Journal articles on the topic 'Under-resolved turbulent flow simulations'

To see the other types of publications on this topic, follow the link: Under-resolved turbulent flow simulations.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Under-resolved turbulent flow simulations.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Grinstein, F. F., A. A. Gowardhan, and J. R. Ristorcelli. "Implicit large eddy simulation of shock-driven material mixing." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, no. 2003 (November 28, 2013): 20120217. http://dx.doi.org/10.1098/rsta.2012.0217.

Full text
Abstract:
Under-resolved computer simulations are typically unavoidable in practical turbulent flow applications exhibiting extreme geometrical complexity and a broad range of length and time scales. An important unsettled issue is whether filtered-out and subgrid spatial scales can significantly alter the evolution of resolved larger scales of motion and practical flow integral measures. Predictability issues in implicit large eddy simulation of under-resolved mixing of material scalars driven by under-resolved velocity fields and initial conditions are discussed in the context of shock-driven turbulent mixing. The particular focus is on effects of resolved spectral content and interfacial morphology of initial conditions on transitional and late-time turbulent mixing in the fundamental planar shock-tube configuration.
APA, Harvard, Vancouver, ISO, and other styles
2

Shi, Jingchang, and Hong Yan. "Turbulence amplification in the shock wave/turbulent boundary layer interaction over compression ramp by the flux reconstruction method." Physics of Fluids 35, no. 1 (January 2023): 016122. http://dx.doi.org/10.1063/5.0134222.

Full text
Abstract:
Wall-resolved large eddy simulation on a supersonic turbulent boundary layer over a [Formula: see text] compression ramp is performed under the framework of high order discontinuous methods for a free-stream Mach number [Formula: see text] and Reynolds number [Formula: see text]. The turbulent flow is resolved by the high order flux reconstruction method, and the shock is captured by a high-resolution, but stable weighted essentially non-oscillation limiter. The solver used in this paper is validated by the double Mach reflection case and the Taylor–Green vortex case. The results of shock wave/turbulent boundary layer interaction at the ramp corner are validated by the numerical simulations and the experimental data in the literature. The analysis of the physics behind the turbulence amplification at around the ramp corner is presented. The shear effects and the flow deceleration/acceleration are the main reasons of the turbulence amplification.
APA, Harvard, Vancouver, ISO, and other styles
3

Bryan, George H., Nathan A. Dahl, David S. Nolan, and Richard Rotunno. "An Eddy Injection Method for Large-Eddy Simulations of Tornado-Like Vortices." Monthly Weather Review 145, no. 5 (May 1, 2017): 1937–61. http://dx.doi.org/10.1175/mwr-d-16-0339.1.

Full text
Abstract:
Abstract The structure and intensity of tornado-like vortices are examined using large-eddy simulations (LES) in an idealized framework. The analysis focuses on whether the simulated boundary layer contains resolved turbulent eddies, and whether most of the vertical component of turbulent momentum flux is resolved rather than parameterized. Initial conditions are first generated numerically using a “precursor simulation” with an axisymmetric model. A three-dimensional “baseline” LES is then integrated using these initial conditions plus random perturbations. With this baseline approach, the inner core of the simulated vortex clearly contains resolved turbulent eddies (as expected); however, the boundary layer inflow has very weak resolved turbulent eddies, and the subgrid model accounts for most of the vertical turbulent momentum flux (contrary to the design of these simulations). To overcome this problem, a second precursor simulation is conducted in which resolved turbulent fluctuations develop within a smaller, doubly periodic LES domain. Perturbation flow fields from this precursor LES are then “injected” into the large-domain LES at a specified radius. With this approach, the boundary layer inflow clearly contains resolved turbulent fluctuations, often organized as quasi-2D rolls, which persist into the inner core of the simulation; thus, the simulated tornado-like vortex and its inflowing boundary layer can be characterized as LES. When turbulence is injected, the inner-core vortex structure is always substantially different, the boundary layer inflow is typically deeper, and in most cases the maximum wind speeds are reduced compared to the baseline simulation.
APA, Harvard, Vancouver, ISO, and other styles
4

Konnigk, Lucas, Benjamin Torner, Martin Bruschewski, Sven Grundmann, and Frank-Hendrik Wurm. "Equivalent Scalar Stress Formulation Taking into Account Non-Resolved Turbulent Scales." Cardiovascular Engineering and Technology 12, no. 3 (March 5, 2021): 251–72. http://dx.doi.org/10.1007/s13239-021-00526-x.

Full text
Abstract:
Abstract Purpose Cardiovascular engineering includes flows with fluid-dynamical stresses as a parameter of interest. Mechanical stresses are high-risk factors for blood damage and can be assessed by computational fluid dynamics. By now, it is not described how to calculate an adequate scalar stress out of turbulent flow regimes when the whole share of turbulence is not resolved by the simulation method and how this impacts the stress calculation. Methods We conducted direct numerical simulations (DNS) of test cases (a turbulent channel flow and the FDA nozzle) in order to access all scales of flow movement. After validation of both DNS with literature und experimental data using magnetic resonance imaging, the mechanical stress is calculated as a baseline. Afterwards, same flows are calculated using state-of-the-art turbulence models. The stresses are computed for every result using our definition of an equivalent scalar stress, which includes the influence from respective turbulence model, by using the parameter dissipation. Afterwards, the results are compared with the baseline data. Results The results show a good agreement regarding the computed stress. Even when no turbulence is resolved by the simulation method, the results agree well with DNS data. When the influence of non-resolved motion is neglected in the stress calculation, it is underpredicted in all cases. Conclusion With the used scalar stress formulation, it is possible to include information about the turbulence of the flow into the mechanical stress calculation even when the used simulation method does not resolve any turbulence.
APA, Harvard, Vancouver, ISO, and other styles
5

Fukami, Kai, Koji Fukagata, and Kunihiko Taira. "Super-resolution reconstruction of turbulent flows with machine learning." Journal of Fluid Mechanics 870 (May 7, 2019): 106–20. http://dx.doi.org/10.1017/jfm.2019.238.

Full text
Abstract:
We use machine learning to perform super-resolution analysis of grossly under-resolved turbulent flow field data to reconstruct the high-resolution flow field. Two machine learning models are developed, namely, the convolutional neural network (CNN) and the hybrid downsampled skip-connection/multi-scale (DSC/MS) models. These machine learning models are applied to a two-dimensional cylinder wake as a preliminary test and show remarkable ability to reconstruct laminar flow from low-resolution flow field data. We further assess the performance of these models for two-dimensional homogeneous turbulence. The CNN and DSC/MS models are found to reconstruct turbulent flows from extremely coarse flow field images with remarkable accuracy. For the turbulent flow problem, the machine-leaning-based super-resolution analysis can greatly enhance the spatial resolution with as little as 50 training snapshot data, holding great potential to reveal subgrid-scale physics of complex turbulent flows. With the growing availability of flow field data from high-fidelity simulations and experiments, the present approach motivates the development of effective super-resolution models for a variety of fluid flows.
APA, Harvard, Vancouver, ISO, and other styles
6

ZENG, LANYING, S. BALACHANDAR, PAUL FISCHER, and FADY NAJJAR. "Interactions of a stationary finite-sized particle with wall turbulence." Journal of Fluid Mechanics 594 (December 14, 2007): 271–305. http://dx.doi.org/10.1017/s0022112007009056.

Full text
Abstract:
Reliable information on forces on a finite-sized particle in a turbulent boundary layer is lacking, so workers continue to use standard drag and lift correlations developed for a laminar flow to predict drag and lift forces. Here we consider direct numerical simulations of a turbulent channel flow over an isolated particle of finite size. The size of the particle and its location within the turbulent channel are systematically varied. All relevant length and time scales of turbulence, attached boundary layers on the particle, and particle wake are faithfully resolved, and thus we consider fully resolved direct numerical simulations. The results from the direct numerical simulation are compared with corresponding predictions based on the standard drag relation with and without the inclusion of added-mass and shear-induced lift forces. The influence of turbulent structures, such as streaks, quasi-streamwise vortices and hairpin packets, on particle force is explored. The effect of vortex shedding is also observed to be important for larger particles, whoseReexceeds a threshold.
APA, Harvard, Vancouver, ISO, and other styles
7

Peng, Cheng, Orlando M. Ayala, and Lian-Ping Wang. "A direct numerical investigation of two-way interactions in a particle-laden turbulent channel flow." Journal of Fluid Mechanics 875 (July 26, 2019): 1096–144. http://dx.doi.org/10.1017/jfm.2019.509.

Full text
Abstract:
Understanding the two-way interactions between finite-size solid particles and a wall-bounded turbulent flow is crucial in a variety of natural and engineering applications. Previous experimental measurements and particle-resolved direct numerical simulations revealed some interesting phenomena related to particle distribution and turbulence modulation, but their in-depth analyses are largely missing. In this study, turbulent channel flows laden with neutrally buoyant finite-size spherical particles are simulated using the lattice Boltzmann method. Two particle sizes are considered, with diameters equal to 14.45 and 28.9 wall units. To understand the roles played by the particle rotation, two additional simulations with the same particle sizes but no particle rotation are also presented for comparison. Particles of both sizes are found to form clusters. Under the Stokes lubrication corrections, small particles are found to have a stronger preference to form clusters, and their clusters orientate more in the streamwise direction. As a result, small particles reduce the mean flow velocity less than large particles. Particles are also found to result in a more homogeneous distribution of turbulent kinetic energy (TKE) in the wall-normal direction, as well as a more isotropic distribution of TKE among different spatial directions. To understand these turbulence modulation phenomena, we analyse in detail the total and component-wise volume-averaged budget equations of TKE with the simulation data. This budget analysis reveals several mechanisms through which the particles modulate local and global TKE in the particle-laden turbulent channel flow.
APA, Harvard, Vancouver, ISO, and other styles
8

Ge, Liang, Hwa-Liang Leo, Fotis Sotiropoulos, and Ajit P. Yoganathan. "Flow in a Mechanical Bileaflet Heart Valve at Laminar and Near-Peak Systole Flow Rates: CFD Simulations and Experiments." Journal of Biomechanical Engineering 127, no. 5 (March 31, 2005): 782–97. http://dx.doi.org/10.1115/1.1993665.

