To see the other types of publications on this topic, follow the link: Universal Functions.

Journal articles on the topic 'Universal Functions'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Universal Functions.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Larson, Paul B., Arnold W. Miller, Juris Steprāns, and William A. R. Weiss. "Universal functions." Fundamenta Mathematicae 227, no. 3 (2014): 197–245. http://dx.doi.org/10.4064/fm227-3-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bonilla, A. "Universal harmonic functions." Quaestiones Mathematicae 25, no. 4 (December 2002): 527–30. http://dx.doi.org/10.2989/16073600209486036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Aron, Richard, and Dinesh Markose. "ON UNIVERSAL FUNCTIONS." Journal of the Korean Mathematical Society 41, no. 1 (January 1, 2004): 65–76. http://dx.doi.org/10.4134/jkms.2004.41.1.065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chan, Kit C. "Universal meromorphic functions." Complex Variables, Theory and Application: An International Journal 46, no. 4 (November 2001): 307–14. http://dx.doi.org/10.1080/17476930108815418.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bogmér, A., and A. Sövergjártó. "On universal functions." Acta Mathematica Hungarica 49, no. 1-2 (March 1987): 237–39. http://dx.doi.org/10.1007/bf01956327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Al-Roomi, Ali R., and Mohamed E. El-Hawary. "Universal Functions Originator." Applied Soft Computing 94 (September 2020): 106417. http://dx.doi.org/10.1016/j.asoc.2020.106417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gorkin, Pamela, and Raymond Mortini. "Universal Singular Inner Functions." Canadian Mathematical Bulletin 47, no. 1 (March 1, 2004): 17–21. http://dx.doi.org/10.4153/cmb-2004-003-0.

Full text
Abstract:
AbstractWe show that there exists a singular inner function S which is universal for noneuclidean translates; that is one for which the set is locally uniformly dense in the set of all zero-free holomorphic functions in bounded by one.
APA, Harvard, Vancouver, ISO, and other styles
8

Khisamiev, A. N. "Universal Functions Over Trees." Algebra and Logic 54, no. 2 (May 2015): 188–93. http://dx.doi.org/10.1007/s10469-015-9338-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Polyakov, E. A. "On R-Universal Functions." Mathematical Notes 78, no. 1-2 (July 2005): 234–38. http://dx.doi.org/10.1007/s11006-005-0120-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Costakis, GG, V. Nestoridis, and V. Vlachou. "Smooth univalent universal functions." Mathematical Proceedings of the Royal Irish Academy 107, no. 1 (January 1, 2007): 101–14. http://dx.doi.org/10.3318/pria.2007.107.1.101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Meyrath, Thierry. "Compositionally universal meromorphic functions." Complex Variables and Elliptic Equations 64, no. 9 (November 9, 2018): 1534–45. http://dx.doi.org/10.1080/17476933.2018.1538213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Luh, Wolfgang, Valeri A. Martirosian, and Jürgen Müller. "Restricted T-Universal Functions." Journal of Approximation Theory 114, no. 2 (February 2002): 201–13. http://dx.doi.org/10.1006/jath.2001.3640.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Gan, Xiao-Xiong, and Karl R. Stromberg. "On universal primitive functions." Proceedings of the American Mathematical Society 121, no. 1 (January 1, 1994): 151. http://dx.doi.org/10.1090/s0002-9939-1994-1191868-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Vogt, Andreas. "On Bounded Universal Functions." Computational Methods and Function Theory 12, no. 1 (January 21, 2012): 213–19. http://dx.doi.org/10.1007/bf03321823.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Grigoryan, M. G., and L. N. Galoyan. "On the universal functions." Journal of Approximation Theory 225 (January 2018): 191–208. http://dx.doi.org/10.1016/j.jat.2017.08.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Mouze, A. "On doubly universal functions." Journal of Approximation Theory 226 (February 2018): 1–13. http://dx.doi.org/10.1016/j.jat.2017.11.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Blass, Andreas. "Functions on universal algebras." Journal of Pure and Applied Algebra 42, no. 1 (1986): 25–28. http://dx.doi.org/10.1016/0022-4049(86)90056-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Luh, Wolfgang. "Multiply Universal Holomorphic Functions." Journal of Approximation Theory 89, no. 2 (May 1997): 135–55. http://dx.doi.org/10.1006/jath.1997.3036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Cichon, J., and M. Morayne. "Universal Functions and Generalized Classes of Functions." Proceedings of the American Mathematical Society 102, no. 1 (January 1988): 83. http://dx.doi.org/10.2307/2046036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Cicho{ń, J., and M. Morayne. "Universal functions and generalized classes of functions." Proceedings of the American Mathematical Society 102, no. 1 (January 1, 1988): 83. http://dx.doi.org/10.1090/s0002-9939-1988-0915721-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Lamprecht, Martin, and Vassili Nestoridis. "Universal functions as series of rational functions." Revista Matemática Complutense 27, no. 1 (February 24, 2013): 225–39. http://dx.doi.org/10.1007/s13163-013-0116-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

ABE, Yukitaka, and Paolo ZAPPA. "Universal functions on Stein manifolds." Journal of the Mathematical Society of Japan 56, no. 1 (January 2004): 31–43. http://dx.doi.org/10.2969/jmsj/1191418694.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Osipov, K. V. "On quasi-universal word functions." Moscow University Computational Mathematics and Cybernetics 40, no. 1 (January 2016): 28–34. http://dx.doi.org/10.3103/s0278641916010040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Logean, Antoine, Alessandro Sette, and Didier Rognan. "Customized versus universal scoring functions." Bioorganic & Medicinal Chemistry Letters 11, no. 5 (March 2001): 675–79. http://dx.doi.org/10.1016/s0960-894x(01)00021-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Buckley, James J., and Thomas Feuring. "Universal approximators for fuzzy functions." Fuzzy Sets and Systems 113, no. 3 (August 2000): 411–15. http://dx.doi.org/10.1016/s0165-0114(98)00069-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Vlachou, Vagia. "Functions with universal Faber expansions." Journal of the London Mathematical Society 80, no. 2 (August 21, 2009): 531–43. http://dx.doi.org/10.1112/jlms/jdp038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Bernal-González, Luis, and Alfonso Montes-Rodríguez. "Universal functions for composition operators." Complex Variables, Theory and Application: An International Journal 27, no. 1 (January 1995): 47–56. http://dx.doi.org/10.1080/17476939508814804.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Negri, Maurizio. "UNIVERSAL FUNCTIONS IN PARTIAL STRUCTURES." Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 38, no. 1 (1992): 253–68. http://dx.doi.org/10.1002/malq.19920380121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Bernal-González, Luis. "Universal functions for taylor shifts." Complex Variables, Theory and Application: An International Journal 31, no. 2 (October 1996): 121–29. http://dx.doi.org/10.1080/17476939608814953.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

OKABE, YUTAKA, and MACOTO KIKUCHI. "UNIVERSAL FINITE-SIZE-SCALING FUNCTIONS." International Journal of Modern Physics C 07, no. 03 (June 1996): 287–94. http://dx.doi.org/10.1142/s0129183196000223.

Full text
Abstract:
The idea of universal finite-size-scaling functions of the Ising model is tested by Monte Carlo simulations for various lattices. Not only regular lattices such as the square lattice but quasiperiodic lattices such as the Penrose lattice are treated. We show that the finite-size-scaling functions of the order parameter for various lattices are collapsed on a single curve by choosing two nonuniversal scaling metric factors. We extend the idea of the universal finite-size-scaling functions to the order-parameter distribution function. We pay attention to the effects of boundary conditions.
APA, Harvard, Vancouver, ISO, and other styles
31

Khisamiev, A. N. "Universal Functions and KΣ-Structures." Siberian Mathematical Journal 61, no. 3 (May 2020): 552–62. http://dx.doi.org/10.1134/s0037446620030192.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Buczolich, Z. "On universal functions and series." Acta Mathematica Hungarica 49, no. 3-4 (September 1987): 403–14. http://dx.doi.org/10.1007/bf01951004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Costakis, G., and V. Vlachou. "Interpolation by universal, hypercyclic functions." Journal of Approximation Theory 164, no. 5 (May 2012): 625–36. http://dx.doi.org/10.1016/j.jat.2012.01.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

McIntosh, Richard J. "The H and K Family of Mock Theta Functions." Canadian Journal of Mathematics 64, no. 4 (August 1, 2012): 935–60. http://dx.doi.org/10.4153/cjm-2011-066-0.

Full text
Abstract:
AbstractIn his last letter to Hardy, Ramanujan defined 17 functionsF(q), |q| < 1, which he calledmockθ-functions. He observed that asqradially approaches any root of unity ζ at whichF(q) has an exponential singularity, there is aθ-functionTζ(q) withF(q) −Tζ(q) =O(1). Since then, other functions have been found that possess this property. These functions are related to a functionH(x,q), wherexis usuallyqrore2πirfor some rational numberr. For this reason we refer toHas a “universal” mockθ-function. Modular transformations ofHgive rise to the functionsK,K1,K2. The functionsKandK1appear in Ramanujan's lost notebook. We prove various linear relations between these functions using Appell–Lerch sums (also called generalized Lambert series). Some relations (mock theta “conjectures”) involving mockθ-functions of even order andHare listed.
APA, Harvard, Vancouver, ISO, and other styles
35

Koumoullis, G., W. Luh, and V. Nestoridis. "Universal functions are automatically universal in the sense of Menchoff." Complex Variables and Elliptic Equations 52, no. 4 (April 2007): 307–14. http://dx.doi.org/10.1080/17476930600961954.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Voronenko, Andrey A., and Anna S. Okuneva. "Universal functions for linear functions depending on two variables." Discrete Mathematics and Applications 30, no. 5 (October 27, 2020): 353–56. http://dx.doi.org/10.1515/dma-2020-0032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Ablayev, F. M. "Universal Hash Functions from Quantum Procedures." Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki 162, no. 3 (2020): 259–68. http://dx.doi.org/10.26907/2541-7746.2020.3.259-268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Bayart, Frédéric. "Universal Inner Functions on the Ball." Canadian Mathematical Bulletin 51, no. 4 (December 1, 2008): 481–86. http://dx.doi.org/10.4153/cmb-2008-048-8.

Full text
Abstract:
AbstractIt is shown that given any sequence of automorphisms (ϕk)k of the unit ball of ℂN such that ‖ϕk(0)‖ tends to 1, there exists an inner function I such that the family of “non-Euclidean translates” (I о ϕk)k is locally uniformly dense in the unit ball of H∞().
APA, Harvard, Vancouver, ISO, and other styles
39

Khisamiev, A. N. "Universal Functions and Unbounded Branching Trees." Algebra and Logic 57, no. 4 (September 2018): 309–19. http://dx.doi.org/10.1007/s10469-018-9502-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

BAYART, FRÉDÉRIC. "UNIVERSAL RADIAL LIMITS OF HOLOMORPHIC FUNCTIONS." Glasgow Mathematical Journal 47, no. 2 (July 27, 2005): 261–67. http://dx.doi.org/10.1017/s0017089505002478.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Herzog, Gerd. "On zero-free universal entire functions." Archiv der Mathematik 63, no. 4 (October 1994): 329–32. http://dx.doi.org/10.1007/bf01189569.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Melas, Antonios D. "On the growth of universal functions." Journal d'Analyse Mathématique 82, no. 1 (December 2000): 1–20. http://dx.doi.org/10.1007/bf02791219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Melas, Antonios D. "Universal functions on nonsimply connected domains." Annales de l’institut Fourier 51, no. 6 (2001): 1539–51. http://dx.doi.org/10.5802/aif.1865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Koszmider, Piotr. "Universal matrices and strongly unbounded functions." Mathematical Research Letters 9, no. 4 (2002): 549–66. http://dx.doi.org/10.4310/mrl.2002.v9.n4.a15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Nieß, Markus. "Generic approach to multiply universal functions." Complex Variables and Elliptic Equations 53, no. 9 (September 2008): 819–31. http://dx.doi.org/10.1080/17476930802130523.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Abe, Yukitaka. "UNIVERSAL HOLOMORPHIC FUNCTIONS IN SEVERAL VARIABLES." Analysis 17, no. 1 (March 1997): 71–78. http://dx.doi.org/10.1524/anly.1997.17.1.71.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Vlachou, V. "On some classes of universal functions." Analysis 22, no. 2 (June 2002): 149–62. http://dx.doi.org/10.1524/anly.2002.22.2.149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Luh, Wolfgang. "Entire functions with various universal properties." Complex Variables, Theory and Application: An International Journal 31, no. 1 (September 1996): 87–96. http://dx.doi.org/10.1080/17476939608814949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Golitsyna, Mayya. "Universal Laurent expansions of harmonic functions." Journal of Mathematical Analysis and Applications 458, no. 1 (February 2018): 281–99. http://dx.doi.org/10.1016/j.jmaa.2017.09.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Costakis, G., and A. Melas. "On the Range of Universal Functions." Bulletin of the London Mathematical Society 32, no. 4 (July 2000): 458–64. http://dx.doi.org/10.1112/s0024609300007268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography