Academic literature on the topic 'Underwater Vision Profiler 6 (UVP6)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Underwater Vision Profiler 6 (UVP6).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Underwater Vision Profiler 6 (UVP6)"

1

Kiko, Rainer, Marc Picheral, David Antoine, Marcel Babin, Léo Berline, Tristan Biard, Emmanuel Boss, et al. "A global marine particle size distribution dataset obtained with the Underwater Vision Profiler 5." Earth System Science Data 14, no. 9 (September 22, 2022): 4315–37. http://dx.doi.org/10.5194/essd-14-4315-2022.

Full text
Abstract:
Abstract. Marine particles of different nature are found throughout the global ocean. The term “marine particles” describes detritus aggregates and fecal pellets as well as bacterioplankton, phytoplankton, zooplankton and nekton. Here, we present a global particle size distribution dataset obtained with several Underwater Vision Profiler 5 (UVP5) camera systems. Overall, within the 64 µm to about 50 mm size range covered by the UVP5, detrital particles are the most abundant component of all marine particles; thus, measurements of the particle size distribution with the UVP5 can yield important information on detrital particle dynamics. During deployment, which is possible down to 6000 m depth, the UVP5 images a volume of about 1 L at a frequency of 6 to 20 Hz. Each image is segmented in real time, and size measurements of particles are automatically stored. All UVP5 units used to generate the dataset presented here were inter-calibrated using a UVP5 high-definition unit as reference. Our consistent particle size distribution dataset contains 8805 vertical profiles collected between 19 June 2008 and 23 November 2020. All major ocean basins, as well as the Mediterranean Sea and the Baltic Sea, were sampled. A total of 19 % of all profiles had a maximum sampling depth shallower than 200 dbar, 38 % sampled at least the upper 1000 dbar depth range and 11 % went down to at least 3000 dbar depth. First analysis of the particle size distribution dataset shows that particle abundance is found to be high at high latitudes and in coastal areas where surface productivity or continental inputs are elevated. The lowest values are found in the deep ocean and in the oceanic gyres. Our dataset should be valuable for more in-depth studies that focus on the analysis of regional, temporal and global patterns of particle size distribution and flux as well as for the development and adjustment of regional and global biogeochemical models. The marine particle size distribution dataset (Kiko et al., 2021) is available at https://doi.org/10.1594/PANGAEA.924375.
APA, Harvard, Vancouver, ISO, and other styles
2

Picheral, Marc, Camille Catalano, Denis Brousseau, Hervé Claustre, Laurent Coppola, Edouard Leymarie, Jérôme Coindat, et al. "The Underwater Vision Profiler 6: an imaging sensor of particle size spectra and plankton, for autonomous and cabled platforms." Limnology and Oceanography: Methods 20, no. 2 (December 23, 2021): 115–29. http://dx.doi.org/10.1002/lom3.10475.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Panaïotis, Thelma, Antoine Poteau, Émilie Diamond Riquier, Camille Catalano, Lucas Courchet, Solène Motreuil, Laurent Coppola, Marc Picheral, and Jean‐Olivier Irisson. "Temporal evolution of plankton and particles distribution across a mesoscale front during the spring bloom." Limnology and Oceanography, April 22, 2024. http://dx.doi.org/10.1002/lno.12566.

Full text
Abstract:
AbstractThe effect of mesoscale features on the distribution of planktonic organisms are well documented. Yet, the interaction between these spatial features and the temporal scale, which can result in sudden increases of the planktonic biomass, is less known and not described at high resolution. A permanent mesoscale front in the Ligurian Sea (north‐western Mediterranean) was repeatedly sampled between January and June 2021 using a SeaExplorer glider equipped with an Underwater Vision Profiler 6 (UVP6), a versatile in situ imager. Both plankton and particle distributions were resolved throughout the spring bloom to assess whether the front was a location of increased zooplankton concentration and whether it constrained particle distribution. Over the 5 months, the glider performed more than 5000 dives and the UVP6 collected 1.1 million images. We focused our analysis on shallow (300 m) transects, which gave a horizontal resolution of 900 m. About 13,000 images of planktonic organisms were retained. Ordination methods applied to particles and plankton concentrations revealed strong temporal variations during the bloom, with a succession of various zooplankton communities. Changes in particle abundance and size could be explained by changes in the plankton community. The front had a strong influence on particle distribution, while the signal was not as clear for plankton, probably because of the relatively small number of imaged organisms. This work confirms the need to sample both plankton and particles at fine scale to understand their interactions, a task for which automated in situ imaging is particularly adapted.
APA, Harvard, Vancouver, ISO, and other styles
4

Llopis Monferrer, Natalia, Tristan Biard, Miguel M. Sandin, Fabien Lombard, Marc Picheral, Amanda Elineau, Lionel Guidi, Aude Leynaert, Paul J. Tréguer, and Fabrice Not. "Siliceous Rhizaria abundances and diversity in the Mediterranean Sea assessed by combined imaging and metabarcoding approaches." Frontiers in Marine Science 9 (October 10, 2022). http://dx.doi.org/10.3389/fmars.2022.895995.