Full text
Abstract:
Time-accurate, fully 3D numerical simulations and particle image velocity laboratory experiments are carried out for flow through a fully open bileaflet mechanical heart valve under steady (nonpulsatile) inflow conditions. Flows at two different Reynolds numbers, one in the laminar regime and the other turbulent (near-peak systole flow rate), are investigated. A direct numerical simulation is carried out for the laminar flow case while the turbulent flow is investigated with two different unsteady statistical turbulence modeling approaches, unsteady Reynolds-averaged Navier-Stokes (URANS) and detached-eddy simulation (DES) approach. For both the laminar and turbulent cases the computed mean velocity profiles are in good overall agreement with the measurements. For the turbulent simulations, however, the comparisons with the measurements demonstrate clearly the superiority of the DES approach and underscore its potential as a powerful modeling tool of cardiovascular flows at physiological conditions. The study reveals numerous previously unknown features of the flow.
APA, Harvard, Vancouver, ISO, and other styles
9

Zhou, Bowen, and Fotini Katopodes Chow. "Large-Eddy Simulation of the Stable Boundary Layer with Explicit Filtering and Reconstruction Turbulence Modeling." Journal of the Atmospheric Sciences 68, no. 9 (September 1, 2011): 2142–55. http://dx.doi.org/10.1175/2011jas3693.1.

Full text
Abstract:
Abstract Large-eddy simulation (LES) of the stably stratified atmospheric boundary layer is performed using an explicit filtering and reconstruction approach with a finite difference method. Turbulent stresses are split into the resolvable subfilter-scale and subgrid-scale stresses. The former are recovered from a reconstruction approach, and the latter are represented by a dynamic eddy-viscosity model. The resulting dynamic reconstruction model (DRM) can sustain resolved turbulence with less stringent resolution requirements than conventional closure models, even under strong atmospheric stability. This is achieved by proper representation of subfilter-scale (SFS) backscatter of turbulent kinetic energy (TKE). The flow structure and turbulence statistics for the moderately stable boundary layer (SBL) are analyzed with high-resolution simulations. The DRM simulations show good agreement with established empirical formulations such as flux and gradient-based surface similarity, even at relatively coarse resolution. Similar results can be obtained with traditional closure models at the cost of higher resolution. SBL turbulence under strong stability is also explored. Simulations show an intermittent presence of elevated TKE below the low-level jet. Overall, the explicit filtering and reconstruction approach is advantageous for simulations of the SBL. At coarse resolution, it can extend the working range of LES to stronger stability, while maintaining agreement to similarity theory; at fine resolution, good agreement with theoretical formulations provides confidence in the results and allows for detailed investigation of the flow structure under moderate to strong stability conditions.
APA, Harvard, Vancouver, ISO, and other styles
10

Vita, Giulio, Simone Salvadori, Daniela Anna Misul, and Hassan Hemida. "Effects of Inflow Condition on RANS and LES Predictions of the Flow around a High-Rise Building." Fluids 5, no. 4 (December 7, 2020): 233. http://dx.doi.org/10.3390/fluids5040233.

Full text
Abstract:
An increasing number of engineering applications require accurate predictions of the flow around buildings to guarantee performance and safety. This paper investigates the effects of variations in the turbulent inflow, as predicted in different numerical simulations, on the flow pattern prediction around buildings, compared to wind tunnel tests. Turbulence characteristics were assessed at several locations around a model square high-rise building, namely, above the roof region, at the pedestrian level, and in the wake. Both Reynolds-averaged Navier–Stokes (RANS, where turbulence is fully modelled) equations and large-eddy simulation (LES, where turbulence is partially resolved) were used to model an experimental setup providing validation for the roof region. The performances of both techniques were compared in ability to predict the flow features. It was found that RANS provides reliable results in regions of the flow heavily influenced by the building model, and it is unreliable where the flow is influenced by ambient conditions. In contrast, LES is generally reliable, provided that a suitable turbulent inflow is included in the simulation. RANS also benefits when a turbulent inflow is provided in simulations. In general, LES should be the methodology of choice if engineering applications are involved with the highly separated and turbulent flow features around the building, and RANS provides reliable information when regions of high wind speed and low turbulence are investigated.
APA, Harvard, Vancouver, ISO, and other styles
11

Sigalotti, Leonardo Di G., Carlos E. Alvarado-Rodríguez, Jaime Klapp, and José M. Cela. "Smoothed Particle Hydrodynamics Simulations of Water Flow in a 90° Pipe Bend." Water 13, no. 8 (April 14, 2021): 1081. http://dx.doi.org/10.3390/w13081081.

Full text
Abstract:
The flow through pipe bends and elbows occurs in a wide range of applications. While many experimental data are available for such flows in the literature, their numerical simulation is less abundant. Here, we present highly-resolved simulations of laminar and turbulent water flow in a 90° pipe bend using Smoothed Particle Hydrodynamics (SPH) methods coupled to a Large-Eddy Simulation (LES) model for turbulence. Direct comparison with available experimental data is provided in terms of streamwise velocity profiles, turbulence intensity profiles and cross-sectional velocity maps at different stations upstream, inside and downstream of the pipe bend. The numerical results are in good agreement with the experimental data. In particular, maximum root-mean-square deviations from the experimental velocity profiles are always less than ∼1.4%. Convergence to the experimental measurements of the turbulent fluctuations is achieved by quadrupling the resolution necessary to guarantee convergence of the velocity profiles. At such resolution, the deviations from the experimental data are ∼0.8%. In addition, the cross-sectional velocity maps inside and downstream of the bend shows that the experimentally observed details of the secondary flow are also very well predicted by the numerical simulations.
APA, Harvard, Vancouver, ISO, and other styles
12

Kaller, Thomas, Vito Pasquariello, Stefan Hickel, and Nikolaus A. Adams. "Turbulent flow through a high aspect ratio cooling duct with asymmetric wall heating." Journal of Fluid Mechanics 860 (December 4, 2018): 258–99. http://dx.doi.org/10.1017/jfm.2018.836.

Full text
Abstract:
We present well-resolved large-eddy simulations of turbulent flow through a straight, high aspect ratio cooling duct operated with water at a bulk Reynolds number of $Re_{b}=110\times 10^{3}$ and an average Nusselt number of $Nu_{xz}=371$. The geometry and boundary conditions follow an experimental reference case and good agreement with the experimental results is achieved. The current investigation focuses on the influence of asymmetric wall heating on the duct flow field, specifically on the interaction of turbulence-induced secondary flow and turbulent heat transfer, and the associated spatial development of the thermal boundary layer and the inferred viscosity variation. The viscosity reduction towards the heated wall causes a decrease in turbulent mixing, turbulent length scales and turbulence anisotropy as well as a weakening of turbulent ejections. Overall, the secondary flow strength becomes increasingly less intense along the length of the spatially resolved heated duct as compared to an adiabatic duct. Furthermore, we show that the assumption of a constant turbulent Prandtl number is invalid for turbulent heat transfer in an asymmetrically heated duct.
APA, Harvard, Vancouver, ISO, and other styles
13

Righi, Marcello. "A Modified Gas-Kinetic Scheme for Turbulent Flow." Communications in Computational Physics 16, no. 1 (July 2014): 239–63. http://dx.doi.org/10.4208/cicp.140813.021213a.

Full text
Abstract:
AbstractThe implementation of a turbulent gas-kinetic scheme into a finite-volume RANS solver is put forward, with two turbulent quantities, kinetic energy and dissipation, supplied by an allied turbulence model. This paper shows a number of numerical simulations of flow cases including an interaction between a shock wave and a turbulent boundary layer, where the shock-turbulent boundary layer is captured in a much more convincing way than it normally is by conventional schemes based on the Navier-Stokes equations. In the gas-kinetic scheme, the modeling of turbulence is part of the numerical scheme, which adjusts as a function of the ratio of resolved to unresolved scales of motion. In so doing, the turbulent stress tensor is not constrained into a linear relation with the strain rate. Instead it is modeled on the basis of the analogy between particles and eddies, without any assumptions on the type of turbulence or flow class. Conventional schemes lack multiscale mechanisms: the ratio of unresolved to resolved scales – very much like a degree of rarefaction – is not taken into account even if it may grow to non-negligible values in flow regions such as shocklayers. It is precisely in these flow regions, that the turbulent gas-kinetic scheme seems to provide more accurate predictions than conventional schemes.
APA, Harvard, Vancouver, ISO, and other styles
14

Piomelli, Ugo, Amirreza Rouhi, and Bernard J. Geurts. "A grid-independent length scale for large-eddy simulations." Journal of Fluid Mechanics 766 (February 5, 2015): 499–527. http://dx.doi.org/10.1017/jfm.2015.29.

