy in combination with turbulence has the largest negative effect on the shaft power output.
De, Rango Stan. "Implicit Navier-Stokes computations of unsteady flows using subiteration methods." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1996. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ51537.pdf.
Full textHellström, Fredrik. "Numerical computations of the unsteady flow in a radial turbine /." Stockholm : Mekanik, Kungliga Tekniska högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4660.
Full textNöid, Lovisa. "CFD computations of hydropower plant intake flow using unsteady RANS." Thesis, KTH, Kraft- och värmeteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-161894.
Full textVirvlar som uppstår vid intaget i vattenkraftverk kan orsaka stora skador. För att kunna göra studier om hur man bäst motverkar virveln och förhindrar dess uppkomst, har Vattenfall AB byggt en småskalig modell av dammen vid Akkats vattenkraftverk. Det här arbetet behandlar frågeställningen huruvida Computational Fluid Dynamics (CFD) med lösning av ekvationerna för Unsteady Reynolds Average Navier-Stokes (URANS) kan användas som ett komplement till dessa modell-tester. I det här arbetet har turbulensmodellen RNG k−epsilon valts och flödesfältet löses för tre olika tillstånd för flödet vid inloppet, med hjälp av implicit tidsdiskretisering tillsammans med en tryckbaserad ekvationslösare. Trots betydande skillnader för inflödet för dessa tre fall är de resulterande flödesfälten överraskande lika. Ett huvudresultat är att ingen virvel formas för någon av dessa fall. Anledningen till detta har diskuterats, men antalet möjliga anledningar är många. Huvudsyftet med den här rapporten har därför blivit att lägga en grund för framtida efterforskningar på området. Några av de viktigaste parametrarna att undersöka är valet av turbulensmodell, höjden på vattenytan, tryckdiskretiserings-schema samt att genomföra beräkningar för en finare mesh.
Reid, Terry Vincent. "A Computational Approach For Investigating Unsteady Turbine Heat Transfer Due To Shock Wave Impact." Diss., Virginia Tech, 1998. http://hdl.handle.net/10919/25983.
Full textPh. D.
Price, Jennifer Lou. "Unsteady Measurements and Computations on an Oscillating Airfoil with Gurney Flaps." NCSU, 2001. http://www.lib.ncsu.edu/theses/available/etd-20010713-170959.
Full textPrice, Jennifer Lou. Unsteady Measurements and Computations on an Oscillating Airfoil with Gurney Flaps. (Under the direction of Dr. Ndaona Chokani)The effect of a Gurney flap on an unsteady airfoil flow is experimentally and computationally examined. In the experiment, the details of the unsteady boundary layer events on the forward portion of the airfoil are measured. In the computation, the features of the global unsteady flow are documented and correlated with the experimental observations.The experiments were conducted in the North Carolina State University subsonic wind tunnel on an oscillating airfoil at pitch rates of 65.45 degrees/sec and 130.9 degrees/sec. The airfoil has a NACA0012 cross-section and is equipped with a 1.5% or 2.5% chord Gurney flap. The airfoil is tested at Reynolds numbers of 96,000, 169,000 and 192,000 for attached and light dynamic stall conditions. An array of surface-mounted hot-film sensors on the forward 25% chord of the airfoil is used to measure the unsteady laminar boundary layer separation, transition-to-turbulence, and turbulent reattachment. In parallel with the experiments incompressible Navier-Stokes computations are conducted for the light dynamic stall conditions on the airfoil with a 2.5%c Gurney flap at a Reynolds number of 169,000.The experimental measurements show that the effect of the Gurney flap is to move the separation, transition and reattachment forward on the airfoil. This effect is more marked during the airfoil's pitch-down than during pitch-up. The computational results verify these observations, and also show that the shedding of the dynamic stall vortex is delayed. Thus the adverse effects of dynamic stall are mitigated by the Gurney flap.
Bodin, Olle. "Numerical Computations of Internal Combustion Engine related Transonic and Unsteady Flows." Licentiate thesis, Stockholm : Mekanik, Kungliga Tekniska högskolan, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-9945.
Full textNovacek, Thomas Hans. "Computations of unsteady forces and moments for a transonic rotor with jet actuation." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/50300.
Full textBooks on the topic "Unsteady computations"
Shankar, Vijaya. Unsteady full potential computations for complex configurations. New York: AIAA, 1987.
