Academic literature on the topic 'Underhood flow'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Underhood flow.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Underhood flow"

1

Lukeman, Yusoff, Fang Yau Lim, Shahrir Abdullah, Zulkifli R., A. Shamsudeen, and Mohammad Khatim Hasan. "Underhood Fluid Flow and Thermal Analysis for Passenger Vehicle." Applied Mechanics and Materials 165 (April 2012): 150–54. http://dx.doi.org/10.4028/www.scientific.net/amm.165.150.

Full text
Abstract:
The present paper reports a simulation study of the fluid flow and thermal phenomena in the passenger vehicle underhood compartment by analysing velocity magnitude, temperature, radiator heat transfer rate and heat transfer efficiency. Analyses are carried out on a half cut passenger vehicle sample model by using commercial computational fluid dynamics (CFD) software, Star CCM+. Total volume meshes of the model are 24 451 759 cells, and the speed of the car is 0.036, 40, 70, 110, 130 and 213 km/h. Investigation are performed for three dimensional conditions, steady state gas with segregated flow, constant density, turbulence flow, with the use of the Reynolds-Averaged Navier-Stokes model and the K-Epsilon turbulence model. In the thermal analysis, particular attention is given to find hot spot locations under the hood. . High temperature region is observed at the right side of the hood (from the top of view) due primary heat sources from the engine. An air intake at hood is introduced in order to facilitate the airflow to engine room and to remove hot spot to the atmosphere. It is shown that the underhood average temperature decreases by 26.2% and the average airflow velocity at section plane of the centreline increases by 14.5% by adding this air intake.
APA, Harvard, Vancouver, ISO, and other styles
2

Chaudhari, Parag, Jose Magalhaes, and Aparna Salunkhe. "Two-step computational aeroacoustics approach for underhood cooling fan application." INTER-NOISE and NOISE-CON Congress and Conference Proceedings 263, no. 3 (August 1, 2021): 3615–24. http://dx.doi.org/10.3397/in-2021-2467.

Full text
Abstract:
Aeroacoustic noise is one of the important characteristics of the fan design. Computational Aeroacoustics (CAA) can provide better design options without relying on physical prototypes and reduce the development time and cost. There are two ways of performing CAA analysis; one-step and two-step approach. In one-step CAA, air flow and acoustic analysis are carried out in a single software. In two-step approach, air flow and acoustic analysis are carried out in separate software. Two-step CAA approach can expedite the calculation process and can be implemented in larger and complex domain problems. For the work presented in this paper, a mockup of an underhood cooling fan was designed. The sound pressure levels were measured for different installation configurations. The sound pressure level for one of the configurations was calculated with two-step approach and compared with test data. The compressible fluid flow field was first computed in a commercially available computational fluid dynamics software. This flow field was imported in a separate software where fan noise sources were computed and further used to predict the sound pressure levels at various microphone locations. The results show an excellent correlation between test and simulation for both tonal and broadband components of the fan noise.
APA, Harvard, Vancouver, ISO, and other styles
3

Huang, K. D., and S. C. Tzeng. "Optimization of size of vehicle and flow domain for underhood airflow simulation." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 218, no. 9 (September 2004): 945–51. http://dx.doi.org/10.1243/0954407041856728.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Kuo-Huey, James Johnson, Parviz Merati, and Charles Davis. "Numerical Investigation of Buoyancy-Driven Flow in a Simplified Underhood with Open Enclosure." SAE International Journal of Passenger Cars - Mechanical Systems 6, no. 2 (April 8, 2013): 805–16. http://dx.doi.org/10.4271/2013-01-0842.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Öztürk, İlhan, Cenk Çetin, and Mehmet Metin Yavuz. "Effect of fan and shroud configurations on underhood flow characteristics of an agricultural tractor." Engineering Applications of Computational Fluid Mechanics 13, no. 1 (January 1, 2019): 506–18. http://dx.doi.org/10.1080/19942060.2019.1617192.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bolehovský, Ondřej, and Jan Novotný. "Influence of Underhood Flow on Engine Cooling Using 1-D And 3-D Approach." Journal of Middle European Construction and Design of Cars 13, no. 3 (December 1, 2015): 24–32. http://dx.doi.org/10.1515/mecdc-2015-0012.