Full text
Abstract:
AbstractWe propose a new length scale as a basis for the modelling of subfilter motions in large-eddy simulations (LES) of turbulent flow. Rather than associating the model length scale with the computational grid, we put forward an approximation of the integral length scale to achieve a non-uniform flow coarsening through spatial filtering that reflects the local, instantaneous turbulence activity. Through the introduction of this grid-independent, solution-specific length scale it becomes possible to separate the problem of representing small-scale turbulent motions in a coarsened flow model from that of achieving an accurate numerical resolution of the primary flow scales. The formulation supports the notion of grid-independent LES, in which a prespecified reliability measure is used. We investigate a length-scale definition based on the resolved turbulent kinetic energy (TKE) and its dissipation. The proposed approach, which we call integral length-scale approximation (ILSA) model, is illustrated for turbulent channel flow at high Reynolds numbers and for homogeneous isotropic turbulence (HIT). We employ computational optimization of the model parameter based on various measures of subfilter activity, using the successive inverse polynomial interpolation (SIPI) and establish the efficiency of this route to subfilter modelling.
APA, Harvard, Vancouver, ISO, and other styles
15

Jordan, Stephen A. "Dynamic Subgrid-Scale Modeling for Large-Eddy Simulations in Complex Topologies." Journal of Fluids Engineering 123, no. 3 (March 15, 2001): 619–27. http://dx.doi.org/10.1115/1.1374215.

Full text
Abstract:
The dynamic eddy-viscosity relationship is a suitable choice for modeling the subgrid-scales (SGS) in a large-eddy simulation (LES) of complex turbulent flows in irregular domains. This algebraic relationship is easy to implement and its dynamic coefficient will give negligible turbulent viscosity contributions in the flow regions that are irrotational or laminar. Its fine-scale turbulence predictions can be qualitatively reasonable if the local grid resolution maintains the SGS field predominantly within the equilibrium range of turbulent energy spectra. This performance is given herein by two curvilinear coordinate forms of the dynamic Smagorinsky model that are formally derived and a-priori tested using the resolved physics of the cylinder wake. The conservative form evaluates the dynamic coefficient in the computational (transformed) space whereas its non-conservative counterpart operates in the physical domain. Although both forms equally captured the real normal SGS stress reasonably well, the real shear stress and dissipation rates were severely under-predicted. Mixing the eddy-viscosity choice with a scale-similarity model can ease this latter deficiency.
APA, Harvard, Vancouver, ISO, and other styles
16

Dorschner, B., F. Bösch, S. S. Chikatamarla, K. Boulouchos, and I. V. Karlin. "Entropic multi-relaxation time lattice Boltzmann model for complex flows." Journal of Fluid Mechanics 801 (July 26, 2016): 623–51. http://dx.doi.org/10.1017/jfm.2016.448.

Full text
Abstract:
Entropic lattice Boltzmann methods were introduced to overcome the stability issues of lattice Boltzmann models for high Reynolds number turbulent flows. However, to date their validity has been investigated only for simple flows due to the lack of appropriate boundary conditions. We present here an extension of these models to complex flows involving curved and moving boundaries in three dimensions. Apart from a thorough investigation of resolved and under-resolved simulations for periodic flow and turbulent flow in a round pipe, we study in detail the set-up of a simplified internal combustion engine with a valve/piston arrangement. This arrangement allows us to probe the non-trivial interactions between various flow features such as jet breakup, jet–wall interaction, and formation and breakup of large vortical structures, among others. Besides an order of magnitude reduction in computational costs, when compared to state-of-the-art direct numerical simulations (DNS), these methods come with the additional advantage of using static Cartesian meshes also for moving objects, which reduces the complexity of the scheme. Going beyond first-order statistics, a detailed comparison of mean and root-mean-square velocity profiles with high-order spectral element DNS simulations and experimental data shows excellent agreement, highlighting the accuracy and reliability of the method for resolved simulations. Moreover, we show that the implicit subgrid features of the entropic lattice Boltzmann method can be utilized to further reduce the grid sizes and the computational costs, providing an alternative to modern modelling approaches such as large-eddy simulations for complex flows.
APA, Harvard, Vancouver, ISO, and other styles
17

Ludwig, Francis L., Fotini Katopodes Chow, and Robert L. Street. "Effect of Turbulence Models and Spatial Resolution on Resolved Velocity Structure and Momentum Fluxes in Large-Eddy Simulations of Neutral Boundary Layer Flow." Journal of Applied Meteorology and Climatology 48, no. 6 (June 1, 2009): 1161–80. http://dx.doi.org/10.1175/2008jamc2021.1.

Full text
Abstract:
Abstract This paper demonstrates the importance of high-quality subfilter-scale turbulence models in large-eddy simulations by evaluating the resolved-scale flow features that result from various closure models. The Advanced Regional Prediction System (ARPS) model was used to simulate neutral flow over a 1.2-km square, flat, rough surface with seven subfilter turbulence models [Smagorinsky, turbulent kinetic energy (TKE)-1.5, and five dynamic reconstruction combinations]. These turbulence models were previously compared with similarity theory. Here, the differences are evaluated using mean velocity statistics and the spatial structure of the flow field. Streamwise velocity averages generally differ among models by less than 0.5 m s−1, but those differences are often significant at a 95% confidence level. Flow features vary considerably among models. As measured by spatial correlation, resolved flow features grow larger and less elongated with height for a given model and resolution. The largest differences are between dynamic models that allow energy backscatter from small to large scales and the simple eddy-viscosity closures. At low altitudes, the linear extent of Smagorinsky and TKE-1.5 structures exceeds those of dynamic models, but the relationship reverses at higher altitudes. Ejection, sweep, and upward momentum flux features differ among models and from observed neutral atmospheric flows, especially for Smagorinsky and TKE-1.5 coarse-grid simulations. Near-surface isopleths separating upward fluxes from downward are shortest for the Smagorinsky and TKE-1.5 coarse-grid simulations, indicating less convoluted turbulent interfaces; at higher altitudes they are longest. Large-eddy simulation (LES) is a powerful simulation tool, but choices of grid resolution and subfilter model can affect results significantly. Physically realistic dynamic mixed models, such as those presented here, are essential when using LES to study atmospheric processes such as transport and dispersion—in particular at coarse resolutions.
APA, Harvard, Vancouver, ISO, and other styles
18

Fasel, Hermann F., Dominic A. von Terzi, and Richard D. Sandberg. "A Methodology for Simulating Compressible Turbulent Flows." Journal of Applied Mechanics 73, no. 3 (September 30, 2005): 405–12. http://dx.doi.org/10.1115/1.2150231.

Full text
Abstract:
A flow simulation Methodology (FSM) is presented for computing the time-dependent behavior of complex compressible turbulent flows. The development of FSM was initiated in close collaboration with C. Speziale (then at Boston University). The objective of FSM is to provide the proper amount of turbulence modeling for the unresolved scales while directly computing the largest scales. The strategy is implemented by using state-of-the-art turbulence models (as developed for Reynolds averaged Navier-Stokes (RANS)) and scaling of the model terms with a “contribution function.” The contribution function is dependent on the local and instantaneous “physical” resolution in the computation. This physical resolution is determined during the actual simulation by comparing the size of the smallest relevant scales to the local grid size used in the computation. The contribution function is designed such that it provides no modeling if the computation is locally well resolved so that it approaches direct numerical simulations (DNS) in the fine-grid limit and such that it provides modeling of all scales in the coarse-grid limit and thus approaches a RANS calculation. In between these resolution limits, the contribution function adjusts the necessary modeling for the unresolved scales while the larger (resolved) scales are computed as in large eddy simulation (LES). However, FSM is distinctly different from LES in that it allows for a consistent transition between RANS, LES, and DNS within the same simulation depending on the local flow behavior and “physical” resolution. As a consequence, FSM should require considerably fewer grid points for a given calculation than would be necessary for a LES. This conjecture is substantiated by employing FSM to calculate the flow over a backward-facing step and a plane wake behind a bluff body, both at low Mach number, and supersonic axisymmetric wakes. These examples were chosen such that they expose, on the one hand, the inherent difficulties of simulating (physically) complex flows, and, on the other hand, demonstrate the potential of the FSM approach for simulations of turbulent compressible flows for complex geometries.
APA, Harvard, Vancouver, ISO, and other styles
19

Chahed, J., C. Colin, and L. Masbernat. "Turbulence and Phase Distribution in Bubbly Pipe Flow Under Microgravity Condition." Journal of Fluids Engineering 124, no. 4 (December 1, 2002): 951–56. http://dx.doi.org/10.1115/1.1514212.

Full text
Abstract:
The role of the turbulence in the void fraction distribution in bubbly pipe flow under microgravity condition is evaluated on the basis of numerical simulations using a Eulerian-Eulerian two-fluid model. In microgravity, the average relative velocity is weak and the void fraction distribution is mainly governed by the turbulence. The simulations show that the turbulent contributions of the added mass force play an important role in the phase distribution phenomenon. It is clearly proved that the turbulence acts on the bubbles distribution not only by the pressure term but also by the turbulent correlations obtained by averaging the added mass force.
APA, Harvard, Vancouver, ISO, and other styles
20

Stuck, Maxime, Alvaro Vidal, Pablo Torres, Hassan M. Nagib, Candace Wark, and Ricardo Vinuesa. "Spectral-Element Simulation of the Turbulent Flow in an Urban Environment." Applied Sciences 11, no. 14 (July 13, 2021): 6472. http://dx.doi.org/10.3390/app11146472.

Full text
Abstract:
The mean flow and turbulence statistics of the flow through a simplified urban environment, which is an active research area in order to improve the knowledge of turbulent flow in cities, is investigated. This is useful for civil engineering, pedestrian comfort and for health concerns caused by pollutant spreading. In this work, we provide analysis of the turbulence statistics obtained from well-resolved large-eddy simulations (LES). A detailed analysis of this database reveals the impact of the geometry of the urban array on the flow characteristics and provides for a good description of the turbulent features of the flow within a simplified urban environment. The most prominent features of this complex flow include coherent vortical structures such as the so-called arch vortex, the horseshoe vortex and the roof vortex. These structures of flow have been identified by an analysis of the turbulence statistics. The influence of the geometry of urban environment (and particularly the street width and the building height) on the overall flow behavior has also been studied. Finally, the well-resolved LES results were compared with an available experimental database to discuss differences and similarities between the respective urban configurations.
APA, Harvard, Vancouver, ISO, and other styles
21

Jordan, Stephen A. "A Priori Assessments of Numerical Uncertainty in Large-Eddy Simulations." Journal of Fluids Engineering 127, no. 6 (April 26, 2005): 1171–82. http://dx.doi.org/10.1115/1.2060735.

Full text
Abstract:
Current suggestions for estimating the numerical uncertainty in solutions by the Large-Eddy Simulation (LES) methodology require either a posteriori input or reflect global assessments. In most practical applications, this approach is rather costly for the user and especially time consuming due to the CPU effort needed to reach the statistical steady state. Herein, we demonstrate two alternate a priori graphical exercises. An evaluation of the numerical uncertainty uses the turbulent quantities given by the area under the wave number spectra profiles. These profiles are easily constructed along any grid line in the flow domain prior to the collection of the turbulent statistics. One exercise involves a completion of the spectrum profile beyond the cutoff wave number to the inverse of Kolmorgorov’s length scale by a model of isotropic turbulence. The other extends Richardson Extrapolation acting on multiple solutions. Sample test cases of both LES solutions and direct numerical simulations as well as published experimental data show excellent agreement between the integrated matched spectra and the respective turbulent statistics. Thus, the resultant uncertainties themselves provide a useful measure of accumulated statistical error in the resolved turbulent properties.
APA, Harvard, Vancouver, ISO, and other styles
22

Ma, Libin, Chao Yan, and Jian Yu. "Suitability of an Artificial Viscosity Model for Compressible Under-Resolved Turbulence Using a Flux Reconstruction Method." Applied Sciences 12, no. 23 (November 30, 2022): 12272. http://dx.doi.org/10.3390/app122312272.

Full text
Abstract:
In the simulation of compressible turbulent flows via a high-order flux reconstruction framework, the artificial viscosity model plays an important role to ensure robustness in the strongly compressible region. However, the impact of the artificial viscosity model in under-resolved regions on dissipation features or resolving ability remains unclear. In this work, the performance of a dilation-based (DB) artificial viscosity model to simulate under-resolved turbulent flows in a high-order flux reconstruction (FR) framework is investigated. Comparison is conducted with results via several typical explicit subgrid scale (SGS) models as well as implicit large eddy simulation (iLES) and their impact on important diagnostic quantities including turbulent kinetic energy, total dissipation rate of kinetic energy, and energy spectra are discussed. The dissipation rate of kinetic energy is decomposed into several components including those resulting from explicit SGS models or Laplacian artificial viscosity model; thus, an explicit evaluation of the dissipation rate led by those modeling terms is presented. The test cases consist of the Taylor-Green vortex (TGV) problem at Re=1600, the freely decaying homogeneous isotropic turbulence (HIT) at Mat0=0.5 (the initial turbulent Mach number ), the compressible TGV at Mach number 1.25 and the compressible channel flow at Reb= 15,334 (the bulk Reynolds number based on bulk density, bulk velocity and half-height of the channel), Mach number 1.5. The first two cases show that the DB model behaves similarly to the SGS models in terms of dissipation and has the potential to improve the insufficient dissipation of iLES with the fourth-order-accurate FR method. The last two cases further demonstrate the ability of the DB method on compresssible under-resolved turbulence and/or wall-bounded turbulence. The results of this work suggest the general suitability of the DB model to simulate under-resolved compressible turbulence in the high order flux reconstruction framework and also suggest some future work on controlling the potential excessive dissipation caused by the dilation term.
APA, Harvard, Vancouver, ISO, and other styles
23

Connolly, Alex, Leendert van Veen, James Neher, Bernard J. Geurts, Jeff Mirocha, and Fotini Katopodes Chow. "Efficacy of the Cell Perturbation Method in Large-Eddy Simulations of Boundary Layer Flow over Complex Terrain." Atmosphere 12, no. 1 (December 31, 2020): 55. http://dx.doi.org/10.3390/atmos12010055.

Full text
Abstract:
A challenge to simulating turbulent flow in multiscale atmospheric applications is the efficient generation of resolved turbulence motions over an area of interest. One approach is to apply small perturbations to flow variables near the inflow planes of turbulence-resolving simulation domains nested within larger mesoscale domains. While this approach has been examined in numerous idealized and simple terrain cases, its efficacy in complex terrain environments has not yet been fully explored. Here, we examine the benefits of the stochastic cell perturbation method (CPM) over real complex terrain using data from the 2017 Perdigão field campaign, conducted in an approximately 2-km wide valley situated between two nearly parallel ridges. Following a typical configuration for multiscale simulation using nested domains within the Weather Research and Forecasting (WRF) model to downscale from the mesoscale to a large-eddy simulation (LES), we apply the CPM on a domain with horizontal grid spacing of 150 m. At this resolution, spurious coherent structures are often observed under unstable atmospheric conditions with moderate mean wind speeds. Results from such an intermediate resolution grid are often nested down for finer, more detailed LES, where these spurious structures adversely affect the development of turbulence on the subsequent finer grid nest. We therefore examine the impacts of the CPM on the representation of turbulence within the nested LES domain under moderate mean flow conditions in three different stability regimes: weakly convective, strongly convective, and weakly stable. In addition, two different resolutions of the underlying terrain are used to explore the role of the complex topography itself in generating turbulent structures. We demonstrate that the CPM improves the representation of turbulence within the LES domain, relative to the use of high-resolution complex terrain alone. During the convective conditions, the CPM improves the rate at which smaller-scales of turbulence form, while also accelerating the attenuation of the spurious numerically generated roll structures near the inflow boundary. During stable conditions, the coarse mesh spacing of the intermediate LES domain used herein was insufficient to maintain resolved turbulence using CPM as the flow develops downstream, highlighting the need for yet higher resolution under even weakly stable conditions, and the importance of accurate representation of flow on intermediate LES grids.
APA, Harvard, Vancouver, ISO, and other styles
24

Peña, Alfredo, Branko Kosović, and Jeffrey D. Mirocha. "Evaluation of idealized large-eddy simulations performed with the Weather Research and Forecasting model using turbulence measurements from a 250 m meteorological mast." Wind Energy Science 6, no. 3 (May 7, 2021): 645–61. http://dx.doi.org/10.5194/wes-6-645-2021.

Full text
Abstract:
Abstract. We investigate the ability of the Weather Research and Forecasting model to perform large-eddy simulation of canonical flows. This is achieved through comparison of the simulation outputs with measurements from sonic anemometers on a 250 m meteorological mast located at Østerild, in northern Denmark. Østerild is on a flat and rough area, and for the predominant wind directions, the atmospheric flow can be considered to be close to homogeneous. The idealized simulated flows aim at representing atmospheric boundary layer turbulence under unstable, neutral, and stable stability conditions at the surface, which are statistically significant conditions observed at Østerild. We found that the resolved fields from the simulations appear to have the characteristics of the three stability regimes. Vertical profiles of observed mean wind speeds and direction are well reproduced by the simulations, with the largest differences under near-neutral conditions, where the effect of the subgrid-scale model is evident on the vertical wind shear close to the surface. Vertical profiles of observed eddy fluxes are also well reproduced by the simulations, with the largest differences for the three velocity component variances under stable stability conditions, although nearly always within the observed variability. With regards to turbulent kinetic energy, we find good agreement between observations and simulations at all vertical levels. Simulated and observed velocity spectra match very well and show very similar behavior with height and with atmospheric stability within the low-frequency interval; at the effective resolution, the simulated spectra show the typical drop-off of finite differences. Our findings demonstrate that these idealized simulations reproduce the characteristics of atmospheric stability regimes often observed at a high turbulent and flat site within a direction sector, where the air flows over nearly homogeneous land.
APA, Harvard, Vancouver, ISO, and other styles
25

Vreugdenhil, Catherine A., and John R. Taylor. "Stratification Effects in the Turbulent Boundary Layer beneath a Melting Ice Shelf: Insights from Resolved Large-Eddy Simulations." Journal of Physical Oceanography 49, no. 7 (July 2019): 1905–25. http://dx.doi.org/10.1175/jpo-d-18-0252.1.