Find full textUnited States. National Aeronautics and Space Administration., ed. Long time behavior of unsteady flow computations. [Washington, DC]: National Aeronautics and Space Administration, 1992.
Find full textRoe, P. L. Remote boundary conditions for unsteady multidimensional aerodynamic computations. Hampton, Va: ICASE, 1986.
Find full textRoe, P. L. Remote boundary conditions for unsteady multidimensional aerodynamic computations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1987.
Find full textIde, Hiroshi. Unsteady full potential aeroelastic computations for flexible configurations. New York: AIAA, 1987.
Find full textRango, Stan De. Implicit navier-stokes computations of unsteady flows using subiteration methods. Ottawa: National Library of Canada, 1996.
Find full textCenter, Ames Research, ed. Computations of unsteady multistage compressor flows in a workstation environment. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1992.
Find full textV, Kaza K. R., and United States. National Aeronautics and Space Administration., eds. A semianalytical technique for sensitivity analysis of unsteady aerodynamic computations. [Washington, DC]: National Aeronautics and Space Administration, 1988.
Find full textRango, Stan De. Implicit navier-stokes computations of unsteady flows using subiteration methods. [Toronto]: Dept. of Aerospace Science and Engineering, University of Toronto, 1996.
Find full textNakamichi, Jiro. Some computations of unsteady Navier-Stokes flow around oscillating airfoil/wing. Tokyo: National Aerospace Laboratory, 1988.
Find full textBook chapters on the topic "Unsteady computations"
Hariharan, S. I. "Long Time Behavior of Unsteady Flow Computations." In Unsteady Aerodynamics, Aeroacoustics, and Aeroelasticity of Turbomachines and Propellers, 73–90. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4613-9341-2_4.
Full textBouwknegt, J. "Unsteady Flow Computations in Open Channel Hydraulics." In Hydraulic Design in Water Resources Engineering: Land Drainage, 353–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-662-22014-6_33.
Full textHu, Hong, and Li-Chuan Chu. "Unsteady Three-Dimensional Transonic Flow Computations Using Field Element Method." In Boundary Element Methods in Engineering, 140–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84238-2_19.
Full textSahu, Jubaraj. "Numerical Computations of Unsteady Aerodynamics of Projectiles using an Unstructured Technique." In Computational Fluid Dynamics 2006, 886–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-92779-2_140.
Full textShankar, V., and H. Ide. "Unsteady Aeroelastic Computations for Flexible Configurations at Transonic and Supersonic Speeds." In Symposium Transsonicum III, 465–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83584-1_37.
Full textKrishnamurthy, R., B. S. Sarma, and S. M. Deshpande. "3-D KFMG Euler Computations for Unsteady Flows Around Oscillating Geometries." In Computational Fluid Dynamics 2002, 407–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-59334-5_60.
Full textMaduta, R., and S. Jakirlic. "An Eddy-Resolving Reynolds Stress Transport Model for Unsteady Flow Computations." In Progress in Hybrid RANS-LES Modelling, 77–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31818-4_6.
Full textBramkamp, F., and J. Ballmann. "Implicit Euler Computations on Adaptive Meshes for Steady and Unsteady Transonic Flows." In IUTAM Symposium Transsonicum IV, 201–6. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0017-8_31.
Full textHouwink, R. "Computations of Separated Subsonic and Transonic Flow about Airfoils in Unsteady Motion." In Numerical and Physical Aspects of Aerodynamic Flows III, 272–85. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4612-4926-9_16.
Full textChang, Dongil, and Stavros Tavoularis. "Parallel Computations of Unsteady Three-Dimensional Flows in a High Pressure Turbine." In High Performance Computing Systems and Applications, 20–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12659-8_2.
Full textConference papers on the topic "Unsteady computations"
Djayapertapa, L., and C. Allen. "Aeroservoelastic computations in unsteady transonic flow." In 18th Applied Aerodynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2000. http://dx.doi.org/10.2514/6.2000-4226.
Full textAjmani, Kumud, and Kuo-Huey Chen. "Unsteady-flow computations for the NCC." In 39th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-972.
Full textGammacurta, Eric, Stéphane Etienne, Dominique Pelletier, and André Garon. "Adaptive Remeshing for Unsteady RANS Computations." In 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-1070.
Full textNunes, Ricardo, André Silva, and Jorge Barata. "Unsteady Computations of a Ground Vortex." In 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-327.
Full textMostafazadeh Davani, Bahareh, Ferran Marti, Behnam Pourghassemi, Feng Liu, and Aparna Chandramowlishwaran. "Unsteady Navier-Stokes Computations on GPU Architectures." In 23rd AIAA Computational Fluid Dynamics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2017. http://dx.doi.org/10.2514/6.2017-4508.
Full textHiguchi, H., F. Lu, and Y. H. Chu. "Computations of unsteady two-dimensional vortex motions." In Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-2379.
Full textZhang, Sijun, Abraham Meganathan, and Xiang Zhao. "Implicit Time Accurate Method for Unsteady Computations." In 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-166.
Full textvan der Weide, Edwin, Georgi Kalitzin, Jorg Schluter, and Juan Alonso. "Unsteady Turbomachinery Computations Using Massively Parallel Platforms." In 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-421.
Full textSHANKAR, VIJAYA, HIROSHI IDE, and THOMAS GOEBEL. "Unsteady full potential computations for complex configurations." In 25th AIAA Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-110.
Full textAlin, Niklas, Christer Fureby, S. Svennberg, William Sandberg, R. Ramamurti, N. Wikstrom, Rikard Bensow, and Tobias Persson. "3D Unsteady Computations for Submarine-Like Bodies." In 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-1104.
Full textReports on the topic "Unsteady computations"
Sahu, Jubaraj. Unsteady Flow Computations of a Finned Body in Supersonic Flight. Fort Belvoir, VA: Defense Technical Information Center, August 2007. http://dx.doi.org/10.21236/ada471736.
Full textBauer, Andrew, and Berk Geveci. Computational Fluid Dynamics Co-processing for Unsteady Visualization. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada570113.
Full textPolsky, Susan, and Christopher Bruner. A Computational Study of Unsteady Ship Wake and Vortex Flows. Fort Belvoir, VA: Defense Technical Information Center, January 2000. http://dx.doi.org/10.21236/ada383641.
Full textMcRae, D. S., and M. A. Zikry. Time Accurate Computation of Unsteady Shock Tunnel Flow with Coupled Diaphragm Ruptude Mechanics. Fort Belvoir, VA: Defense Technical Information Center, October 1999. http://dx.doi.org/10.21236/ada378084.
Full textDuque, Earl, Steve Legensky, Brad Whitlock, David Rogers, Andrew Bauer, Scott Imlay, David Thompson, and Seiji Tsutsumi. Summary of the SciTech 2020 Technical Panel on In Situ/In Transit Computational Environments for Visualization and Data Analysis. Engineer Research and Development Center (U.S.), June 2021. http://dx.doi.org/10.21079/11681/40887.
Full textMcRae, D. S., and Michael Neaves. Time Accurate Computation of Unsteady Hypersonic Inlet Flows with a Dynamic Flow Adaptive Mesh. Fort Belvoir, VA: Defense Technical Information Center, January 1998. http://dx.doi.org/10.21236/ada336232.
Full textHinatsu, M., and Joel Ferziger. Numerical Computation of Unsteady Incompressible Flow in Complex Geometry Using a Composite Multigrid Technique. Fort Belvoir, VA: Defense Technical Information Center, August 1991. http://dx.doi.org/10.21236/ada252075.
Full textMarcum, David L. Computational Simulation of Unsteady, Viscous, Hypersonic Flow about Flight Vehicles with Store Separation. Fort Belvoir, VA: Defense Technical Information Center, February 2001. http://dx.doi.org/10.21236/ada387492.
Full textKokes, Joseph, Mark Costello, and Jubaraj Sahu. Generating an Aerodynamic Model for Projectile Flight Simulation Using Unsteady, Time Accurate Computational Fluid Dynamic Results. Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada457421.
Full textWissink, Andrew, Jude Dylan, Buvana Jayaraman, Beatrice Roget, Vinod Lakshminarayan, Jayanarayanan Sitaraman, Andrew Bauer, James Forsythe, Robert Trigg, and Nicholas Peters. New capabilities in CREATE™-AV Helios Version 11. Engineer Research and Development Center (U.S.), June 2021. http://dx.doi.org/10.21079/11681/40883.
Full text