Full text
Abstract:
Shrnutí Tato prace se zabyva numerickou simulaci kompletniho systemu chlazeni spalovaciho motoru (GT-SUITE), ktera zahrnuje i simulaci prouděni v motorovem prostoru pomoci vypočetně nenaročne simulace. Podrobny model spalovaciho motoru je rozšiřen o model chladiciho okruhu a ten je pote spojen se zjednodušenym modelem motoroveho prostoru, ktery je pomoci aplikace GT-COOL vytvořen jako 3-D model a pote přeložen do 1-D podoby. Ve dvou ustalenych režimech odpovidajicich různe rychlosti jizdy vozidla a zatiženi motoru byly zkoumany přistupy pomoci 1-D řešeni řazeni tepelnych vyměniků a zminěneho 3-D přistupu využivajici model motoroveho prostoru. Tyto simulace prokazaly nevhodnost 1-D přistupu při řešeni prouděni na tepelnych vyměnicich v motorovem prostoru a pomohly prozkoumat relativně nenaročnou metodu simulace prouděni v motorovem prostoru, ktera umožňuje podchytit vzajemnou interakci mezi modely chladiciho systemu a spalovaciho motoru a problematiku řazeni tepelnych vyměniku v motorovem prostoru.
APA, Harvard, Vancouver, ISO, and other styles
7

Khaled, Mahmoud, Fabien Harambat, and Hassan Peerhossaini. "Temperature and Heat Flux Behavior of Complex Flows in Car Underhood Compartment." Heat Transfer Engineering 31, no. 13 (November 2010): 1057–67. http://dx.doi.org/10.1080/01457631003640321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Khaled, Mahmoud, Charbel Habchi, Fabien Harambat, Ahmed Elmarakbi, and Hassan Peerhossaini. "Leakage effects in car underhood aerothermal management: temperature and heat flux analysis." Heat and Mass Transfer 50, no. 10 (April 22, 2014): 1455–64. http://dx.doi.org/10.1007/s00231-014-1347-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ou, Jia-Jie, Li-Fu Li, Tao Cui, and Zi-Ming Chen. "Application of field synergy principle to analysis of flow field in underhood of LPG bus." Computers & Fluids 103 (November 2014): 186–92. http://dx.doi.org/10.1016/j.compfluid.2014.07.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lu, Pengyu, Qing Gao, Liang Lv, Xiaoye Xue, and Yan Wang. "Numerical Calculation Method of Model Predictive Control for Integrated Vehicle Thermal Management Based on Underhood Coupling Thermal Transmission." Energies 12, no. 2 (January 15, 2019): 259. http://dx.doi.org/10.3390/en12020259.

Full text
Abstract:
The nonlinear model predictive control (NMPC) controller is designed for an engine cooling system and aims to control the pump speed and fan speed according to the thermal load, vehicle speed, and ambient temperature in real time with respect to the coolant temperature and comprehensive energy consumption of the system, which serve as the targets. The system control model is connected to the underhood computational fluid dynamics (CFD) model by the coupling thermal transmission equation. For the intricate thermal management process predictive control and system control performance analysis, a coupling multi-thermodynamic system nonlinear model for integrated vehicle thermal management was established. The concept of coupling factor was proposed to provide the boundary conditions considering the thermal transmission interaction of multiple heat exchangers for the radiator module. Using the coupling factor, the thermal flow influence of the structural characteristics in the engine compartment was described with the lumped parameter method, thereby simplifying the space geometric feature numerical calculation. In this way, the coupling between the multiple thermodynamic systems mathematical model and multidimensional nonlinear CFD model was realized, thereby achieving the simulation and analysis of the integrated thermal management multilevel cooperative control process based on the underhood structure design. The research results indicated an excellent capability of the method for integrated control analysis, which contributed to solving the design, analysis, and optimization problems for vehicle thermal management. Compared to the traditional engine cooling mode, the NMPC thermal management scheme clearly behaved the better temperature controlling effects and the lower system energy consumption. The controller could further improve efficiency with reasonable coordination of the convective thermal transfer intensity between the liquid and air sides. In addition, the thermal transfer structures in the engine compartment could also be optimized.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Underhood flow"

1

Van, Zyl Josebus Maree. "Numerical modeling and experimental investigation of the flow and thermal processes in a motor car vehicle underhood." Thesis, Link to the online version, 2006. http://hdl.handle.net/10019/1281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ng, Eton Yat-Tuen, and eton_ng@hotmail com. "Vehicle engine cooling systems: assessment and improvement of wind-tunnel based evaluation methods." RMIT University. Aerospace, Mechanical and Manufacturing Engineering, 2002. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080422.100014.

Full text
Abstract:
The high complexity of vehicle front-end design, arising from considerations of aerodynamics, safety and styling, causes the airflow velocity profile at the radiator face to be highly distorted, leading to potentially reduced airflow volume for heat dissipation. A flow visualisation study showed that the bumper bar significantly influenced the cooling airflow, leading to three-dimensional vortices in its wake and generating an area of relatively low velocity across at least one third of the radiator core. Since repeatability and accuracy of on-road testing are prejudiced by weather conditions, wind-tunnel testing is often preferred to solve cooling airflow problems. However, there are constraints that limit the accuracy of reproducing on-road cooling performance from wind-tunnel simulations. These constraints included inability to simulate atmospheric conditions, limited tunnel test section sizes (blockage effects) and lack of ground effect simulations. The work presented in this thesis involved use of on-road and wind-tunnel tests to investigate the effects of most common constraints present in wind tunnels on accuracy of the simulations of engine cooling performance and radiator airflow profiles. To aid this investigation, an experimental technique for quantifying radiator airflow velocity distribution and an analytical model for predicting the heat dissipation rate of a radiator were developed. A four-hole dynamic pressure probe (TFI Cobra probe) was also used to document flow fields in proximity to a section of radiator core in a wind tunnel in order to investigate the effect of airflow maldistribution on radiator heat-transfer performance. In order to cope with the inability to simulate ambient temperature, the technique of Specific Dissipation (SD) was used, which had previously been shown to overcome this problem.
APA, Harvard, Vancouver, ISO, and other styles
3

Jameel, Syed Mohd Saad. "Turbulence modelling of mixed and natural convection regimes in the context of the underhood-space of automobiles." Thesis, Pau, 2020. http://www.theses.fr/2020PAUU3033.