Full text
Abstract:
AbstractOcean turbulence contributes to the basal melting and dissolution of ice shelves by transporting heat and salt toward the ice. The meltwater causes a stable salinity stratification to form beneath the ice that suppresses turbulence. Here we use large-eddy simulations motivated by the ice shelf–ocean boundary layer (ISOBL) to examine the inherently linked processes of turbulence and stratification, and their influence on the melt rate. Our rectangular domain is bounded from above by the ice base where a dynamic melt condition is imposed. By varying the speed of the flow and the ambient temperature, we identify a fully turbulent, well-mixed regime and an intermittently turbulent, strongly stratified regime. The transition between regimes can be characterized by comparing the Obukhov length, which provides a measure of the distance away from the ice base where stratification begins to dominate the flow, to the viscous length scale of the interfacial sublayer. Upper limits on simulated turbulent transfer coefficients are used to predict the transition from fully to intermittently turbulent flow. The predicted melt rate is sensitive to the choice of the heat and salt transfer coefficients and the drag coefficient. For example, when coefficients characteristic of fully developed turbulence are applied to intermittent flow, the parameterized three-equation model overestimates the basal melt rate by almost a factor of 10. These insights may help to guide when existing parameterizations of ice melt are appropriate for use in regional or large-scale ocean models, and may also have implications for other ice–ocean interactions such as fast ice or drifting ice.
APA, Harvard, Vancouver, ISO, and other styles
26

Tutar, M., I. Celik, and I. Yavuz. "Modeling of Effect of Inflow Turbulence Data on Large Eddy Simulation of Circular Cylinder Flows." Journal of Fluids Engineering 129, no. 6 (November 3, 2006): 780–90. http://dx.doi.org/10.1115/1.2734225.

Full text
Abstract:
A random flow generation (RFG) algorithm for a previously established large eddy simulation (LES) code is successfully incorporated into a finite element fluid flow solver to generate the required inflow/initial turbulence boundary conditions for the three-dimensional (3D) LES computations of viscous incompressible turbulent flow over a nominally two-dimensional (2D) circular cylinder at Reynolds number of 140,000. The effect of generated turbulent inflow boundary conditions on the near wake flow and the shear layer and on the prediction of integral flow parameters is studied based on long time average results. Because the near-wall region cannot be resolved for high Reynolds number flows, no-slip velocity boundary function is used, but wall effects are taken into consideration with a near-wall modeling methodology that comprises the no-slip function with a modified form of van Driest damping approach to reduce the subgrid length scale in the vicinity of the cylinder wall. Simulations are performed for a 2D and a 3D configuration, and the simulation results are compared to each other and to the experimental data for different turbulent inflow boundary conditions with varying degree of inflow turbulence to assess the functionality of the RFG algorithm for the present LES code and, hence, its influence on the vortex shedding mechanism and the resulting flow field predictions.
APA, Harvard, Vancouver, ISO, and other styles
27

Blake, Joshua D., Adrian Sescu, David Thompson, and Yuji Hattori. "A Coupled LES-Synthetic Turbulence Method for Jet Noise Prediction." Aerospace 9, no. 3 (March 21, 2022): 171. http://dx.doi.org/10.3390/aerospace9030171.

Full text
Abstract:
Large-eddy simulation (LES)-based jet noise predictions do not resolve the entire broadband noise spectra, often under-predicting high frequencies that correspond to un-resolved small-scale turbulence. The coupled LES-synthetic turbulence (CLST) model is presented which aims to model the missing high frequencies. The CLST method resolves large-scale turbulent fluctuations from coarse-grid large-eddy simulations (CLES) and models small-scale fluctuations generated by a synthetic eddy method (SEM). Noise is predicted using a formulation of the linearized Euler equations (LEE), where the acoustic waves are generated by source terms from the combined fluctuations of the CLES and the stochastic fields. Sweeping and straining of the synthetic eddies are accounted for by convecting eddies with the large turbulent scales from the CLES flow field. The near-field noise of a Mach 0.9 jet at a Reynolds number of 100,000 is predicted with LES. A high-order numerical algorithm, involving a dispersion relation preserving scheme for spatial discretization and an Adams–Bashforth scheme for time marching, is used for both LES and LEE solvers. Near-field noise spectra from the LES solver are compared to published results. Filtering is applied to the LES flow field to produce an under-resolved CLES flow field, and a comparison to the un-filtered LES spectra reveals the missing noise for this case. The CLST method recovers the filtered high-frequency content, agreeing well with the spectra from LES and showing promise at modeling the high-frequency range in the acoustic noise spectrum at a reasonable expense.
APA, Harvard, Vancouver, ISO, and other styles
28

Mirocha, Jeff, Branko Kosović, and Gokhan Kirkil. "Resolved Turbulence Characteristics in Large-Eddy Simulations Nested within Mesoscale Simulations Using the Weather Research and Forecasting Model." Monthly Weather Review 142, no. 2 (January 24, 2014): 806–31. http://dx.doi.org/10.1175/mwr-d-13-00064.1.

Full text
Abstract:
Abstract One-way concurrent nesting within the Weather Research and Forecasting Model (WRF) is examined for conducting large-eddy simulations (LES) nested within mesoscale simulations. Wind speed, spectra, and resolved turbulent stresses and turbulence kinetic energy from the nested LES are compared with data from nonnested simulations using periodic lateral boundary conditions. Six different subfilter-scale (SFS) stress models are evaluated using two different nesting strategies under geostrophically forced flow over both flat and hilly terrain. Neutral and weakly convective conditions are examined. For neutral flow over flat terrain, turbulence appears on the nested LES domains only when using the two dynamic SFS stress models. The addition of small hills and valleys (wavelengths of 2.4 km and maximum slopes of ± 10°) yields small improvements, with all six models producing some turbulence on nested domains. Weak convection (surface heat fluxes of 10 W m−2) further accelerates the development of turbulence on all nested domains. However, considerable differences in key parameters are observed between the nested LES domains and their nonnested counterparts. Nesting of a finer LES within a coarser LES provides superior results to using only one nested LES domain. Adding temperature and velocity perturbations near the inlet planes of nested domains shows promise as an easy-to-implement method to accelerate turbulence generation and improve its accuracy on nested domains.
APA, Harvard, Vancouver, ISO, and other styles
29

De Stefano, G., and O. V. Vasilyev. "A fully adaptive wavelet-based approach to homogeneous turbulence simulation." Journal of Fluid Mechanics 695 (February 8, 2012): 149–72. http://dx.doi.org/10.1017/jfm.2012.6.

Full text
Abstract:
AbstractThe ability of wavelet multi-resolution analysis to detect and track the energy-containing motions that govern the dynamics of a fluid flow offers a unique hierarchical framework for modelling and simulating turbulence. In this paper, the role of the wavelet thresholding level in wavelet-based modelling and simulation of turbulent flows is systematically examined. The thresholding level controls the relative importance of resolved energetic structures and residual unresolved background flow and, thus, the achieved turbulence resolution. A fully adaptive eddy capturing approach is developed that allows variable-fidelity numerical simulations of turbulence to be performed. The new method is based on wavelet filtering with time-varying thresholding. The thresholding level automatically adapts to the desired turbulence resolution during the simulation. The filtered governing equations supplemented by a localized dynamic energy-based closure model are solved numerically using the adaptive wavelet collocation method. The approach is successfully tested in the numerical simulation of both linearly forced and freely decaying homogeneous turbulence.
APA, Harvard, Vancouver, ISO, and other styles
30

Harvey, Ben, John Methven, Chloe Eagle, and Humphrey Lean. "Does the Representation of Flow Structure and Turbulence at a Cold Front Converge on Multiscale Observations with Model Resolution?" Monthly Weather Review 145, no. 11 (November 2017): 4345–63. http://dx.doi.org/10.1175/mwr-d-16-0479.1.

Full text
Abstract:
In situ aircraft observations are used to interrogate the ability of a numerical weather prediction model to represent flow structure and turbulence at a narrow cold front. Simulations are performed at a range of nested resolutions with grid spacings of 12 km down to 100 m, and the convergence with resolution is investigated. The observations include the novel feature of a low-altitude circuit around the front that is closed in the frame of reference of the front, thus allowing the direct evaluation of area-average vorticity and divergence values from circuit integrals. As such, the observational strategy enables a comparison of flow structures over a broad range of spatial scales, from the size of the circuit itself ([Formula: see text]100 km) to small-scale turbulent fluctuations ([Formula: see text]10 m). It is found that many aspects of the resolved flow converge successfully toward the observations with resolution if sampling uncertainty is accounted for, including the area-average vorticity and divergence measures and the narrowest observed cross-frontal width. In addition, there is a gradual handover from parameterized to resolved turbulent fluxes of moisture and momentum as motions in the convective boundary layer behind the front become partially resolved in the highest-resolution simulations. In contrast, the parameterized turbulent fluxes associated with subgrid-scale shear-driven turbulence ahead of the front do not converge on the observations. The structure of frontal rainbands associated with a shear instability along the front also does not converge with resolution, indicating that the mechanism of the frontal instability may not be well represented in the simulations.
APA, Harvard, Vancouver, ISO, and other styles
31

Li, Dong, Kun Luo, Hui Zhao, Wenqiang Shang, and Jianren Fan. "Interaction between a stationary sphere and turbulent flow in a boundary layer." Physics of Fluids 34, no. 8 (August 2022): 085138. http://dx.doi.org/10.1063/5.0102429.

Full text
Abstract:
We investigate the interaction of a stationary sphere with turbulent flows in a spatially developing boundary layer over a flat plate by means of fully resolved direct numerical simulations. The diameter of the sphere [Formula: see text] is much larger than the Kolmogorov length scale. The sphere Reynolds number [Formula: see text] is changed by varying the sphere diameter, while the gap ratio is held constant with [Formula: see text], where [Formula: see text] is the distance between the bottom of the sphere and the flat plate. The simulation results indicate that there exist complex interactions between the small-scale vortex in the wake of the sphere and the large-scale coherent structures inside the turbulent boundary layer. The jet-like flow through the gap is deflected away from the wall, and the level of deflection increases with [Formula: see text]. As a result, asymmetrical flow structures are observed in the recirculation zone. In addition, the mean recirculation length is found to decrease with the increase in [Formula: see text]. Concerning the turbulence modulation, statistics show that the skin-friction drag and boundary layer thickness are decreased in the recirculation region with respect to the undisturbed flow, whereas the displacement thickness is increased due to the presence of reverse flow. These effects become more pronounced as [Formula: see text] increases. The budget of the turbulent kinetic energy in the sphere wake is also examined. It is revealed that the turbulent production and viscous dissipation rate are significantly enhanced under the effect of the sphere with size of the same order of magnitude as the local boundary layer thickness.
APA, Harvard, Vancouver, ISO, and other styles
32

Kähler, Christian J., Sven Scharnowski, and Christian Cierpka. "Highly resolved experimental results of the separated flow in a channel with streamwise periodic constrictions." Journal of Fluid Mechanics 796 (April 29, 2016): 257–84. http://dx.doi.org/10.1017/jfm.2016.250.

Full text
Abstract:
The understanding and accurate prediction of turbulent flow separation on smooth surfaces is still a challenging task because the separation and the reattachment locations are not fixed in space and time. Consequently, reliable experimental data are essential for the validation of numerical flow simulations and the characterization and analysis of the complex flow physics. However, the uncertainty of the existing near-wall flow measurements make a precise analysis of the near-wall flow features, such as separation/reattachment locations and other predicted near-wall flow features which are under debate, often impossible. Therefore, the periodic hill experiment at TU Munich (ERCOFTAC test case 81) was repeated using high resolution particle image velocimetry and particle tracking velocimetry. The results confirm the strong effect of the spatial resolution on the near-wall flow statistics. Furthermore, it is shown that statistically stable values of the turbulent flow variables can only be obtained for averaging times which are challenging to realize with highly resolved large eddy simulation and direct numerical simulation techniques. Additionally, the analysis implies that regions of correlated velocity fluctuations with rather uniform streamwise momentum exist in the flow. Their size in the mean flow direction can be larger than the hill spacing. The possible impact of the correlated turbulent motion on the wake region is discussed, as this interaction might be important for the understanding and control of the flow separation dynamics on smooth bodies.
APA, Harvard, Vancouver, ISO, and other styles
33

Germano, M. "Turbulence: the filtering approach." Journal of Fluid Mechanics 238 (May 1992): 325–36. http://dx.doi.org/10.1017/s0022112092001733.

Full text
Abstract:
Explicit or implicit filtered representations of chaotic fields like spectral cut-offs or numerical discretizations are commonly used in the study of turbulence and particularly in the so-called large-eddy simulations. Peculiar to these representations is that they are produced by different filtering operators at different levels of resolution, and they can be hierarchically organized in terms of a characteristic parameter like a grid length or a spectral truncation mode. Unfortunately, in the case of a general implicit or explicit filtering operator the Reynolds rules of the mean are no longer valid, and the classical analysis of the turbulence in terms of mean values and fluctuations is not so simple.In this paper a new operatorial approach to the study of turbulence based on the general algebraic properties of the filtered representations of a turbulence field at different levels is presented. The main results of this analysis are the averaging invariance of the filtered Navier—Stokes equations in terms of the generalized central moments, and an algebraic identity that relates the turbulent stresses at different levels. The statistical approach uses the idea of a decomposition in mean values and fluctuations, and the original turbulent field is seen as the sum of different contributions. On the other hand this operatorial approach is based on the comparison of different representations of the turbulent field at different levels, and, in the opinion of the author, it is particularly fitted to study the similarity between the turbulence at different filtering levels. The best field of application of this approach is the numerical large-eddy simulation of turbulent flows where the large scale of the turbulent field is captured and the residual small scale is modelled. It is natural to define and to extract from the resolved field the resolved turbulence and to use the information that it contains to adapt the subgrid model to the real turbulent field. Following these ideas the application of this approach to the large-eddy simulation of the turbulent flow has been produced (Germano et al. 1991). It consists in a dynamic subgrid-scale eddy viscosity model that samples the resolved scale and uses this information to adjust locally the Smagorinsky constant to the local turbulence.
APA, Harvard, Vancouver, ISO, and other styles
34

Alhumairi, Mohammed, and Özgür Ertunç. "Active-grid turbulence effect on the topology and the flame location of a lean premixed combustion." Thermal Science 22, no. 6 Part A (2018): 2425–38. http://dx.doi.org/10.2298/tsci170503100a.

Full text
Abstract:
Lean premixed combustion under the influence of active-grid turbulence was computationally investigated, and the results were compared with experimental data. The experiments were carried out to generate a premixed flame at a thermal load of 9 kW from a single jet flow combustor. Turbulent combustion models, such as the coherent flame model and turbulent flame speed closure model were implemented for the simulations performed under different turbulent flow conditions, which were specified by the Reynolds number based on Taylor?s microscale, the dissipation rate of turbulence, and turbulent kinetic energy. This study shows that the applied turbulent combustion models differently predict the flame topology and location. However, similar to the experiments, simulations with both models revealed that the flame moves toward the inlet when turbulence becomes strong at the inlet, that is, when Re? at the inlet increases. The results indicated that the flame topology and location in the coherent flame model were more sensitive to turbulence than those in the turbulent flame speed closure model. The flame location behavior on the jet flow combustor significantly changed with the increase of Re?.
APA, Harvard, Vancouver, ISO, and other styles
35

Zhou, Xiao Lan, Cai Xi Liu, and Yu Hong Dong. "Turbulent Mass Transfer Simulations of Binary Electrolyte in Parallel-Plate Electrode Channel." Advanced Materials Research 550-553 (July 2012): 2014–18. http://dx.doi.org/10.4028/www.scientific.net/amr.550-553.2014.

Full text
Abstract:
Electrochemical mass transfer in turbulent flows and binary electrolytes is investigated. The primary objective is to provide information about mass transfer in the near-wall region between a solid boundary and a turbulent fluid flow at different Schmidt numbers. Based on the computational fluid dynamics and electrochemistry theories, a model for turbulent electrodes channel flow is established. The turbulent mass transfer in electrolytic processes has been predicted by the direct numerical simulation method under limiting current and galvanostatic conditions, we investigate mean concentration and the structure of the concentration fluctuating filed for different Schmidt numbers from 0.1 to 100 .The effect of different concentration boundary conditions at the electrodes on the near-wall turbulence statistics is also discussed.
APA, Harvard, Vancouver, ISO, and other styles
36

Markowski, Paul M., and George H. Bryan. "LES of Laminar Flow in the PBL: A Potential Problem for Convective Storm Simulations." Monthly Weather Review 144, no. 5 (May 2016): 1841–50. http://dx.doi.org/10.1175/mwr-d-15-0439.1.

Full text
Abstract:
In idealized simulations of convective storms, which are almost always run as large-eddy simulations (LES), the planetary boundary layers (PBLs) are typically laminar (i.e., they lack turbulent eddies). When compared with turbulent simulations, theory, or simulations with PBL schemes, the typically laminar LES used in the severe-storms community produce unrealistic near-surface vertical wind profiles containing excessive vertical wind shear when the lower boundary condition is nonfree slip. Such simulations are potentially problematic given the recent interest within the severe storms community in the influence of friction on vorticity generation within tornadic storms. Simulations run as LES that include surface friction but lack well-resolved turbulent eddies thus probably overestimate friction’s effects on storms.
APA, Harvard, Vancouver, ISO, and other styles
37

Vreman, A. W. "Particle-resolved direct numerical simulation of homogeneous isotropic turbulence modified by small fixed spheres." Journal of Fluid Mechanics 796 (April 28, 2016): 40–85. http://dx.doi.org/10.1017/jfm.2016.228.

Full text
Abstract:
A statistically stationary homogeneous isotropic turbulent flow modified by 64 small fixed non-Stokesian spherical particles is considered. The particle diameter is approximately twice the Kolmogorov length scale, while the particle volume fraction is 0.001. The Taylor Reynolds number of the corresponding unladen flow is 32. The particle-laden flow has been obtained by a direct numerical simulation based on a discretization of the incompressible Navier–Stokes equations on 64 spherical grids overset on a Cartesian grid. The global (space- and time-averaged) turbulence kinetic energy is attenuated by approximately 9 %, which is less than expected. The turbulence dissipation rate on the surfaces of the particles is enhanced by two orders of magnitude. More than 5 % of the total dissipation occurs in only 0.1 % of the flow domain. The budget of the turbulence kinetic energy has been computed, as a function of the distance to the nearest particle centre. The budget illustrates how energy relatively far away from particles is transported towards the surfaces of the particles, where it is dissipated by the (locally enhanced) turbulence dissipation rate. The energy flux towards the particles is dominated by turbulent transport relatively far away from particles, by viscous diffusion very close to the particles, and by pressure diffusion in a significant region in between. The skewness and flatness factors of the pressure, velocity and velocity gradient have also been computed. The global flatness factor of the longitudinal velocity gradient, which characterizes the intermittency of small scales, is enhanced by a factor of six. In addition, several point-particle simulations based on the Schiller–Naumann drag correlation have been performed. A posteriori tests of the point-particle simulations, comparisons in which the particle-resolved results are regarded as the standard, show that, in this case, the point-particle model captures both the turbulence attenuation and the fraction of the turbulence dissipation rate due to particles reasonably well, provided the (arbitrary) size of the fluid volume over which each particle force is distributed is suitably chosen.
APA, Harvard, Vancouver, ISO, and other styles
38

OHLSSON, JOHAN, PHILIPP SCHLATTER, PAUL F. FISCHER, and DAN S. HENNINGSON. "Direct numerical simulation of separated flow in a three-dimensional diffuser." Journal of Fluid Mechanics 650 (March 19, 2010): 307–18. http://dx.doi.org/10.1017/s0022112010000558.

Full text
Abstract:
A direct numerical simulation (DNS) of turbulent flow in a three-dimensional diffuser at Re = 10000 (based on bulk velocity and inflow-duct height) was performed with a massively parallel high-order spectral element method running on up to 32768 processors. Accurate inflow condition is ensured through unsteady trip forcing and a long development section. Mean flow results are in good agreement with experimental data by Cherry et al. (Intl J. Heat Fluid Flow, vol. 29, 2008, pp. 803–811), in particular the separated region starting from one corner and gradually spreading to the top expanding diffuser wall. It is found that the corner vortices induced by the secondary flow in the duct persist into the diffuser, where they give rise to a dominant low-speed streak, due to a similar mechanism as the ‘lift-up effect’ in transitional shear flows, thus governing the separation behaviour. Well-resolved simulations of complex turbulent flows are thus possible even at realistic Reynolds numbers, providing accurate and detailed information about the flow physics. The available Reynolds stress budgets provide valuable references for future development of turbulence models.
APA, Harvard, Vancouver, ISO, and other styles
39

Ozdemir, Celalettin E., Tian-Jian Hsu, and S. Balachandar. "Direct numerical simulations of instability and boundary layer turbulence under a solitary wave." Journal of Fluid Mechanics 731 (August 28, 2013): 545–78. http://dx.doi.org/10.1017/jfm.2013.361.

Full text
Abstract:
AbstractA significant amount of research effort has been made to understand the boundary layer instability and the generation and evolution of turbulence subject to periodic/oscillatory flows. However, little is known about bottom boundary layers driven by highly transient and intermittent free-stream flow forcing, such as solitary wave motion. To better understand the nature of the instability mechanisms and turbulent flow characteristics subject to solitary wave motion, a large number of direct numerical simulations are conducted. Different amplitudes of random initial fluctuating velocity field are imposed. Two different instability mechanisms are observed within the range of Reynolds number studied. The first is a short-lived, nonlinear, long-wave instability which is observed during the acceleration phase, and the second is a broadband instability that occurs during the deceleration phase. Transition from a laminar to turbulent state is observed to follow two different breakdown pathways: the first follows the sequence of $K$-type secondary instability of a near-wall boundary layer at comparatively lower Reynolds number and the second one follows a breakdown path similar to that of free shear layers. Overall characteristics of the flow are categorized into four regimes as: (i) laminar; (ii) disturbed laminar; (iii) transitional; and (iv) turbulent. Our categorization into four regimes is consistent with earlier works. However, this study is able to provide more specific definitions through the instability characteristics and the turbulence breakdown process.
APA, Harvard, Vancouver, ISO, and other styles
40

Jovanović, J., M. Pashtrapanska, B. Frohnapfel, F. Durst, J. Koskinen, and K. Koskinen. "On the Mechanism Responsible for Turbulent Drag Reduction by Dilute Addition of High Polymers: Theory, Experiments, Simulations, and Predictions." Journal of Fluids Engineering 128, no. 1 (August 2, 2005): 118–30. http://dx.doi.org/10.1115/1.2073227.

Full text
Abstract:
Turbulent drag reduction by dilute addition of high polymers is studied by considering local stretching of the molecular structure of a polymer by small-scale turbulent motions in the region very close to the wall. The stretching process is assumed to restructure turbulence at small scales by forcing these to satisfy local axisymmetry with invariance under rotation about the axis aligned with the main flow. It can be shown analytically that kinematic constraints imposed by local axisymmetry force turbulence near the wall to tend towards the one-component state and when turbulence reaches this limiting state it must be entirely suppressed across the viscous sublayer. For the limiting state of wall turbulence, the statistical dynamics of the turbulent stresses, constructed by combining the two-point correlation technique and invariant theory, suggest that turbulent drag reduction by homogeneously distributed high polymers, cast into the functional space which emphasizes the anisotropy of turbulence, resembles the process of reverse transition from the turbulent state towards the laminar flow state. These findings are supported by results of direct numerical simulations of wall-bounded turbulent flows of Newtonian and non-Newtonian fluids and by experiments carried out, under well-controlled laboratory conditions, in a refractive index-matched pipe flow facility using state-of-the art laser-Doppler anemometry. Theoretical considerations based on the elastic behavior of a polymer and spatial intermittency of turbulence at small scales enabled quantitative estimates to be made for the relaxation time of a polymer and its concentration that ensure maximum drag reduction in turbulent pipe flows, and it is shown that predictions based on these are in very good agreement with available experimental data.
APA, Harvard, Vancouver, ISO, and other styles
41

Heinz, Stefan. "From Two-Equation Turbulence Models to Minimal Error Resolving Simulation Methods for Complex Turbulent Flows." Fluids 7, no. 12 (November 29, 2022): 368. http://dx.doi.org/10.3390/fluids7120368.

Full text
Abstract:
Hybrid RANS-LES methods are supposed to provide major contributions to future turbulent flow simulations, in particular for reliable flow predictions under conditions where validation data are unavailable. However, existing hybrid RANS-LES methods suffer from essential problems. A solution to these problems is presented as a generalization of previously introduced continuous eddy simulation (CES) methods. These methods, obtained by relatively minor extensions of standard two-equation turbulence models, represent minimal error simulation methods. An essential observation presented here is that minimal error methods for incompressible flows can be extended to stratified and compressible flows, which opens the way to addressing relevant atmospheric science problems (mesoscale to microscale coupling) and aerospace problems (supersonic or hypersonic flow predictions). It is also reported that minimal error methods can provide valuable contributions to the design of consistent turbulence models under conditions of significant modeling uncertainties.
APA, Harvard, Vancouver, ISO, and other styles
42

Kang, Young Seok, Dong-Ho Rhee, Yu Jin Song, and Jae Su Kwak. "Large Eddy Simulations on Film Cooling Flow Behaviors with Upstream Turbulent Boundary Layer Generated by Circular Cylinder." Energies 14, no. 21 (November 2, 2021): 7227. http://dx.doi.org/10.3390/en14217227.

Full text
Abstract:
Large eddy simulations on film cooling hole array on a flat plate was carried out to investigate upstream turbulence effect. Circular cylinders were configured to create a turbulent boundary layer and its diameter has been adjusted to generate 13% upstream turbulence intensity in the main flow. Due to the small pitch to diameter configuration of the cylinder, two-dimensional LES analysis was carried out in advance and the results showed that LES was an essential method to resolve flow field around and downstream circular cylinder, which was not available in RANS simulations. The three-dimensional LES results showed reasonable agreement in turbulence intensity and normalized velocity distributions along the vertical with measured data. According to the blowing ratio, the cooling flow coverage on the surface along the stream-wise direction was varied and well agreed with measured data. Additionally, upstream boundary flows were partially ingested inside the cooling hole and discharged again near along the centerline of the cooling hole. This accounted for film cooling effectiveness distribution inside the cooling hole surface and along the centerline. The current study revealed that the LES for predicting turbulent boundary layer behaviors due to upstream turbulence generation source was an effective and feasible method. Moreover, the LES effectively resolved flow fields such as film cooling flow behaviors and corresponding film cooling effectiveness distributions.
APA, Harvard, Vancouver, ISO, and other styles
43

Fernandez Oro, Jesús Manuel, Andrés Meana-Fernández, Monica Galdo Vega, Bruno Pereiras, and José González Pérez. "LES-based simulation of the time-resolved flow for rotor-stator interactions in axial fan stages." International Journal of Numerical Methods for Heat & Fluid Flow 29, no. 2 (February 4, 2019): 657–81. http://dx.doi.org/10.1108/hff-10-2017-0421.

Full text
Abstract:
Purpose The purpose of this paper is the development of a CFD methodology based on LES computations to analyze the rotor–stator interaction in an axial fan stage. Design/methodology/approach A wall-modeled large eddy simulation (WMLES) has been performed for a spanwise 3D extrusion of the central section of the fan stage. Computations were performed for three different operating conditions, from nominal (Q_N) to off-design (85 per cent Q_N and 70 per cent Q_N) working points. Circumferential periodic conditions were introduced to reduce the extent of the computational domain. The post-processing procedure enabled the segregation of unsteady deterministic features and turbulent scales. The simulations were experimentally validated using wake profiles and turbulent scales obtained from hot-wire measurements. Findings The transport of rotor wakes and both wake–vane and wake–wake interactions in the stator flow field have been analyzed. The description of flow separation, particularly at off-design conditions, is fully benefited from the LES performance. Rotor wakes impinging on the stator vanes generate a coherent large-scale vortex shedding at reduced frequencies. Large pressure fluctuations in the stagnation region on the leading edge of the vanes have been found. Research limitations/implications LES simulations have shown to be appropriate for the assessment of the design of an axial fan, especially for specific operating conditions for which a URANS model presents a lower performance for turbulence description. Originality/value This paper describes the development of an LES-based simulation to understand the flow mechanisms related to the rotor–stator interaction in axial fan stages.
APA, Harvard, Vancouver, ISO, and other styles
44

Schuster, Jean Jonathan, Cristiano Henrique Schuster, Eduardo Stüker, Áttila Leães Rodrigues, Luiz Eduardo Medeiros, and Felipe Denardin Costa. "OCORRÊNCIA DE INTERMITÊNCIA NA TRANSIÇÃO LAMINAR-TURBULENTA EM UM ESCOAMENTO DE COUETTE PLANO." Ciência e Natura 38 (July 20, 2016): 354. http://dx.doi.org/10.5902/2179460x20258.

Full text
Abstract:
The transition from laminar-turbulent flow regime is important in most of the fluid mechanics application areas. In the planetary boundary layer (PBL), the flow is predominantly turbulent. However, shortly after sunset, the incidence of solar radiation ceases and the surface begins to lose heat through the emission of long-wave, yielding in a thermical stratified stable boundary layer (SBL), where turbulence can be suppressed in almost all scales. Under these conditions the production of turbulence is predominantly mechanical, and at nights with strong stratification, the turbulent activity is reduced by several orders of magnitude and can rise abruptly in unpredictable ways, giving origin to a phenomenon known as global intermittency. The globla intermittency is a phenomenon that occurs in the transition flow in the PBL, similarly to intermittency which occurs in the laminar-turbulent transition. Thus, this work aims to develop a numerical experiment to reproduce the laminar-turbulent transition in a thermally stratified Couette flow, using a large eddy simulation model. The simulations show that for a certain range of parameters during the transition laminar-turbulent, turbulence appeared intermittently in the flow.
APA, Harvard, Vancouver, ISO, and other styles
45

Luo, Kun, Zhuo Wang, Dong Li, Junhua Tan, and Jianren Fan. "Fully resolved simulations of turbulence modulation by high-inertia particles in an isotropic turbulent flow." Physics of Fluids 29, no. 11 (November 2017): 113301. http://dx.doi.org/10.1063/1.4997731.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Manneville, Paul, and Joran Rolland. "On modelling transitional turbulent flows using under-resolved direct numerical simulations: the case of plane Couette flow." Theoretical and Computational Fluid Dynamics 25, no. 6 (October 24, 2010): 407–20. http://dx.doi.org/10.1007/s00162-010-0215-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Gohari, S. M. Iman, and Sutanu Sarkar. "Stratified Ekman layers evolving under a finite-time stabilizing buoyancy flux." Journal of Fluid Mechanics 840 (February 12, 2018): 266–90. http://dx.doi.org/10.1017/jfm.2018.58.

Full text
Abstract:
Stratified flow in nocturnal boundary layers is studied using direct numerical simulation (DNS) of the Ekman layer, a model problem that is useful to understand atmospheric boundary-layer (ABL) turbulence. A stabilizing buoyancy flux is applied for a finite time to a neutral Ekman layer. Based on previous studies and the simulations conducted here, the choice of $L_{\mathit{cri}}^{+}=Lu_{\ast }/\unicode[STIX]{x1D708}\approx 700$ ($L$ is the Obukhov length scale and $u_{\ast }$ is the friction velocity) provides a cooling flux that is sufficiently strong to cause the initial collapse of turbulence. The turbulent kinetic energy decays over a time scale of $4.06L/u_{\ast }$ during the collapse. The simulations suggest that imposing $L_{\mathit{cri}}^{+}\approx 700$ on the neutral Ekman layer results in turbulence collapse during the initial transient, independent of Reynolds number, $Re_{\ast }$. However, the long-time state of the flow, i.e. turbulent with spatial intermittency or non-turbulent, is found to depend on the initial value of $Re_{\ast }$ since the cooling flux and resultant stratification increase with $Re_{\ast }$ for a given $L^{+}$. The lower-$Re_{\ast }$ cases have sustained turbulence with shear and stratification profiles that evolve in a manner such that the gradient Richardson number, $Ri_{g}$, in the near-surface layer, including the low-level jet, remains subcritical. The highest $Re_{\ast }$ case has supercritical $Ri_{g}$ in the low-level jet and turbulence does not recover. A theoretical discussion is performed to infer that the bulk Richardson number, $Ri_{b}$, is more suitable than $L^{+}$ to determine the fate of stratified Ekman layers at late time. DNS results support the implications of $Ri_{b}$ for the effect of initial $Re_{\ast }$ and $L^{+}$ on the flow.
APA, Harvard, Vancouver, ISO, and other styles
48

de With, G., and A. E. Holdø. "The Use of Solution Adaptive Grid for Modeling Small Scale Turbulent Structures." Journal of Fluids Engineering 127, no. 5 (May 12, 2005): 936–44. http://dx.doi.org/10.1115/1.1989359.

Full text
Abstract:
The use of large eddy simulation (LES) is computationally intensive and various studies demonstrated the considerable range of vortex scales to be resolved in an LES type of simulation. The purpose of this study is to investigate the use of a dynamic grid adaptation (DGA) algorithm. Despite many developments related to adaptive methods and adaptive grid strategies, the use of DGA in the context of turbulence modeling is still not well understood, and various profound problems with DGA in relation to turbulence modeling are still present. The work presented in this paper focuses on the numerical modeling of flow around a circular cylinder in the sub-critical flow regime at a Reynolds number of 3.9∙103. LES simulations with conventional mesh and DGA have been performed with various mesh sizes, refinement criteria and re-meshing frequency, to investigate the effects of re-meshing on the flow field prediction. The results indicate that the turbulent flow field is sensitive to modifications in the mesh and re-meshing frequency, and it is suggested that the re-meshing in the unsteady flow region is affecting the onset of small scale flow motions in the free shear layer.
APA, Harvard, Vancouver, ISO, and other styles
49

Harada, Yuji, Kenji Uchida, Tatsuya Tanaka, Kiyotaka Sato, Qianjin Zhu, Hidefumi Fujimoto, Hiroyuki Yamashita, and Mamoru Tanahashi. "Wall heat transfer of unsteady near-wall flow in internal combustion engines." International Journal of Engine Research 20, no. 7 (June 10, 2019): 817–33. http://dx.doi.org/10.1177/1468087419853432.

Full text
Abstract:
Although the near-wall turbulence is not fully developed in the engine combustion chamber, wall heat transfer models based on flow characteristics in fully developed near-wall turbulence are typically employed in engine simulations to predict heat transfer. Only few studies reported the wall heat transfer mechanism in near-wall flow where the near-wall turbulence was not fully developed as expected in the engine combustion chamber. In this study, the velocity distribution and wall heat flux in such a near-wall flow were evaluated using a rapid compression and expansion machine. In addition to the experimental approach, a numerical simulation with highly resolved calculation mesh was applied in various flow fields expected in the engine combustion chamber. As a result, the turbulent Reynolds number that represents the relationship between turbulent production and dissipation varied in the wall boundary layer according to the near-wall flow condition. This behavior affects the wall heat transfer. Considering this finding, a new model was formulated by introducing a ratio of turbulent Reynolds number in an intended near-wall flow to that in fully developed near-wall turbulence. It was confirmed that the proposed model could improve the prediction accuracy of wall heat flux even in near-wall flow where the near-wall turbulence was not fully developed. By applying the proposed model in engine computational fluid dynamics, it was found that the proposed model could predict the wall heat flux in a homogeneous charge compression ignition gasoline engine with acceptable accuracy.
APA, Harvard, Vancouver, ISO, and other styles
50

Ghodke, Chaitanya D., and Sourabh V. Apte. "DNS study of particle-bed–turbulence interactions in an oscillatory wall-bounded flow." Journal of Fluid Mechanics 792 (March 1, 2016): 232–51. http://dx.doi.org/10.1017/jfm.2016.85.

Full text
Abstract:
Particle-resolved direct numerical simulations (DNS) are performed to investigate the behaviour of an oscillatory flow field over a rough bed, corresponding to the experimental set-up of Keiller & Sleath (J. Fluid Mech., vol. 73 (04), 1976, pp. 673–691) for transitional and turbulent flows over a range of Reynolds numbers (95–400) based on the Stokes-layer thickness. It is shown that the roughness modulates the near-bed turbulence, produces streamwise horseshoe structures which then undergo distortion and breaking, and therefore reduces the large-scale anisotropy. A fully developed equilibrium turbulence is observed in the central part of the oscillation cycle, with two-component turbulence in the near-bed region and cigar-shaped turbulence in the outer region. A double averaging of the flow field reveals spatial inhomogeneities at the roughness scale and alternate paths of energy transport in the turbulent kinetic energy (TKE) budget. Contrary to the unidirectional, steady flow over rough beds, bed-induced production terms are important and comparable to the shear production term. It is shown that the near-bed velocity and pressure fluctuations are non-Gaussian, a result of critical importance for the modelling of incipient motion of sediment grains.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography