Academic literature on the topic 'Universal Functions'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Universal Functions.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Universal Functions"
Larson, Paul B., Arnold W. Miller, Juris Steprāns, and William A. R. Weiss. "Universal functions." Fundamenta Mathematicae 227, no. 3 (2014): 197–245. http://dx.doi.org/10.4064/fm227-3-1.
Full textBonilla, A. "Universal harmonic functions." Quaestiones Mathematicae 25, no. 4 (December 2002): 527–30. http://dx.doi.org/10.2989/16073600209486036.
Full textAron, Richard, and Dinesh Markose. "ON UNIVERSAL FUNCTIONS." Journal of the Korean Mathematical Society 41, no. 1 (January 1, 2004): 65–76. http://dx.doi.org/10.4134/jkms.2004.41.1.065.
Full textChan, Kit C. "Universal meromorphic functions." Complex Variables, Theory and Application: An International Journal 46, no. 4 (November 2001): 307–14. http://dx.doi.org/10.1080/17476930108815418.
Full textBogmér, A., and A. Sövergjártó. "On universal functions." Acta Mathematica Hungarica 49, no. 1-2 (March 1987): 237–39. http://dx.doi.org/10.1007/bf01956327.
Full textAl-Roomi, Ali R., and Mohamed E. El-Hawary. "Universal Functions Originator." Applied Soft Computing 94 (September 2020): 106417. http://dx.doi.org/10.1016/j.asoc.2020.106417.
Full textGorkin, Pamela, and Raymond Mortini. "Universal Singular Inner Functions." Canadian Mathematical Bulletin 47, no. 1 (March 1, 2004): 17–21. http://dx.doi.org/10.4153/cmb-2004-003-0.
Full textKhisamiev, A. N. "Universal Functions Over Trees." Algebra and Logic 54, no. 2 (May 2015): 188–93. http://dx.doi.org/10.1007/s10469-015-9338-5.
Full textPolyakov, E. A. "On R-Universal Functions." Mathematical Notes 78, no. 1-2 (July 2005): 234–38. http://dx.doi.org/10.1007/s11006-005-0120-1.
Full textCostakis, GG, V. Nestoridis, and V. Vlachou. "Smooth univalent universal functions." Mathematical Proceedings of the Royal Irish Academy 107, no. 1 (January 1, 2007): 101–14. http://dx.doi.org/10.3318/pria.2007.107.1.101.
Full textDissertations / Theses on the topic "Universal Functions"
Ura, Hiroyuki. "Checking theory and grammatical functions in universal grammar /." New York [u.a.] : Oxford Univ. Press, 2000. http://www.loc.gov/catdir/enhancements/fy0605/99023232-d.html.
Full textBeise, Hans-Peter [Verfasser], and Jürgen [Akademischer Betreuer] Müller. "Universal and Frequently Universal Functions of Exponential Type / Hans-Peter Beise ; Betreuer: Jürgen Müller." Trier : Universität Trier, 2011. http://d-nb.info/1197697012/34.
Full textPohl, Daniel [Verfasser], Oliver [Gutachter] Roth, and Jürgen [Gutachter] Müller. "Universal Locally Univalent Functions and Universal Conformal Metrics / Daniel Pohl ; Gutachter: Oliver Roth, Jürgen Müller." Würzburg : Universität Würzburg, 2019. http://d-nb.info/1180286685/34.
Full textGroft, Chad. "Isoperimetric functions on the universal covers of compact spaces /." May be available electronically:, 2007. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Full textAbidin, Aysajan. "Weaknesses of Authentication inQuantum Cryptography and Strongly Universal Hash Functions." Licentiate thesis, Linköping University, Linköping University, Department of Mathematics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-57290.
Full textAuthentication is an indispensable part of Quantum Cryptography, which is an unconditionally secure key distribution technique based on the laws of nature. Without proper authentication, Quantum Cryptography is vulnerable to “man-in-the-middle” attacks. Therefore, to guarantee unconditional security of any Quantum Cryptographic protocols, the authentication used must also be unconditionally secure. The standard in Quantum Cryptography is to use theWegman-Carter authentication, which is unconditionally secure and is based on the idea of universal hashing.
In this thesis, we first investigate properties of a Strongly Universal hash function family to facilitate understanding the properties of (classical) authentication used in Quantum Cryptography. Then, we study vulnerabilities of a recently proposed authentication protocol intended to rule out a "man-in-the-middle" attack on Quantum Cryptography. Here, we point out that the proposed authentication primitive is not secure when used in a generic Quantum Cryptographic protocol. Lastly, we estimate the lifetime of authentication using encrypted tags when the encryption key is partially known. Under simplifying assumptions, we derive that the lifetime is linearly dependent on the length of the authentication key. Experimental results that support the theoretical results are also presented.
Abidin, Aysajan. "Authentication in Quantum Key Distribution : Security Proof and Universal Hash Functions." Doctoral thesis, Linköpings universitet, Informationskodning, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-91265.
Full textICG QC
Abidin, Aysajan. "Weaknesses of Authentication in Quantum Cryptography and Strongly Universal Hash Functions." Licentiate thesis, Linköpings universitet, Tillämpad matematik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-57290.
Full textICG QC
Gomes, Victor pereira. "Funções recursivas primitivas: caracterização e alguns resultados para esta classe de funções." Universidade Federal da Paraíba, 2016. http://tede.biblioteca.ufpb.br:8080/handle/tede/8514.
Full textMade available in DSpace on 2016-08-10T14:17:41Z (GMT). No. of bitstreams: 1 arquivo total.pdf: 975005 bytes, checksum: 6f8194b9c0cb9c0bbd07b1d2b0ba4b9e (MD5) Previous issue date: 2016-06-21
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
The class of primitive recursive functions is not a formal version to the class of algorithmic functions, we study this special class of numerical functions due to the fact of that many of the functions known as algorithmic are primitive recursive. The approach on the class of primitive recursive functions aims to explore this special class of functions and from that, present solutions for the following problems: (1) given the class of primitive recursive derivations, is there an algorithm, that is, a mechanical procedure for recognizing primitive recursive derivations? (2) Is there a universal function for the class of primitive recursive functions? If so, is this function primitive recursive? (3) Are all the algorithmic functions primitive recursive? To provide solutions to these issues, we base on the hypothetical-deductive method and argue based on the works of Davis (1982), Mendelson (2009), Dias e Weber (2010), Rogers (1987), Soare (1987), Cooper (2004), among others. We present the theory of Turing machines which is a formal version to the intuitive notion of algorithm, and after that the famous Church-Turing tesis which identifies the class of algorithmic functions with the class of Turing-computable functions. We display the class of primitive recursive functions and show that it is a subclass of Turing-computable functions. Having explored the class of primitive recursive functions we proved as results that there is a recognizer algorithm to the class of primitive recursive derivations; that there is a universal function to the class of primitive recursive functions which does not belong to this class; and that not every algorithmic function is primitive recursive.
A classe das funções recursivas primitivas não constitui uma versão formal para a classe das funções algorítmicas, estudamos esta classe especial de funções numéricas devido ao fato de que muitas das funções conhecidas como algorítmicas são recursivas primitivas. A abordagem acerca da classe das funções recursivas primitivas tem como objetivo explorar esta classe especial de funções e, a partir disto, apresentar soluções para os seguintes problemas: (1) dada a classe das derivações recursivas primitivas, há um algoritmo, ou seja, um procedimento mecânico, para reconhecer derivações recursivas primitivas? (2) Existe uma função universal para a classe das funções recursivas primitivas? Se sim, essa função é recursiva primitiva? (3) Toda função algorítmica é recursiva primitiva? Para apresentar soluções para estas questões, nos pautamos no método hipotético-dedutivo e argumentamos com base nos manuais de Davis (1982), Mendelson (2009), Dias e Weber (2010), Rogers (1987), Soare (1987), Cooper (2004), entre outros. Apresentamos a teoria das máquinas de Turing, que constitui uma versão formal para a noção intuitiva de algoritmo, e, em seguida, a famosa tese de Church-Turing, a qual identifica a classe das funções algorítmicas com a classe das funções Turing-computáveis. Exibimos a classe das funções recursivas primitivas, e mostramos que a mesma constitui uma subclasse das funções Turing-computáveis. Tendo explorado a classe das funções recursivas primitivas, como resultados, provamos que existe um algoritmo reconhecedor para a classe das derivações recursivas primitivas; que existe uma função universal para a classe das funções recursivas primitivas a qual não pertence a esta classe; e que nem toda função algorítmica é recursiva primitiva.
Ahmed, Istiaque, and s3119889@student rmit edu au. "Canonical and Perturbed Quantum Potential-Well Problems: A Universal Function Approach." RMIT University. Electrical and Computer Engineering, 2007. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080108.124715.
Full textPinheiro, Leonardo V. "Chaotic Extensions for General Operators on a Hilbert Subspace." Bowling Green State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1399157158.
Full textBooks on the topic "Universal Functions"
Checking theory and grammatical functions in universal grammar. New York: Oxford University Press, 2000.
Find full text1975-, Teo Lee-Peng, ed. Weil-Petersson metric on the universal Teichmüller space. Providence, R.I: American Mathematical Society, 2006.
Find full textKalnins, E. G. Models of q-algebra representations. Hamilton, N.Z: University of Waikato, 1992.
Find full textKalnins, E. G. Models of q-algebra representations. Hamilton, N.Z: University of Waikato, 1992.
Find full textFreese, Ralph. Commutator theory for congruence modular varieties. Cambridge: Cambridge University Press, 1987.
Find full textFoundations and functions of theology as a universal science: Theological method and apologetic praxis in Wolfhart Pannenberg and Karl Rahner. Frankfurt am Main: P. Lang, 1996.
Find full textXu, Ding. Functional categories in Mandarin Chinese. The Hague: Holland Academic Graphics, 1997.
Find full textFunction, selection, and innateness: The emergence of language universals. Oxford: Oxford University Press, 1999.
Find full textVasanthi, T. Optimum Reliability Analysis of Mobile Adhoc Networks using Universal Generating Function under Limited Delivery Time and Cost. Edited by Kokula Krishna Hari K and K. Saravanan. Tiruppur, Tamil Nadu, India: Association of Scientists, Developers and Faculties, 2016.
Find full textHerms, Ronald. An apocalypse for the church and for the world: The narrative function of universal language in the book of Revelation. Berlin: Walter de Gruyter, 2006.
Find full textBook chapters on the topic "Universal Functions"
Rudeanu, Sergiu. "Universal algebra." In Lattice Functions and Equations, 13–30. London: Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-0241-0_2.
Full textShen, A., and N. Vereshchagin. "Universal functions and undecidability." In The Student Mathematical Library, 11–18. Providence, Rhode Island: American Mathematical Society, 2002. http://dx.doi.org/10.1090/stml/019/02.
Full textAbidin, Aysajan, and Jan-Åke Larsson. "New Universal Hash Functions." In Research in Cryptology, 99–108. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34159-5_7.
Full textKorogodski, Leonid, and Yan Soibelman. "Quantized universal enveloping algebras." In Algebras of Functions on Quantum Groups: Part I, 57–94. Providence, Rhode Island: American Mathematical Society, 1998. http://dx.doi.org/10.1090/surv/056/03.
Full textNevelsteen, Wim, and Bart Preneel. "Software Performance of Universal Hash Functions." In Advances in Cryptology — EUROCRYPT ’99, 24–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-48910-x_3.
Full textMesiar, Radko, and Andrea Stupňanová. "Capacities, Survival Functions and Universal Integrals." In Advances in Intelligent Systems and Computing, 1–8. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59306-7_1.
Full textDuval, Sébastien, and Gaëtan Leurent. "Lightweight MACs from Universal Hash Functions." In Smart Card Research and Advanced Applications, 195–215. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42068-0_12.
Full textPreneel, Bart. "Universal One-Way Hash Functions (UOWHF)." In Encyclopedia of Cryptography and Security, 1349–50. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4419-5906-5_624.
Full textGoldman, Leon. "Individual and Universal Eschatology in Zoroastrianism." In Eschatology in Antiquity: Forms and Functions, 34–48. London: Routledge, 2021. http://dx.doi.org/10.4324/9781315459486-2.
Full textSchlage-Puchta, Jan-Christoph. "The Non-existence of Universal Carmichael Numbers." In From Arithmetic to Zeta-Functions, 435–53. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28203-9_26.
Full textConference papers on the topic "Universal Functions"
Mussardo, Giuseppe, and G. Delfino. "Universal ratios and correlation functions." In Workshop on Integrable Theories, Solitons and Duality. Trieste, Italy: Sissa Medialab, 2002. http://dx.doi.org/10.22323/1.008.0007.
Full textRobinson, Michael. "Universal factorizations of quasiperiodic functions." In 2015 International Conference on Sampling Theory and Applications (SampTA). IEEE, 2015. http://dx.doi.org/10.1109/sampta.2015.7148959.
Full textAl-Roomi, Ali R., and Mohamed E. El-Hawary. "Universal Functions Originator—Part I: Design." In 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE). IEEE, 2019. http://dx.doi.org/10.1109/ccece.2019.8861880.
Full textAl-Roomi, Ali R., and Mohamed E. El-Hawary. "Universal Functions Originator—Part II: Evaluation." In 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE). IEEE, 2019. http://dx.doi.org/10.1109/ccece.2019.8861890.
Full textThakur, Shashidhar, and D. F. Wong. "Universal logic modules for series-parallel functions." In the 1996 ACM fourth international symposium. New York, New York, USA: ACM Press, 1996. http://dx.doi.org/10.1145/228370.228375.
Full textHovanov, N. V., V. V. Kornikov, and I. A. Seregin. "Universal representation of fuzzy sets' membership functions." In Proceedings of 8th International Fuzzy Systems Conference. IEEE, 1999. http://dx.doi.org/10.1109/fuzzy.1999.793229.
Full textNeydorf, Rudolf, Dean Vucinic, and Ivan Chernogorov. "Universal generator of irregular multidimensional multiextremal functions." In 2017 IEEE East-West Design & Test Symposium (EWDTS). IEEE, 2017. http://dx.doi.org/10.1109/ewdts.2017.8110046.
Full textSafdari, Mustafa. "Evolving universal hash functions using genetic algorithms." In the 11th annual conference companion. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1570256.1570396.
Full textColbert, Brendon K., and Matthew M. Peet. "Using SDP to Parameterize Universal Kernel Functions." In 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE, 2019. http://dx.doi.org/10.1109/cdc40024.2019.9030084.
Full textRuslan, Vikhorev. "Universal logic cells to implement systems functions." In 2016 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW). IEEE, 2016. http://dx.doi.org/10.1109/eiconrusnw.2016.7448197.
Full textReports on the topic "Universal Functions"
Carlson, Joseph, Richard Furnstahl, Mihai Horoi, Rusty Lusk, Witold Nazarewicz, Esmond Ng, Ian Thompson, and James Vary. Universal Nuclear Energy Density Functional. Office of Scientific and Technical Information (OSTI), December 2012. http://dx.doi.org/10.2172/1157042.
Full textZinenko, Olena. THE SPECIFICITY OF INTERACTION OF JOURNALISTS WITH THE PUBLIC IN COVERAGE OF PUBLIC EVENTS ON SOCIAL TOPICS. Ivan Franko National University of Lviv, February 2021. http://dx.doi.org/10.30970/vjo.2021.49.11056.
Full textLin, Daw-Tung, and Judith E. Dayhoff. Network Unfolding Algorithm and Universal Spatiotemporal Function Approximation. Fort Belvoir, VA: Defense Technical Information Center, January 1994. http://dx.doi.org/10.21236/ada453011.
Full textde Leeuw, Gerrit. Toward a Universal Sea Spray Source Function (UNISOURCE). Fort Belvoir, VA: Defense Technical Information Center, September 2003. http://dx.doi.org/10.21236/ada630210.
Full textCarlson, Joe A., Dick Furnstahl, Mihai Horoi, Rusty Lust, Witek Nazaewicc, Esmond Ng, Ian Thompson, and James Vary. Building a Universal Nuclear Energy Density Functional. Office of Scientific and Technical Information (OSTI), December 2012. http://dx.doi.org/10.2172/1163477.
Full textBertulani, Carlos A. Building a Universal Nuclear Energy Density Functional. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1155011.
Full textNazarewicz, Witold. Building a universal nuclear energy density functional (UNEDF). Office of Scientific and Technical Information (OSTI), July 2012. http://dx.doi.org/10.2172/1116134.
Full textJoe Carlson, Dick Furnstahl, Mihai Horoi, Rusty Lusk, Witek Nazarewicz, Esmond Ng, Ian Thompson, and James Vary. Building A Universal Nuclear Energy Density Functional (UNEDF). Office of Scientific and Technical Information (OSTI), September 2012. http://dx.doi.org/10.2172/1060545.
Full textVary, James P., Joe Carlson, Dick Furnstahl, Mihai Horoi, Rusty Lusk, Witek Nazarewicz, Esmond Ng, and Ian Thompson. Building a Universal Nuclear Energy Density Functional (UNEDF). SciDAC-2 Project. Office of Scientific and Technical Information (OSTI), September 2012. http://dx.doi.org/10.2172/1168663.
Full textCarlson, Joe, Dick Furnstahl, Rusty Lusk, Witek Nazarewicz, Esmond Ng, Ian Thompson, and James Vary. Building a Universal Nuclear Energy Density Functional (UNEDF): SciDAC-2 Project. Office of Scientific and Technical Information (OSTI), June 2012. http://dx.doi.org/10.2172/1150654.
Full text