Dissertations / Theses on the topic 'Units in rings and group rings'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Units in rings and group rings.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Li, Yuanlin. "Units in integral group rings." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/nq23107.pdf.
Full textFerguson, Ronald Aubrey. "Units in integral cyclic group rings for order L§RP§S." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq25045.pdf.
Full textFaccin, Paolo. "Computational problems in algebra: units in group rings and subalgebras of real simple Lie algebras." Doctoral thesis, Università degli studi di Trento, 2014. https://hdl.handle.net/11572/368142.
Full textFaccin, Paolo. "Computational problems in algebra: units in group rings and subalgebras of real simple Lie algebras." Doctoral thesis, University of Trento, 2014. http://eprints-phd.biblio.unitn.it/1182/1/PhdThesisFaccinPaolo.pdf.
Full textSilva, Renata Rodrigues Marcuz. "Unidades de ZC2p e Aplicações." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-27062012-154612/.
Full textLet p be an odd prime integer, be a pth primitive root of unity, Cn be the cyclic group of order n, and U(ZG) the units of the Integral Group Ring ZG: Consider ui := 1++2 +: : :+i1 for 2 i p + 1 2 : In our study we describe explicitly the generator set of U(ZC2p); where p is such that S := f1; ; u2; : : : ; up1 2 g generates U(Z[]) and U(Zp) is such that U(Zp) = 2 or U(Zp)2 = 2 and 1 =2 U(Zp)2; which occurs for p = 7; 11; 13; 19; 23; 29; 37; 53; 59; 61, and 67: For another values of p we don\'t know if such conditions hold. In addition, under suitable hypotheses, we extend these ideas and build a generator set of U(Z(C2p C2)) and U(Z(C2p C2 C2)): Besides that, using the previous results, we exhibit a generator set for the central units of the group ring Z(Cp Q8) where Q8 represents the quaternion group.
Kitani, Patricia Massae. "Unidades de ZCpn." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-26042012-235529/.
Full textLet Cp be a cyclic group of order p, where p is a prime integer such that S = {1, , 1 + \\theta, 1 +\\theta +\\theta ^2 , · · · , 1 + \\theta + · · · +\\theta ^{p-3/2}} generates the group of units of Z[\\theta] and is a primitive pth root of 1 over Q. In the article \"Units of ZCp\" , Ferraz gave an easy way to nd a set of multiplicatively independent generators of the group of units of the integral group ring ZCp . We extended this result for ZCp^n , provided that a set similar to S generates the group of units of Z[\\theta]. This occurs, for example, when \\phi(p^n)\\leq 66. We described the group of units of ZCp^n as the product ±ker(\\pi_1) × Im(\\pi_1), where \\pi_1 is a group homomorphism. Moreover, we explicited a basis of ker(\\pi_1) and I m(\\pi_1).
Stack, Cora. "Some results on the structure of the groups of units of finite completely primary rings and on the structure of finite dimensional nilpotent algebras." Thesis, University of Reading, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.262483.
Full textFilho, Antonio Calixto de Souza. "A importância das unidades centrais em anéis de grupo." Universidade de São Paulo, 2000. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-11122008-214317/.
Full textIn this dissertation, we discuss the Problem of the Isomorphism in group rings for infinite groups as G × C. This is presented in [14]. Such article states a theorem which shows an equivalence to the isomorphism problem between that infinite class group and finite groups verifying the Normalizer Conjecture. Our main purpose is the Normalizer Conjecture and the Isomorphism Conjecture relationship remarked in the cited article to the groups above. Following, we consider a group ring theorem to the central units subgroup firstly communicated in [9] and generalized in [17] and [7]. We point up the importance of such theorem to the Group Ring Theory and we give a short and a new demonstration to Mazurs equivalence theorem from using a suitable central unit altogether with its structure lightly by the Central Unit Theorem on focus. We conclude this work sketching the ZA5 central units subgroup on showing it is a free finitely generated group of rank 1 from the presenting construction in Aleevs article [1].