Full text
Abstract:
Le sujet de cette thèse concerne la modélisation de la turbulence des écoulements influencés par la flottabilité, qui émanent de l’interaction de la force gravitationnelle avec une différence de densité. Cette étude est motivée par des problématiques rencontrées par le groupe PSA dans la simulation des écoulements de convection naturelle dans le compartiment moteur des véhicules.L’objectif principal de ce travail est de tester plusieurs modéles pour prendre en compte la flottabilité et de proposer des améliorations efficaces qui pourraient fournir un modèle applicable aux écoulements engendrés par la flottabilité. En outre, ces modifications doivent pouvoir être mises en œuvre dans le code Ansys Fluent pour le calcul des écoulements de convection naturelle dans les problèmes typiques cités ci-dessus. Dans le cadre de cet objectif, nous avons adapté trois modèles à viscosité turbulente aux effets de la flottabilité. La première approche qui offre le meilleur cadre physique implique l’extension des lois de comportement pour le tenseur de Reynolds et le flux thermique turbulent de manière linéaire, pour tenir compte de l’influence anisotrope de la flottabilité.Cette approche, appliquée à trois modèles différents, permet d’améliorer considérablement les résultats en reproduisant l’écoulement moyen et les quantités turbulentes. Dès lors, on se rend compte que cette approche conduit à des améliorations significatives en terme de physique.De plus, on observe que l’utilisation d’une approche simplifée d’hypothèse de diffusion par simple gradient “SGDH” pour modéliser le terme source de flottabilité conduit à une sous-estimation de l’effet de la flottabilité sur la turbulence. En outre, la comparaison avec les données de la simulation numérique directe (DNS) montre que l’hypothèse de diffusion par gradient généralisé “GGDH” donne de meilleures prédictions de l’écoulement moyen et du champ de température. Un autre aspect abordé dans ce travail concerne la sensibilité au modéle du terme de production par flottabilité dans l’equation de ε ou ω. Après une analyse détaillée, on constate que les résultats sont trés sensibles à ce terme et que la valeur optimale du coefficient est liée au choix du modèle de turbulence. Pour éviter cette sensibilité, on utilise une autre expression du terme source pour la modélisation de la flottabilité dans les équations de ε du ω qui tient compte du nombre de Richardson de flux et on observe une amélioration de la prédiction des profils moyens.Trois régimes différents d’écoulements sont étudiés, à savoir les régimes de convection forcée, mixte et naturelle. Parmi ceux-ci, la configuration de canal vertical différentiellement chauffé est considérée pour développer le modèle adapté à la flottabilité. C’est celle qui pose le plus grand défi pour les modèles à viscosité turbulente. Ces études ont abouti à la proposition d’une forme plus physique et simplifiée de modèles adaptés à la flottabilité, qui est considérée comme le meilleur compromis entre la précision physique et la stabilité numérique pour des écoulements induits par la flottabilité.Ces modèles sensiblisés à la flottabilité offrent des perspectives pour étudier d’autres configurations d’écoulements de convection mixte et naturelle et ouvrent la voie à l’utilisation de ces modèles dans les simulations dans le compartiment moteur des véhicules
The subject of this thesis is the turbulence modeling of buoyancy-driven flows, which emanate through the interaction of the gravitational force with a density difference. The motivation of this investigation comes from the problem faced by the PSA group in simulating natural convection flows in the under hood space of cars.The main goal of the present investigation is to test several models to account for buoyancy and to propose effective improvements which could provide a model applicable to buoyancy-driven flows and in addition to that, can be easily implemented in the software Ansys Fluent for the computation of natural convection flows in the Underhood-space of cars.In the context of this goal, three eddy-viscosity turbulence models are sensitized to the effects of buoyancy. The first approach which offers the better physical framework involves the extension of the constitutive relations for the Reynolds stress and turbulent heat flux in a linear way, to account for the anisotropic influence of buoyancy. This approach is applied to three different models and brings in drastic improvement of the results in reproducing the mean flow and the turbulent quantities and thus it is realized that this approach leads to physically based improvements.Furthermore, it is observed that, using a simple gradient diffusion hypothesis (SGDH) approach to model the buoyancy source terms leads to underestimate the effect of buoyancy on turbulence and the comparison with the DNS data shows that the generalized gradient diffusion hypothesis (GGDH) give improved predictions of the mean flow and temperature field. Another issue addressed in this work involves the sensitiveness to the buoyancy production term in the ε or ω equations and after a detailed analysis, it is realized that the results are very sensitive to this term and the optimal value of the coefficient is linked to the choice of the turbulence model. To avoid this limitation, another expression for the model of the buoyancy source term in the ε or ω equations is applied which considers the flux Richardson number and it is observed that there is an improvement in the prediction of mean flow profiles.Three different regimes of convective flows are studied namely, forced, mixed and natural convection and the more challenging differentially heated vertical channel flow configuration which poses a major challenge to the eddy-viscosity models is considered to develop the buoyancy sensitized model. As an outcome of these studies, the more physical and simplified forms of buoyancy sensitized model are proposed which is considered as the best compromise between the physical accuracy and numerical stability for buoyancy-driven flows.These buoyancy-sensitized models provide an opportunity to investigate other buoyancy-driven flows and paves the way for these models to be applied in the under hood space simulation
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Underhood flow"

1

Collin, Christopher, Jörg Müller, Moni Islam, and Thomas Indinger. "On the Influence of Underhood Flow on External Aerodynamics of the DrivAer Model." In Progress in Vehicle Aerodynamics and Thermal Management, 201–15. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67822-1_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Merati, P., C. H. Leong, K. H. Chen, and J. P. Johnson. "Investigation of Buoyancy Driven Flow in a Simplified Full Scale Underhood – PIV and Temperature Measurements." In The Aerodynamics of Heavy Vehicles II: Trucks, Buses, and Trains, 53–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85070-0_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sofu, Tanju, Fon-Chieh Chang, Ron Dupree, Srinivas Malipeddi, Sudhindra Uppuluri, and Steven Shapiro. "Measurement and Analysis of Underhood Ventilation Air Flow and Temperatures for an Off-Road Machine." In The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains, 373–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-44419-0_34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Seider, G., and F. Bet. "Flow and thermal performance prediction for automotive accessory units and their integration into underhood CFD flow analysis with multi thermal systems." In Vehicle Thermal Management Systems Conference Proceedings (VTMS11), 209–18. Elsevier, 2013. http://dx.doi.org/10.1533/9780857094735.5.209.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Underhood flow"

1

Winnard, David, Girish Venkateswaran, and Robert E. Barry. "Underhood Thermal Management by Controlling Air Flow." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1995. http://dx.doi.org/10.4271/951013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Siqueira, Cesareo de La Rosa, and Marcello Motta. "Numerical Simulation of a Bus Underhood Flow." In SAE Brasil 2003 Congress and Exhibit. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2003. http://dx.doi.org/10.4271/2003-01-3522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Siqueira, C. R., M. Jokuszies, M. R. Lima, and P. Vatavuk. "Numerical Simulation of a Truck Underhood Flow." In SAE Brasil 2002 Congress and Exhibit. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2002. http://dx.doi.org/10.4271/2002-01-3453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Williams, J. E., J. E. Hackett, J. W. Oler, and L. Hammar. "Water Flow Simulation of Automotive Underhood Airflow Phenomena." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1991. http://dx.doi.org/10.4271/910307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Khaled, Mahmoud, Fabien Harambat, Anthony Yammine, and Hassan Peerhossaini. "Active Control of Air Flow in Vehicle Underhood Compartment: Temperature and Heat Flux Analysis." In ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-30322.

Full text
Abstract:
An experimental analysis of the aerothermal phenomena in the vehicle underhood is given using temperature measurements and separate measurements of convective and radiative heat fluxes. The vehicle underhood used for these measurements is instrumented by 120 surface and air thermocouples and 20 fluxmeters. Measurements are carried out on a passenger vehicle in wind tunnel S4 of Saint-Cyr-France for three thermal functioning conditions. In particular, it is shown for some components that outside air entering the engine compartment (for cooling the different components by convection) can in fact heat other components. This problem results from the underhood architecture, specifically the positioning of some components downstream of warmer components in the same airflow. To avoid this undesired situation, an optimized thermal management procedure is proposed that uses static and dynamic air deflectors during the constant-speed driving (rooting) phase of a vehicle. Much of the present paper is devoted to fluxmetric analysis of underhood thermal behavior (especially the absorption of convective heat flux); we also describe a new control procedure for implementing air deflectors in the actual car underhood.
APA, Harvard, Vancouver, ISO, and other styles
6

Khaled, Mahmoud, Fabien Harambat, and Hassan Peerhossaini. "Effects of Car Inclination on Air Flow and Aerothermal Behavior in the Underhood Compartment." In ASME 2008 Fluids Engineering Division Summer Meeting collocated with the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/fedsm2008-55093.

Full text
Abstract:
The study presented here concerns the impact of car inclination on the temperatures in the vehicle underhood compartment. We report here underhood thermal measurements carried out on a vehicle in wind tunnel S4 of Saint-Cyr. The underhood is instrumented by 80 surface and air thermocouples. Measurements are carried out for three thermal functioning points: the engine in operation and the front wheels positioned on the test facility with power-absorption-controlled rollers. Three car inclinations are tested.
APA, Harvard, Vancouver, ISO, and other styles
7

Li, P., G. K. Chui, J. M. Glidewell, T. H. Chue, and Ming-Chia Lai. "A Flow Network Approach to Vehicle Underhood Heat Transfer Problem." In Vehicle Thermal Management Systems Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1993. http://dx.doi.org/10.4271/931073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kumar, Vivek, Sangeet Kapoor, Gyan Arora, Sandip K. Saha, and Pradip Dutta. "A Combined CFD and Flow Network Modeling Approach for Vehicle Underhood Air Flow and Thermal Analysis." In SAE World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2009. http://dx.doi.org/10.4271/2009-01-1150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Juan, Tim. "Investigation and Assessment of Factors Affecting the Underhood Cooling Air Flow Using CFD." In Commercial Vehicle Engineering Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2008. http://dx.doi.org/10.4271/2008-01-2658.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Kuo-Huey, Jim Johnson, P. Merati, N. J. Cooper, and C. H. Leong. "Investigation of the Buoyancy Driven Flow in a Simplified Underhood - Part II, Numerical Study." In SAE 2006 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2006. http://dx.doi.org/10.4271/2006-01-1607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography