Academic literature on the topic 'Underground thermal storage'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Underground thermal storage.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Underground thermal storage"
Barros-Enriquez, Jose David, Milton Ivan Villafuerte Lopez, Angel Moises Avemañay Morocho, and Edgar Gabriel Valencia Rodriguez. "Design of a cooling system from underground thermal energy storage (UTES, Underground) Thermal Energy Storage) based on experimental results." Brazilian Journal of Development 10, no. 1 (January 11, 2024): 873–84. http://dx.doi.org/10.34117/bjdv10n1-056.
Full textGonet, Andrzej, Tomasz Śliwa, Daniel Skowroński, Aneta Sapińska-Śliwa, and Andrzej Gonet. "Rock mass thermal analysis in underground thermal energy storage (UTES)." AGH Drilling,Oil,Gas 29, no. 2 (2012): 375. http://dx.doi.org/10.7494/drill.2012.29.2.375.
Full textNhut, Le Minh, Waseem Raza, and Youn Cheol Park. "A Parametric Study of a Solar-Assisted House Heating System with a Seasonal Underground Thermal Energy Storage Tank." Sustainability 12, no. 20 (October 20, 2020): 8686. http://dx.doi.org/10.3390/su12208686.
Full textGonzalez-Ayala, J., C. Sáez Blázquez, S. Lagüela, and I. Martín Nieto. "Assesment for optimal underground seasonal thermal energy storage." Energy Conversion and Management 308 (May 2024): 118394. http://dx.doi.org/10.1016/j.enconman.2024.118394.
Full textJin, Guolong, Xiongyao Xie, Pan Li, Hongqiao Li, Mingrui Zhao, and Meitao Zou. "Fluid-Solid-Thermal Coupled Freezing Modeling Test of Soil under the Low-Temperature Condition of LNG Storage Tank." Energies 17, no. 13 (July 2, 2024): 3246. http://dx.doi.org/10.3390/en17133246.
Full textJones, Frank E. "LIMITATIONS ON UNDERGROUND STORAGE TANK LEAK DETECTION SYSTEMS." International Oil Spill Conference Proceedings 1989, no. 1 (February 1, 1989): 3–5. http://dx.doi.org/10.7901/2169-3358-1989-1-3.
Full textSipkova, Veronika, Jiri Labudek, and Otakar Galas. "Low Energy Source Synthetic Thermal Energy Storage (STES)." Advanced Materials Research 899 (February 2014): 143–46. http://dx.doi.org/10.4028/www.scientific.net/amr.899.143.
Full textTutumlu, Hakan, Recep Yumrutaş, and Murtaza Yildirim. "Investigating thermal performance of an ice rink cooling system with an underground thermal storage tank." Energy Exploration & Exploitation 36, no. 2 (August 31, 2017): 314–34. http://dx.doi.org/10.1177/0144598717723644.
Full textZhou, Xuezhi, Yujie Xu, Xinjing Zhang, Dehou Xu, Youqiang Linghu, Huan Guo, Ziyi Wang, and Haisheng Chen. "Large scale underground seasonal thermal energy storage in China." Journal of Energy Storage 33 (January 2021): 102026. http://dx.doi.org/10.1016/j.est.2020.102026.
Full textBeaufait, Robert, Willy Villasmil, Sebastian Ammann, and Ludger Fischer. "Techno-Economic Analysis of a Seasonal Thermal Energy Storage System with 3-Dimensional Horizontally Directed Boreholes." Thermo 2, no. 4 (December 16, 2022): 453–81. http://dx.doi.org/10.3390/thermo2040030.
Full textDissertations / Theses on the topic "Underground thermal storage"
Tomasetta, Camilla <1983>. "Life Cycle Assessment of Underground Thermal Energy Storage Systems: Aquifer Thermal Energy Storage verus Borehole Thermal Energy Storage." Master's Degree Thesis, Università Ca' Foscari Venezia, 2013. http://hdl.handle.net/10579/3476.
Full textSweet, Marshall. "Numerical Simulation of Underground Solar Thermal Energy Storage." VCU Scholars Compass, 2010. http://scholarscompass.vcu.edu/etd/2322.
Full textHe, Miaomiao. "Analysis of underground thermal energy storage systems with ground water advection in subtropical regions." Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/hkuto/record/B38642761.
Full textHe, Miaomiao, and 何苗苗. "Analysis of underground thermal energy storage systems with ground water advection in subtropical regions." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B38642761.
Full textNaser, Mohammad Yousef Mousa. "Computer Modeling of Solar Thermal System with Underground Storage Tank for Space Heating." Wright State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=wright1620875130064807.
Full textLeem, Junghun. "Micromechanical fracture modeling on underground nuclear waste storage: Coupled mechanical, thermal, and hydraulic effects." Diss., The University of Arizona, 1999. http://hdl.handle.net/10150/284062.
Full textBERLIN, DANIEL, and MARCUS DINGLE. "Investment framework for large scale underground thermal energy storage : A qualitative study of district heating companies in Sweden." Thesis, KTH, Energiteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-212070.
Full textDe nuvarande miljöförändringar som världen står inför ställer krav på värmemarknaden att förändras till ökad användning av förnybara energikällor som bränsle. Fjärrvärme ses som en effektiv lösning för att åstadkomma detta i tätbebyggelse. Termiska energilager (TES) ses som en lösning för att hantera den ökande mängden intermittenta energikällor i energisystemet. För den svenska fjärrvärmen ses ett storskaligt underjordiskt TES (UTES) som en intressant lösning dels av denna anledning dels för att öka användningen av restvärme och värmen från underutnyttjade produktionsanläggningar. Hursomhelst så innebär den nuvarande komplexiteten att investera i storskalig UTES att utvecklingen för fjärrvärme begränsas. Syftet med denna rapport är därför att fylla den kunskapslucka som existerar gällande faktorer att analysera för en investering i ett storskaligt UTES. Ett investeringsramverk presenteras för att användas som beslutsunderlag för huvudsakligen beslutsfattare inom fjärrvärmeverksamheten, men som även kan vara av intresse för andra intressenter i fjärrvärmesystemet. De huvudsakliga upptäckterna från denna rapport är att det existerar nödvändiga förutsättningar för en investering i storskalig UTES och att kriterierna för utvärdering av en investering i storskalig UTES antingen är relaterade till ekonomi eller miljö. Vidare så är den huvudsakliga funktionen av ett storskaligt UTES säsongslagring eftersom denna funktion skapar lejonparten av inkomsten. Inkomsten skapas genom lagring av billig värme under perioder av låg efterfrågan på värme som ersätter dyr spetsproduktion under perioder av hög efterfrågan på värme. Beroende på storleken av den skapade inkomsten så kan ett storskaligt UTES potentiellt klara kravet på att vara lönsamt. Hursomhelst så visar denna rapport på att andra faktorer troligen också behöver tas hänsyn till för att ett storskaligt UTES ska bli lönsamt. Trots att det är nödvändigt så gör den osäkra framtiden för fjärrvärme det svårt att utvärdera en investering i storskalig UTES. Rekommendationerna för framtida studier fokuserar därför på att begränsa dessa osäkerheter genom ytterligare vetenskapligt stöd.
Bourhaleb, Houssine. "Etude et expérimentation d'une chaîne énergétique solaire avec capteur à air, stockage thermique souterrain et récupération par pompe à chaleur." Valenciennes, 1987. https://ged.uphf.fr/nuxeo/site/esupversions/69924e8c-5370-4c55-aef3-3e377d2fa6a1.
Full textBaudoin, André. "Stockage intersaisonnier de chaleur dans le sol par batterie d'echangeurs baionnette verticaux : modele de predimensionnement." Reims, 1988. http://www.theses.fr/1988REIMS004.
Full textSevi, Fébron Lionel Prince. "Étude numérique et expérimentale d'un système de valorisation de l'énergie solaire thermique des routes pour les besoins des bâtiments." Electronic Thesis or Diss., Chambéry, 2024. http://www.theses.fr/2024CHAMA005.
Full textReducing greenhouse gas emissions from fossil fuels combined with increasing global energy demand represents a major challenge for humanity. We will not be able to solve it without massive recourse to renewable energies. Solar energy is one of the most abundant and available forms of renewable energy. Various techniques are used to harness this energy, such as photovoltaic solar panels for electricity production and solar thermal collectors for heat production. Recently, another approach has emerged, that of asphalt solar collector, offering both transport infrastructure and solar energy capture capacities. In this context, this thesis proposes the study and development of a system energetically coupling a roadway to a building via thermal storage. The concept is based on recovering heat from the roadway during hot periods, via a heat transfer fluid circulating in a draining road surface placed under the wearing course. This heat is then stored in a thermal storage composed of sand saturated with water in the basement of the building in order to be mobilized later. Heating and domestic hot water production use a heat pump. A thermal and energy model has been developed for the entire system. The model predictions are compared to experimental results obtained using a demonstrator specifically developed for the needs of the study. Annual simulations show that it is possible to efficiently heat individual houses or small collectives meeting current energy regulations by using the thermal energy of the roads with an average coefficient of performance of the heat pump close to 6.5. A sensitivity study of the system showed that the surface area of the sensor, the storage volume and the location have an influence on the performance of the system
Books on the topic "Underground thermal storage"
Lee, Kun Sang. Underground Thermal Energy Storage. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4273-7.
Full textLee, Kun Sang. Underground Thermal Energy Storage. London: Springer London, 2013.
Find full textBurkhard, Sanner, Germany. Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie., and IEA Programme for Energy Conservation through Energy Storage., eds. High temperature underground thermal energy storage: State-of-the-art and prospects. Giessen: Lenz-Verlag, 1999.
Find full textUnderground Thermal Energy Storage. Springer, 2012.
Find full textLee, Kun Sang. Underground Thermal Energy Storage. Springer, 2012.
Find full textLee, Kun Sang. Underground Thermal Energy Storage. Springer, 2014.
Find full textWolf, E. L. Prospects for Sustainable Power and Moderate Climate. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198769804.003.0012.
Full textGeological sequestration of carbon dioxide: Thermodynamics, kinetics, and reaction path modeling. Amsterdam: Elsevier, 2007.
Find full textBook chapters on the topic "Underground thermal storage"
Lee, Kun Sang. "Underground Thermal Energy Storage." In Underground Thermal Energy Storage, 15–26. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4273-7_2.
Full textLee, Kun Sang. "Aquifer Thermal Energy Storage." In Underground Thermal Energy Storage, 59–93. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4273-7_4.
Full textLee, Kun Sang. "Borehole Thermal Energy Storage." In Underground Thermal Energy Storage, 95–123. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4273-7_5.
Full textLee, Kun Sang. "Introduction." In Underground Thermal Energy Storage, 1–13. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4273-7_1.
Full textLee, Kun Sang. "Basic Theory and Ground Properties." In Underground Thermal Energy Storage, 27–58. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4273-7_3.
Full textLee, Kun Sang. "Cavern Thermal Energy Storage Systems." In Underground Thermal Energy Storage, 125–29. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4273-7_6.
Full textLee, Kun Sang. "Standing Column Well." In Underground Thermal Energy Storage, 131–38. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4273-7_7.
Full textLee, Kun Sang. "Modeling." In Underground Thermal Energy Storage, 139–51. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4273-7_8.
Full textMokhtarzadeh, Hamed, Shiva Gorjian, Yaghuob Molaie, Kamran Soleimani, and Alireza Gorjian. "Underground Thermal Energy Storage Systems and Their Applications." In Thermal Energy, 58–82. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003345558-5.
Full textTomasetta, C., C. C. D. F. Van Ree, and J. Griffioen. "Life Cycle Analysis of Underground Thermal Energy Storage." In Engineering Geology for Society and Territory - Volume 5, 1213–17. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09048-1_232.
Full textConference papers on the topic "Underground thermal storage"
Mahmud, Roohany, Mustafa Erguvan, and David W. MacPhee. "Underground CSP Thermal Energy Storage." In ASME 2019 Power Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/power2019-1879.
Full textWenjie Liu, Xiaoping Miao, Jinsheng Wang, Xibin Ma, and Jing Ding. "Thermal storage cooling tower for underground commercial building." In 2008 IEEE International Conference on Sustainable Energy Technologies (ICSET). IEEE, 2008. http://dx.doi.org/10.1109/icset.2008.4747003.
Full textMing, Li, Guo Qin, Gao Qing, and Jiang Yan. "Thermal Analysis of Underground Thermal Energy Storage under Different Load Modes." In 2009 International Conference on Energy and Environment Technology. IEEE, 2009. http://dx.doi.org/10.1109/iceet.2009.225.
Full textFraněk, J., J. Holeček, V. Hladík, and K. Sosna. "Research on a Thermally Loaded Rock - Perspectives of Underground Thermal Energy Storage." In The Third Sustainable Earth Sciences Conference and Exhibition. Netherlands: EAGE Publications BV, 2015. http://dx.doi.org/10.3997/2214-4609.201414273.
Full textWong, Bill, Aart Snijders, and Larry McClung. "Recent Inter-seasonal Underground Thermal Energy Storage Applications in Canada." In 2006 IEEE EIC Climate Change Conference. IEEE, 2006. http://dx.doi.org/10.1109/eicccc.2006.277232.
Full textMöri, A., J. Naftalski, T. Liardon, M. Talebkeikhah, B. Lecampion, G. Lu, and J. Burghardt. "Experimental Study of Underground Heat Storage via Hydraulic Fractures." In 58th U.S. Rock Mechanics/Geomechanics Symposium. ARMA, 2024. http://dx.doi.org/10.56952/arma-2024-0540.
Full textAbid, Khizar, Alberto Toledo Velazco, Catalin Teodoriu, and Mahmood Amani. "Investigations on Cement Thermal Properties with Direct Application to Underground Energy Storage." In 57th U.S. Rock Mechanics/Geomechanics Symposium. ARMA, 2023. http://dx.doi.org/10.56952/arma-2023-0874.
Full textBonte, Matthijs, Gerard van den Berg, Margot de Cleen, and Marleen van Rijswick. "Planning the underground: managing sustainable use of the Dutch underground with specific reference to aquifer thermal energy storage." In First International Conference on Frontiers in Shallow Subsurface Technology. European Association of Geoscientists & Engineers, 2010. http://dx.doi.org/10.3997/2214-4609-pdb.150.b02.
Full textBayomy, A. M., Hiep V. Nguyen, Jun Wang, and Seth B. Dworkin. "Performance analysis of a single underground thermal storage borehole using phase change material." In International Ground Source Heat Pump Association. International Ground Source Heat Pump Association, 2018. http://dx.doi.org/10.22488/okstate.18.000008.
Full textSaeidi, Negar, Alberto Romero, Lorrie Fava, and Cheryl Allen. "Simulation of large-scale thermal storage in fragmented rock modelled as a discretised porous medium – application to the Natural Heat Exchange Area at Creighton Mine." In First International Conference on Underground Mining Technology. Australian Centre for Geomechanics, Perth, 2017. http://dx.doi.org/10.36487/acg_rep/1710_12_saeidi.
Full textReports on the topic "Underground thermal storage"
Zody, Zachary, and Viktoria Gisladottir. Shallow geothermal technology, opportunities in cold regions, and related data for deployment at Fort Wainwright. Engineer Research and Development Center (U.S.), March 2023. http://dx.doi.org/10.21079/11681/46672.
Full text