Full text
Abstract:
Siliceous Rhizaria (polycystine radiolarians and phaeodarians) are significant contributors to carbon and silicon biogeochemical cycles. Considering their broad taxonomic diversity and their wide size range (from a few micrometres up to several millimetres), a comprehensive evaluation of the entire community to carbon and silicon cycles is challenging. Here, we assess the diversity and contribution of silicified Rhizaria to the global biogenic silica stocks in the upper 500 m of the oligotrophic North-Western Mediterranean Sea using both imaging (FlowCAM, Zooscan and Underwater Vision Profiler) and molecular tools and data. While imaging data (cells m-3) revealed that the most abundant organisms were the smallest, molecular results (number of reads) showed that the largest Rhizaria had the highest relative abundances. While this seems contradictory, relative abundance data obtained with molecular methods appear to be closer to the total biovolume data than to the total abundance data of the organisms. This result reflects a potential link between gene copies number and the volume of a given cell allowing reconciling molecular and imaging data. Using abundance data from imaging methods we estimate that siliceous Rhizaria accounted for up to 6% of the total biogenic silica biomass of the siliceous planktonic community in the upper 500m of the water column.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Underwater Vision Profiler 6 (UVP6)"

1

Ricour, Florian. "Towards a new insight of the carbon transport in the global ocean." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS191.

Full text
Abstract:
L'océan est connu pour jouer un rôle clé dans le cycle du carbone. Sans lui, les niveaux de CO2 atmosphérique seraient bien plus élevés qu'aujourd'hui grâce à la présence de pompes à carbone qui maintiennent un gradient de carbone inorganique dissous (DIC) entre la surface et le fond de l'océan. La pompe à carbone biologique (BCP) est principalement responsable de ce gradient. Elle consiste en une série de processus océaniques au cours desquels le carbone inorganique est converti en matière organique via la photosynthèse dans les eaux de surface, puis transporté vers l'intérieur de l'océan et éventuellement les sédiments où il sera séquestré par rapport à l'atmosphère pour des millions d'années. La BCP était longtemps considérée comme étant uniquement la déposition gravitationnelle de carbone organique particulaire (POC). Cependant, un nouveau paradigme pour la BCP a récemment été défini dans lequel des pompes d’origine physique et biologique d'injection de particules ont été ajoutées à la définition originale. Les pompes physiques d'injection de particules fournissent un moyen de mieux comprendre le transport de carbone organique dissous (DOC), tandis que les pompes biologique d'injection de particules se concentrent sur le transport de POC par des animaux migrant verticalement, quotidiennement ou saisonnièrement. Par conséquent, une meilleure compréhension de ces processus pourrait aider à combler l'écart entre le carbone quittant la surface et la demande de carbone dans l'océan profond. Pour aborder ce nouveau paradigme, ce travail bénéficiera de l'arrivée de capteurs récents équipant une nouvelle génération de flotteurs Biogéochimiques-Argo (BGC-Argo). La première partie se concentre sur le développement d'un modèle embarqué de classification de zooplancton pour l’Underwater Vision Profiler 6 (UVP6) avec des contraintes techniques et énergétiques strictes. La deuxième partie étudie les flux de particules et de carbone dans la mer du Labrador en utilisant des flotteurs BGC-Argo équipés pour la première fois de l'UVP6 et d'un piège à sédiments optique (OST), fournissant deux mesures indépendantes des particules. La dernière partie consiste à revisiter la BCP en utilisant un nouveau cadre appelé CONVERSE qui fait référence à la séquestration verticale continue du carbone dans la colonne d'eau. Avec cette nouvelle approche, nous réévaluons le carbone total séquestré par rapport à l'atmosphère (> 100 ans) par la BCP et ses voies de transport sur toute la colonne d'eau, par opposition à la séquestration de carbone généralement supposée en-dessous d'une profondeur de référence fixe
The ocean is known to play a key role in the carbon cycle. Without it, atmospheric CO2 levels would be much higher than what they are today thanks to the presence of carbon pumps that maintain a gradient of dissolved inorganic carbon (DIC) between the surface and the deep ocean. The biological carbon pump (BCP) is primarily responsible for this gradient. It consists in a series of ocean processes through which inorganic carbon is fixed as organic matter by photosynthesis in sunlit surface waters and then transported to the ocean interior and possibly the sediment where it will be sequestered from the atmosphere for millions of years. The BCP was long thought as solely the gravitational settling of particulate organic carbon (POC). However, a new paradigm for the BCP has recently been defined in which physically and biologically mediated particle injection pumps have been added to the original definition. Physically mediated particle injection pumps provide a pathway to better understand the transport of dissolved organic carbon (DOC) whereas biologically mediated particle injection pumps focus on the transport of POC by vertically migrating animals, either daily or seasonally. Therefore, a better understanding of these processes could help bridge the gap between carbon leaving the surface and carbon demand in the ocean interior. To address this new paradigm, this work will benefit from the advent of recent sensors that equip a new generation of Biogeochemical-Argo floats (BGC-Argo). The first part focuses on the development of an embedded zooplankton classification model for the Underwater Vision Profiler 6 (UVP6) under strict technical and energy constraints. The second part studies particle and carbon fluxes in the Labrador Sea using BGC-Argo floats equipped for the first time with the UVP6 and an optical sediment trap (OST), providing two independent measurements of sinking particles. The last part consists in revisiting the BCP using a new framework called CONVERSE for Continuous Vertical Sequestration. With this new approach, we re-evaluate the total carbon sequestered from the atmosphere (> 100 years) by the BCP and its transport pathways on the entire water column, in contrast to the carbon sequestration typically assumed below a fixed reference depth
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography