Academic literature on the topic 'Unmanned Aerial Vehicles Flight Control'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Unmanned Aerial Vehicles Flight Control.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Unmanned Aerial Vehicles Flight Control"
KUTPANOVA, Zarina A., Hakan TEMELTAS, and Serik A. KULMAMIROV. "Flight control and collision avoidance of three UAVs following each other." INCAS BULLETIN 14, no. 4 (December 2, 2022): 79–94. http://dx.doi.org/10.13111/2066-8201.2022.14.4.7.
Full textBdour, Jawad, and Belal H. Sababha. "A hybrid thrusting system for increasing the endurance time of multirotor unmanned aerial vehicles." International Journal of Advanced Robotic Systems 20, no. 3 (May 1, 2023): 172988062311723. http://dx.doi.org/10.1177/17298806231172335.
Full textOktay, Tugrul, Harun Celik, and Ilke Turkmen. "Maximizing autonomous performance of fixed-wing unmanned aerial vehicle to reduce motion blur in taken images." Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 232, no. 7 (March 28, 2018): 857–68. http://dx.doi.org/10.1177/0959651818765027.
Full textSzabolcsi, Róbert. "Pole Placement Technique Applied in Unmanned Aerial Vehicles Automatic Flight Control Systems Design." Land Forces Academy Review 23, no. 1 (March 1, 2018): 88–98. http://dx.doi.org/10.2478/raft-2018-0011.
Full textPereguda, O. M., A. V. Rodionov, and S. P. Samoilyk. "APPROACH TO INCREASING THE SURVIVABILITY OF CLASS I UNMANNED AERIAL VEHICLE IN EMERGENCY OPERATIONS." Проблеми створення, випробування, застосування та експлуатації складних інформаційних систем, no. 18 (December 30, 2020): 54–63. http://dx.doi.org/10.46972/2076-1546.2020.18.06.
Full textChang, Bao Rong, Hsiu-Fen Tsai, Jyong-Lin Lyu, and Chien-Feng Huang. "Distributed sensing units deploying on group unmanned vehicles." International Journal of Distributed Sensor Networks 17, no. 7 (July 2021): 155014772110368. http://dx.doi.org/10.1177/15501477211036877.
Full textRomaniuk, L., and I. Chykhira. "MECHANISM OF ENSURING SAFE UAV MOVEMENT UNDER THE CONDITIONS OF RADIO ATTACKS." Municipal economy of cities 4, no. 157 (September 25, 2020): 178–83. http://dx.doi.org/10.33042/2522-1809-2020-4-157-178-183.
Full textTang, Sarah, and Vijay Kumar. "Autonomous Flight." Annual Review of Control, Robotics, and Autonomous Systems 1, no. 1 (May 28, 2018): 29–52. http://dx.doi.org/10.1146/annurev-control-060117-105149.
Full textChen, Chao, Jiyang Zhang, Daibing Zhang, and Lincheng Shen. "Control and flight test of a tilt-rotor unmanned aerial vehicle." International Journal of Advanced Robotic Systems 14, no. 1 (January 1, 2017): 172988141667814. http://dx.doi.org/10.1177/1729881416678141.
Full textWang, Bo Hang, Dao Bo Wang, Zain Anwar Ali, Bai Ting Ting, and Hao Wang. "An overview of various kinds of wind effects on unmanned aerial vehicle." Measurement and Control 52, no. 7-8 (May 13, 2019): 731–39. http://dx.doi.org/10.1177/0020294019847688.
Full textDissertations / Theses on the topic "Unmanned Aerial Vehicles Flight Control"
Peddle, Iain Kenneth. "Acceleration based manoeuvre flight control system for Unmanned Aerial Vehicles /." Link to the online version, 2008. http://hdl.handle.net/10019/1425.
Full textPeddle, Iain K. "Acceleration based manoeuvre flight control system for unmanned aerial vehicles." Thesis, Stellenbosch : Stellenbosch University, 2008. http://hdl.handle.net/10019.1/1172.
Full textA strategy for the design of an effective, practically feasible, robust, computationally efficient autopilot for three dimensional manoeuvre flight control of Unmanned Aerial Vehicles is presented. The core feature of the strategy is the design of attitude independent inner loop acceleration controllers. With these controllers implemented, the aircraft is reduced to a point mass with a steerable acceleration vector when viewed from an outer loop guidance perspective. Trajectory generation is also simplified with reference trajectories only required to be kinematically feasible. Robustness is achieved through uncertainty encapsulation and disturbance rejection at an acceleration level. The detailed design and associated analysis of the inner loop acceleration controllers is carried out for the case where the airflow incidence angles are small. For this case it is shown that under mild practically feasible conditions the inner loop dynamics decouple and become linear, thereby allowing the derivation of closed form pole placement solutions. Dimensional and normalised non-dimensional time variants of the inner loop controllers are designed and their respective advantages highlighted. Pole placement constraints that arise due to the typically weak non-minimum phase nature of aircraft dynamics are developed. A generic, aircraft independent guidance control algorithm, well suited for use with the inner loop acceleration controllers, is also presented. The guidance algorithm regulates the aircraft about a kinematically feasible reference trajectory. A number of fundamental basis trajectories are presented which are easily linkable to form complex three dimensional manoeuvres. Results from simulations with a number of different aircraft and reference trajectories illustrate the versatility and functionality of the autopilot. Key words: Aircraft control, Autonomous vehicles, UAV flight control, Acceleration control, Aircraft guidance, Trajectory tracking, Manoeuvre flight control.
Drozeski, Graham R. "A Fault-Tolerant Control Architecture for Unmanned Aerial Vehicles." Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7523.
Full textPietersen, Willem Hermanus. "System identification for fault tolerant control of unmanned aerial vehicles." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/4164.
Full textENGLISH ABSTRACT: In this project, system identification is done on the Modular Unmanned Aerial Vehicle (UAV). This is necessary to perform fault detection and isolation, which is part of the Fault Tolerant Control research project at Stellenbosch University. The equations necessary to do system identification are developed. Various methods for system identification is discussed and the regression methods are implemented. It is shown how to accommodate a sudden change in aircraft parameters due to a fault. Smoothed numerical differentiation is performed in order to acquire data necessary to implement the regression methods. Practical issues regarding system identification are discussed and methods for addressing these issues are introduced. These issues include data collinearity and identification in a closed loop. The regression methods are implemented on a simple roll model of the Modular UAV in order to highlight the various difficulties with system identification. Different methods for accommodating a fault are illustrated. System identification is also done on a full nonlinear model of the Modular UAV. All the parameters converges quickly to accurate values, with the exception of Cl R , CnP and Cn A . The reason for this is discussed. The importance of these parameters in order to do Fault Tolerant Control is also discussed. An S-function that implements the recursive least squares algorithm for parameter estimation is developed. This block accommodates for the methods of applying the forgetting factor and covariance resetting. This block can be used as a stepping stone for future work in system identification and fault detection and isolation.
AFRIKAANSE OPSOMMING: In hierdie projek word stelsel identifikasie gedoen op die Modulêre Onbemande Vliegtuig. Dit is nodig om foutopsporing en isolasie te doen wat ’n deel uitmaak van fout verdraagsame beheer. Die vergelykings wat nodig is om stelsel identifikasie te doen is ontwikkel. Verskeie metodes om stelsel identifikasie te doen word bespreek en die regressie metodes is uitgevoer. Daar word gewys hoe om voorsiening te maak vir ’n skielike verandering in die vliegtuig parameters as gevolg van ’n fout. Reëlmatige numeriese differensiasie is gedoen om data te verkry wat nodig is vir die uitvoering van die regressie metodes. Praktiese kwessies aangaande stelsel identifikasie word bespreek en metodes om hierdie kwessies aan te spreek word gegee. Hierdie kwessies sluit interafhanklikheid van data en identifikasie in ’n geslote lus in. Die regressie metodes word toegepas op ’n eenvoudige rol model van die Modulêre Onbemande Vliegtuig om die verskeie kwessies aangaande stelsel identifikasie uit te wys. Verskeie metodes vir die hantering vir ’n fout word ook illustreer. Stelsel identifikasie word ook op die volle nie-lineêre model van die Modulêre Onbemande Vliegtuig gedoen. Al die parameters konvergeer vinnig na akkurate waardes, met die uitsondering van Cl R , CnP and Cn A . Die belangrikheid van hierdie parameters vir fout verdraagsame beheer word ook bespreek. ’n S-funksie blok vir die rekursiewe kleinste-kwadraat algoritme is ontwikkel. Hierdie blok voorsien vir die metodes om die vergeetfaktor en kovariansie herstelling te implementeer. Hierdie blok kan gebruik word vir toekomstige werk in stelsel identifikasie en foutopsporing en isolasie.
Karlsson, Mia. "Control of Unmanned Aerial Vehicles using Non-linear Dynamic Inversion." Thesis, Linköping University, Department of Electrical Engineering, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-1519.
Full textThis master's thesis deals with the control design method called Non-linear Dynamic Inversion (NDI) and how it can be applied to Unmanned Aerial Vehicles (UAVs). In this thesis, simulations are conducted using a model for the unmanned aerial vehicle SHARC (Swedish Highly Advanced Research Configuration), which Saab AB is developing.
The idea with NDI is to cancel the non-linear dynamics and then the system can be controlled as a linear system. This design method needs much information about the system, or the output will not be as desired. Since it is impossible to know the exact mathematical model of a system, some kind of robust control theory is needed. In this thesis integral action is used.
A problem with NDI is that the mathematical model of a system is often very complex, which means that the controller also will be complex. Therefore, a controller that uses pure NDI is only discussed, and the simulations are instead based on approximations that use a cascaded NDI. Two such methods are investigated. One that uses much information from aerodata tables, and one that uses the derivatives of some measured outputs. Both methods generate satisfying results. The outputs from the second method are more oscillatory but the method is found to be more robust. If the signals are noisy, indications are that method one will be better.
De, Hart Ruan Dirk. "Advanced take-off and flight control algorithms for fixed wing unmanned aerial vehicles." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/4179.
Full textENGLISH ABSTRACT: This thesis presents the development and implementation of a position based kinematic guidance system, the derivation and testing of a Dynamic Pursuit Navigation algorithm and a thorough analysis of an aircraft’s runway interactions, which is used to implement automated take-off of a fixed wing UAV. The analysis of the runway is focussed on the aircraft’s lateral modes. Undercarriage and aerodynamic effects are first analysed individually, after which the combined system is analysed. The various types of feedback control are investigated and the best solution suggested. Supporting controllers are designed and combined to successfully implement autonomous take-off, with acceleration based guidance. A computationally efficient position based kinematic guidance architecture is designed and implemented that allows a large percentage of the flight envelope to be utilised. An airspeed controller that allows for aggressive flight is designed and implemented by applying Feedback Linearisation techniques. A Dynamic Pursuit Navigation algorithm is derived that allows following of a moving ground based object at a constant distance (radius). This algorithm is implemented and verified through non-linear simulation.
AFRIKAANSE OPSOMMING: Hierdie tesis handel oor die ontwikkeling en toepassing van posisie-afhanklike, kinematiese leidings-algoritmes, die ontwikkeling van ’n Dinamiese Volgings-navigasie-algoritme en ’n deeglike analise van die interaksie van ’n lugraam met ’n aanloopbaan sodat outonome opstygprosedure van ’n vastevlerk vliegtuig bewerkstellig kan word. Die bogenoemde analise het gefokus op die laterale modus van ’n vastevlerk vliegtuig en is tweeledig behartig. Die eerste gedeelte het gefokus op die analise van die onderstel, terwyl die lugraam en die aerodinamiese effekte in die tweede gedeelte ondersoek is. Verskillende tipes terugvoerbeheer vir die outonome opstygprosedure is ondersoek om die mees geskikte tegniek te bepaal. Addisionele beheerders, wat deur die versnellingsbeheer gebaseerde opstygprosedure benodig word, is ontwerp. ’n Posisie gebaseerde kinematiese leidingsbeheerstruktuur om ’n groot persentasie van die vlugvermoë te benut, is ontwikkel. Terugvoer linearisering is toegepas om ’n lugspoedbeheerder , wat in staat is tot aggressiewe vlug, te ontwerp. ’n Dinamiese Volgingsnavigasie-algoritme wat in staat is om ’n bewegende grondvoorwerp te volg, is ontwikkel. Hierdie algoritme is geïmplementeer en bevestig deur nie-lineêre simulasie.
Kang, Keeryun. "Online optimal obstacle avoidance for rotary-wing autonomous unmanned aerial vehicles." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44820.
Full textGrymin, David J. "Development of a novel method for autonomous navigation and landing of unmanned aerial vehicles /." Online version of thesis, 2009. http://hdl.handle.net/1850/10615.
Full textKriel, Steven Cornelius. "A comparison of control systems for the flight transition of VTOL unmanned aerial vehicles." Thesis, Link to the online version, 2008. http://hdl.handle.net/10019/1334.
Full textWard, Garrett. "Design of a Small Form-Factor Flight Control System." VCU Scholars Compass, 2014. http://scholarscompass.vcu.edu/etd/3448.
Full textBooks on the topic "Unmanned Aerial Vehicles Flight Control"
Guidance of unmanned aerial vehicles. Boca Raton: Taylor & Francis, 2011.
Find full textWhite, Brian, 1947 June 6- and Shanmugavel Madhavan, eds. Cooperative path planning of unmanned aerial vehicles. Chichester, West Sussex, U.K: Wiley, 2011.
Find full textDucard, Guillaume J. J. Fault-tolerant flight control and guidance systems: Practical methods for small unmanned aerial vehicles. London: Springer, 2009.
Find full textDucard, Guillaume J. J. Fault-tolerant flight control and guidance systems: Practical methods for small unmanned aerial vehicles. London: Springer, 2009.
Find full textWhite, Brian, 1947 June 6-, Shanmugavel Madhavan, and Zhu Xiaoping 1963 September-, eds. Wu ren ji xie tong lu jing gui hua: Cooperative path planning of unmanned aerial vehicles. Beijing: Guo fang gong ye chu ban she, 2013.
Find full text1954-, Lozano R., ed. Unmanned aerial vehicles: Embedded control. London: ISTE, 2010.
Find full textLozano, R. Unmanned aerial vehicles: Embedded control. London: ISTE, 2010.
Find full textVepa, Ranjan. Nonlinear Control of Robots and Unmanned Aerial Vehicles. Boca Raton : Taylor & Francis, a CRC title, part of the Taylor &: CRC Press, 2016. http://dx.doi.org/10.1201/9781315367378.
Full textK, Valavanis, Oh Paul Y, and Piegl Les A, eds. Unmanned aircraft systems: International Symposium on Unmanned Aerial Vehicles, UAV'08. Dordrecht: Springer, 2008.
Find full textUnmanned aerial vehicles (UAVs): Past, present, and future. New Delhi: Lancer's Books, 2013.
Find full textBook chapters on the topic "Unmanned Aerial Vehicles Flight Control"
Ng, Tian Seng. "Unmanned Aerial Vehicle System." In Flight Systems and Control, 109–18. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8721-9_6.
Full textHow, Jonathan P., Emilio Frazzoli, and Girish Vinayak Chowdhary. "Linear Flight Control Techniques for Unmanned Aerial Vehicles." In Handbook of Unmanned Aerial Vehicles, 529–76. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-90-481-9707-1_49.
Full textGirish, Chowdhary Vinayak, Frazzoli Emilio, How P. Jonathan, and Liu Hugh. "Nonlinear Flight Control Techniques for Unmanned Aerial Vehicles." In Handbook of Unmanned Aerial Vehicles, 577–612. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-90-481-9707-1_87.
Full textKannan, Suresh K., Girish Vinayak Chowdhary, and Eric N. Johnson. "Adaptive Control of Unmanned Aerial Vehicles: Theory and Flight Tests." In Handbook of Unmanned Aerial Vehicles, 613–73. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-90-481-9707-1_61.
Full textGosiewski, Zdzisław, and Leszek Ambroziak. "Formation Flight Control Scheme for Unmanned Aerial Vehicles." In Robot Motion and Control 2011, 331–40. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2343-9_28.
Full textVepa, Ranjan. "Dynamics and Control of Drones and Unmanned Aerial Vehicles." In Flight Dynamics, Simulation, and Control, 551–609. 2nd ed. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003266310-11.
Full textPandey, Alok Kumar, Anshuman Shukla, Ashutosh Gupta, and Manjeet Singh Gangwar. "Linear Flight Control of Unmanned Aerial Vehicle." In Advances in Intelligent Systems and Computing, 393–400. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5903-2_40.
Full textPourtakdoust, Seid H., and Jalal Karimi. "Constrained Motion Planning and Trajectory Optimization for Unmanned Aerial Vehicles." In Advanced UAV Aerodynamics, Flight Stability and Control, 577–611. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118928691.ch17.
Full textLiu, Hao, Deyuan Liu, Yan Wan, Frank L. Lewis, and Kimon P. Valavanis. "Robust Time-Varying Formation Control for Tail-Sitters in Flight Mode Transitions." In Robust Formation Control for Multiple Unmanned Aerial Vehicles, 77–97. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003242147-5.
Full textLiu, Hao, Deyuan Liu, Yan Wan, Frank L. Lewis, and Kimon P. Valavanis. "Robust Fault-Tolerant Formation Control for Tail-Sitters in Aggressive Flight Mode Transitions." In Robust Formation Control for Multiple Unmanned Aerial Vehicles, 99–120. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003242147-6.
Full textConference papers on the topic "Unmanned Aerial Vehicles Flight Control"
Prats, Xavier, Enric Pastor, Pablo Royo, and Juan Lopez. "Flight Dispatching for Unmanned Aerial Vehicles." In AIAA Guidance, Navigation and Control Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-6636.
Full textYang, Aolei, Wasif Naeem, George W. Irwin, and Kang Li. "A decentralised control strategy for formation flight of unmanned aerial vehicles." In 2012 UKACC International Conference on Control (CONTROL). IEEE, 2012. http://dx.doi.org/10.1109/control.2012.6334654.
Full textChen, Gao, Zhen Ziyang, Gong Huajun, and Sun Yili. "Constraints for unmanned aerial vehicles formation flight path." In 2014 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC). IEEE, 2014. http://dx.doi.org/10.1109/cgncc.2014.7007359.
Full textMingfeng Zhang and Hugh H. T. Liu. "Formation flight of multiple fixed-wing unmanned aerial vehicles." In 2013 American Control Conference (ACC). IEEE, 2013. http://dx.doi.org/10.1109/acc.2013.6580066.
Full textGao, Li, Wenhai Wu, and Siyu Zhou. "Adaptive Flight Control Design for the Unmanned Aerial Vehicles." In 2011 International Conference on Intelligent Computation Technology and Automation (ICICTA). IEEE, 2011. http://dx.doi.org/10.1109/icicta.2011.97.
Full textZhang, Haijie, and Jianguo Zhao. "Vision Based Surface Slope Estimation for Unmanned Aerial Vehicle Perching." In ASME 2018 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/dscc2018-9210.
Full textDong, Xiangxu, Guowei Cai, Feng Lin, Ben M. Chen, Hai Lin, and Tong H. Lee. "Implementation of formation flight of multiple unmanned aerial vehicles." In 2010 8th IEEE International Conference on Control and Automation (ICCA). IEEE, 2010. http://dx.doi.org/10.1109/icca.2010.5524123.
Full textHarada, Masanori, and Kevin Bollino. "Fuel Optimization of Figure-8 Flight for Unmanned Aerial Vehicles." In AIAA Guidance, Navigation, and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-6011.
Full textSubbarao, Kamesh, Carlos Tule, and Pengkai Ru. "Nonlinear Model Predictive Control Applied to Trajectory Tracking for Unmanned Aerial Vehicles." In AIAA Atmospheric Flight Mechanics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-2857.
Full textWzorek, Mariusz, Piotr Rudol, Gianpaolo Conte, and Patrick Doherty. "LinkBoard: Advanced flight control system for micro unmanned aerial vehicles." In 2017 2nd International Conference on Control and Robotics Engineering (ICCRE). IEEE, 2017. http://dx.doi.org/10.1109/iccre.2017.7935051.
Full textReports on the topic "Unmanned Aerial Vehicles Flight Control"
Dahleh, M. A., and J. Tsitsiklis. Hierarchical Nonlinear Control for Unmanned Aerial Vehicles. Fort Belvoir, VA: Defense Technical Information Center, July 2002. http://dx.doi.org/10.21236/ada417306.
Full textBernstein, Dennis S. Intelligenct Flight Control of Uninhabited Aerial Vehicles. Fort Belvoir, VA: Defense Technical Information Center, May 2000. http://dx.doi.org/10.21236/ada382981.
Full textSmirnov, Mikhail N., and Maria A. Smirnova. Questions of Stabilization and Control of Unmanned Aerial Vehicles. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, January 2018. http://dx.doi.org/10.7546/crabs.2018.01.12.
Full textSmirnov, Mikhail N., and Maria A. Smirnova. Questions of Stabilization and Control of Unmanned Aerial Vehicles. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, January 2018. http://dx.doi.org/10.7546/grabs2018.1.12.
Full textSong, Yong D. Fault-Tolerant and Reconfigurable Control of Unmanned Aerial Vehicles (UAVs). Fort Belvoir, VA: Defense Technical Information Center, February 2008. http://dx.doi.org/10.21236/ada477568.
Full textBayraktar, Selcuk, Georgios E. Fainekos, and George J. Pappas. Hybrid Modeling and Experimental Cooperative Control of Multiple Unmanned Aerial Vehicles. Fort Belvoir, VA: Defense Technical Information Center, December 2004. http://dx.doi.org/10.21236/ada436407.
Full textNelson, Jeremy, Gloria Calhoun, and Mark Draper. A Dynamic Mission Replanning Testbed for Supervisory Control of Multiple Unmanned Aerial Vehicles. Fort Belvoir, VA: Defense Technical Information Center, March 2006. http://dx.doi.org/10.21236/ada444586.
Full textChung, Soon-Jo. Bio-Inspired Integrated Sensing and Control Flapping Flight for Micro Aerial Vehicles. Fort Belvoir, VA: Defense Technical Information Center, February 2012. http://dx.doi.org/10.21236/ada564148.
Full textWalters, Brett A., Shawn Huber, Jon French, and Michael J. Barnes. Using Simulation Models to Analyze the Effects of Crew Size and Crew Fatigue on the Control of Tactical Unmanned Aerial Vehicles (TUAVs). Fort Belvoir, VA: Defense Technical Information Center, July 2002. http://dx.doi.org/10.21236/ada405012.
Full text