Immormino, Nicholas A. "Clean Rings & Clean Group Rings." Bowling Green State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1374247918.
Full textWeber, Harald. "Group rings and twisted group rings for a series of p-groups." [S.l. : s.n.], 2003. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB10761310.
Full textTurner, Emma Louise. "k-S-Rings." BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/3670.
Full textDexter, Cache Porter. "Schur Rings over Infinite Groups." BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/8831.
Full textSrivastava, Ashish K. "Rings Characterized by Properties of Direct Sums of Modules and on Rings Generated by Units." Ohio University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1181845354.
Full textStrouthos, I. "Stably free modules over group rings." Thesis, University College London (University of London), 2011. http://discovery.ucl.ac.uk/1325632/.
Full textWelch, Amanda Renee. "Characterizing Zero Divisors of Group Rings." Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/52949.
Full textMaster of Science
Archer, Louise. "Hall algebras and Green rings." Thesis, University of Oxford, 2005. http://ora.ox.ac.uk/objects/uuid:960af4b3-8f32-4263-9142-261f49d52405.
Full textKahn, Eric B. "THE GENERALIZED BURNSIDE AND REPRESENTATION RINGS." UKnowledge, 2009. http://uknowledge.uky.edu/gradschool_diss/707.
Full text邵慰慈 and Wai-chee Shiu. "The algebraic structure and computation of Schur rings." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1992. http://hub.hku.hk/bib/B31233181.
Full textShiu, Wai-chee. "The algebraic structure and computation of Schur rings /." [Hong Kong : University of Hong Kong], 1992. http://sunzi.lib.hku.hk/hkuto/record.jsp?B1329037X.
Full textMeyer, David Christopher. "Universal deformation rings and fusion." Diss., University of Iowa, 2015. https://ir.uiowa.edu/etd/1883.
Full textLee, Gregory Thomas. "Symmetric elements in group rings and related problems." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ59994.pdf.
Full textGjerling, Andreas. "On rings of quotients of soluble group algebras." Thesis, Queen Mary, University of London, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286813.
Full textAlahmadi, Adel Naif M. "Injectivity, Continuity, and CS Conditions on Group Rings." Ohio University / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1163521064.
Full textMannan, W. H. "Low dimensional algebraic complexes over integral group rings." Thesis, University College London (University of London), 2007. http://discovery.ucl.ac.uk/1446153/.
Full textKerby, Brent L. "Rational Schur Rings over Abelian Groups." BYU ScholarsArchive, 2008. https://scholarsarchive.byu.edu/etd/1491.
Full text邵慰慈 and Wai-chee Shiu. "Schur rings over dihedral groups of order 2p." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1989. http://hub.hku.hk/bib/B31208873.
Full textShiu, Wai-chee. "Schur rings over dihedral groups of order 2p /." [Hong Kong : University of Hong Kong], 1989. http://sunzi.lib.hku.hk/hkuto/record.jsp?B12364770.
Full textEisele, Florian [Verfasser]. "Group rings over the p-Adic integers / Florian Eisele." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2012. http://d-nb.info/1022616773/34.
Full textAhmed, Iftikhar. "Projective modules of group rings over quadratic number fields." Thesis, Durham University, 1994. http://etheses.dur.ac.uk/5669/.
Full textDOROBISZ, KRZYSZTOF. "INVERSE PROBLEMS FOR UNIVERSAL DEFORMATION RINGS OF GROUP REPRESENTATIONS." Doctoral thesis, Università degli Studi di Milano, 2015. http://hdl.handle.net/2434/268872.
Full textJuglal, Shaanraj. "Prime near-ring modules and their links with the generalised group near-ring." Thesis, Nelson Mandela Metropolitan University, 2007. http://hdl.handle.net/10948/714.
Full textSemikina, Iuliia [Verfasser]. "G-theory of group rings for finite groups / Iuliia Semikina." Bonn : Universitäts- und Landesbibliothek Bonn, 2018. http://d-nb.info/1173789642/34.
Full textTay, Julian Boon Kai. "Poincaré Polynomial of FJRW Rings and the Group-Weights Conjecture." BYU ScholarsArchive, 2013. https://scholarsarchive.byu.edu/etd/3604.
Full textRenshaw, James Henry. "Flatness, extension and amalgamation in monoids, semigroups and rings." Thesis, University of St Andrews, 1986. http://hdl.handle.net/10023/11071.
Full textLännström, Daniel. "The structure of epsilon-strongly graded rings with applications to Leavitt path algebras and Cuntz-Pimsner rings." Licentiate thesis, Blekinge Tekniska Högskola, Institutionen för matematik och naturvetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-17809.
Full textPopov, Vladimir L., and vladimir@popov msk su. "Generators and Relations of the Affine Coordinate Rings of Connected." ESI preprints, 2000. ftp://ftp.esi.ac.at/pub/Preprints/esi972.ps.
Full textPilewski, Nicholas J. "Units and Leavitt Path Algebras." Ohio University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1427464498.
Full textGrover, Parnesh Kumar Carleton University Dissertation Mathematics. "Orderings on division rings and normal subgroup structure of a unitary group." Ottawa, 1989.
Find full textNguyen, Long Pham Bao. "Fusion of Character Tables and Schur Rings of Dihedral Groups." BYU ScholarsArchive, 2008. https://scholarsarchive.byu.edu/etd/1429.
Full textHelveston, John Knox. "Life rings a manual for developing small group ministry in an established church /." Theological Research Exchange Network (TREN), 1997. http://www.tren.com.
Full textHarris, Julianne S. "On the mod 2 general linear group homology of totally real number rings /." Thesis, Connect to this title online; UW restricted, 1997. http://hdl.handle.net/1773/5812.
Full textSzabo, Steve. "Convolutional Codes with Additional Structure and Block Codes over Galois Rings." Ohio University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1257792383.
Full textKöster, Iris [Verfasser], and Wolfgang [Akademischer Betreuer] Kimmerle. "Sylow numbers in character tables and integral group rings / Iris Köster ; Betreuer: Wolfgang Kimmerle." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2017. http://d-nb.info/1130148572/34.
Full textBächle, Andreas [Verfasser], and Wolfgang [Akademischer Betreuer] Kimmerle. "On torsion subgroups and their normalizers in integral group rings / Andreas Bächle. Betreuer: Wolfgang Kimmerle." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2013. http://d-nb.info/1029460787/34.
Full textLong, Jane Holsapple. "The cohomology rings of the special affine group of Fp^2 and of PSL(3,p)." College Park, Md.: University of Maryland, 2008. http://hdl.handle.net/1903/8458.
Full textThesis research directed by: Dept. of Mathematics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Gandhi, Raj. "Oriented Cohomology Rings of the Semisimple Linear Algebraic Groups of Ranks 1 and 2." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42566.
Full textSommerhäuser, Yorck. "Yetter-Drinfel'd-Hopf algebras over groups of prime order /." Berlin [u.a.] : Springer, 2002. http://www.loc.gov/catdir/enhancements/fy0817/2002070799-d.html.
Full textPitt, Melanie A. 1980. "Main group supramolecular coordination chemistry: Design strategies and dynamic assemblies." Thesis, University of Oregon, 2009. http://hdl.handle.net/1794/10287.
Full textMain group supramolecular chemistry is a rapidly expanding field that combines the tools of coordination chemistry with the unusual and frequently unexpected coordination preferences exhibited by the main group elements. Application of established supramolecular design principles to those elements provides access to novel structure types and the possibility of new functionality introduced by the rich chemistry of the main group. Chapter I is a general review of the field of main group supramolecular chemistry, focusing in particular on the aspects of coordination chemistry and rational design strategies that have been thus far used to prepare polynuclear "metal"-ligand assemblies. Chapter II is a discussion of work toward supramolecular assemblies based on the coordination preferences of lead(II), in particular focusing on the 2-mercaptoacetamide and arylthiolate functionalities to target four-coordinate and three-coordinate geometries, respectively. Several possible avenues for further pursuing this research are suggested, with designs for ligands that may provide a more fruitful approach to the coordination of lead(II). Chapter III deals with the preparation of As 2 L 3 assemblies based on flexible ligand scaffolds. These assemblies exhibit structural changes in response to temperature and solvent, which may provide some insight into the subtle shape requirements involved in supramolecular guest binding. Chapter IV continues this work with an examination of how ligand structure affects mechanical coupling of stereochemistry between metal centers when the chelate ring is completed by a secondary bonding interaction such as the As-π contact. Finally, Chapter V presents a crystallographic and synthetic study of the nature of the interaction between pnictogens and arene rings. This interaction is ubiquitous in the coordination chemistry performed in the Johnson laboratory; understanding the role these interactions play in determining the final structure of supramolecular assemblies is vital to the preparation of more complex structures. Chapter VI presents a set of conclusions and outlook for future work on lead(II) supramolecular assemblies and the dynamic assemblies prepared from flexible organic scaffolds. This dissertation contains previously published and coauthored material.
Committee in charge: Kenneth Doxsee, Chairperson, Chemistry; Darren Johnson, Advisor, Chemistry; David Tyler, Member, Chemistry; Victoria DeRose, Member, Chemistry; Stephen Remington, Outside Member, Physics
Iwaki, Edson Ryoji Okamoto. "Unidades Hipercentrais em Anéis de Grupo." Universidade de São Paulo, 2000. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-20052007-112821/.
Full textA great deal of problems in Group Rings centralize around the study of its group of units. Hence it becomes important to know the structure of the group of units U(ZG). But with a few exceptions, we do not have much information about its structure. Trying to obtain more information about the structure of U(ZG), we could, for example, study the upper central series of U(ZG). In case G is finite, a result of Gruenberg implies that U(ZG) has finite central height. This fact allow us to study the hypercenter of U(ZG). In order to obtain more information about the hypercentral units of U(ZG) we need a description of the torsion subgroup of the hypercenter of U(ZG) which is provided by results of Bovdi on periodic normal subgroups of U(ZG). Gruenberg\'s result suscites some questions which we will try to answer in this work. Among them: The upper bound for the upper central serie of U(ZG) depends on of the group G? How could we determine the central height of U(ZG)? It is interesting to see how we could obtain an estimative for the central height of U(ZG) using the Normalizer Conjecture. All these questions are answered in chapter 4, as a consequence of Arora, Hales and Passi\'s work which guarantees us that in this case the central height of U(ZG) is at most 2. Nevertheless this result of Arora, Hales and Passi doesn\'t use the Normalizer Conjecture, we suppose here that the Normalizer Conjecture holds and used a result of Gross to obtain estimatives to the central height of U(ZG). Our aim was to connect the question discussed ahead with a intensive research problem, the Normalizer Conjecture. This arises the following question: For which groups does U(ZG) have central height exactly 0, 1 or 2? This question is also answered by Arora, Hales and Passi. Finally, another result of Arora, Hales and Passi present us a characterization of the hypercenter of U(ZG), which surprisingly satisfies the condition presented in the Normalizer Conjecture. It is interesting to observe here the appearing of Normalizer Conjecture to obtain an estimative for the central height of U(ZG) and to obtain a characterization of the hypercenter of U(ZG). In chapter 5 we present a result of Li which generalizes the result of Arora, Hales and Passi to the case when G is a periodic group. He proves that the central height of U(ZG) is also at most 2. Introducing the concept of n-center he was able to use the results about the hypercenter of U(ZG) to obtain a characterization of the n-center of U(ZG).
Pallekonda, Seshendra. "Bounded category of an exact category." Diss., Online access via UMI:, 2008.
Find full text