Academic literature on the topic 'Under-actuated finger'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Under-actuated finger.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Under-actuated finger"
Che, D., and W. Zhang. "Active gesture-changeable underactuated finger for humanoid robot hand based on multiple tendons." Mechanical Sciences 1, no. 1 (December 22, 2010): 27–32. http://dx.doi.org/10.5194/ms-1-27-2010.
Full textLiu, Siyun, Wenzeng Zhang, and Jie Sun. "A coupled and indirectly self-adaptive under-actuated hand with double-linkage-slider mechanism." Industrial Robot: the international journal of robotics research and application 46, no. 5 (August 19, 2019): 660–71. http://dx.doi.org/10.1108/ir-12-2018-0247.
Full textErtas, Ismail Hakan, Elif Hocaoglu, and Volkan Patoglu. "AssistOn-Finger: An under-actuated finger exoskeleton for robot-assisted tendon therapy." Robotica 32, no. 8 (July 17, 2014): 1363–82. http://dx.doi.org/10.1017/s0263574714001957.
Full textHuang, Hai, Shu Qiang Jiang, Yong Jie Pang, and Jiang Li. "A Bio-Mechanical Designed Under-Actuated Hand and Force Control Schemes." Advanced Materials Research 538-541 (June 2012): 3281–85. http://dx.doi.org/10.4028/www.scientific.net/amr.538-541.3281.
Full textXia, Yan, Rong Qiang Liu, Hong Wei Guo, and Zong Quan Deng. "Design and Analysis of an Under-Actuated Self-Adaptive Mechanical Hand." Applied Mechanics and Materials 602-605 (August 2014): 1083–89. http://dx.doi.org/10.4028/www.scientific.net/amm.602-605.1083.
Full textZhang, Wenzeng. "UNDER-ACTUATED HUMANOID ROBOT FINGER WITH SHAPE ADAPTATION." Chinese Journal of Mechanical Engineering 40, no. 10 (2004): 115. http://dx.doi.org/10.3901/jme.2004.10.115.
Full textCHE, DEMENG, and WENZENG ZHANG. "A DEXTEROUS AND SELF-ADAPTIVE HUMANOID ROBOT HAND: GCUA HAND." International Journal of Humanoid Robotics 08, no. 01 (March 2011): 73–86. http://dx.doi.org/10.1142/s0219843611002435.
Full textZHANG, WENZENG, DEYANG ZHAO, HAIPENG ZHOU, ZHENGUO SUN, DONG DU, and QIANG CHEN. "TWO-DOF COUPLED AND SELF-ADAPTIVE (COSA) FINGER: A NOVEL UNDER-ACTUATED MECHANISM." International Journal of Humanoid Robotics 10, no. 02 (June 2013): 1330001. http://dx.doi.org/10.1142/s0219843613300018.
Full textZHANG, Wenzeng. "Development of Gesture-Changeable under-actuated Humanoid Robotic Finger." Chinese Journal of Mechanical Engineering 23, no. 02 (2010): 142. http://dx.doi.org/10.3901/cjme.2010.02.142.
Full textZhang, Xiaoguang, Taoyuanmin Zhu, Itsui Yamayoshi, and Dennis Hong. "Dexterity, Sensitivity and Versatility: An Under Actuated Robotic Hand with Mechanical Intelligence and Proprioceptive Actuation." International Journal of Humanoid Robotics 17, no. 02 (February 13, 2020): 2050006. http://dx.doi.org/10.1142/s0219843620500061.
Full textDissertations / Theses on the topic "Under-actuated finger"
Hamon, Pol. "Conception et contrôle d'un préhenseur sous-actionné pour la saisie d'objets complexes." Electronic Thesis or Diss., Ecole centrale de Nantes, 2022. http://www.theses.fr/2022ECDN0065.
Full textThis PhD thesis presents a hand architecture with three under-actuated fingers. Each finger performs spatial movements toachieve more complex and varied grasping than the existing planar-movement fingers. The purpose of this hand is to grasp complexshaped workpieces as they leave the machining centers. Among the taxonomy of grips, cylindrical and spherical grips are often used to grasp heavy objects. After a presentation of the kinematics of the fingers with the cylindrical and spherical grips of a prototype, this article proposes to approach the problem of stability in a generic case before focusing on the case of gripping a disc. Theoretical results are compared to a dynamic simulation with the ADAMS software. In this thesis, the choice is made of an actuation by pneumatic muscles powered by a single pneumatic power source. The implication of this choice of actuation on the stability of the part in a 3-finger robotic hand is presented. A complete prototype of the hand is built, which makes it possible to validate the whole of the choices and to start the control of gripper under actuated in force and speed with a control without a model. At first, this control strategy is applied for a finger with one degree of freedom before being extended to the prototype of the robotic hand
Santos, João Guilherme Alves dos. "Bio-inspired robotic gripper with hydrogel-silicone soft skin and 3d printed endoskeleton." Master's thesis, 2017. http://hdl.handle.net/10316/82840.
Full textNeste projeto, desenvolve-se um dedo inovador e inspirado biologicamente, com fisiologia semelhante à de um dedo humano. O dedo "soft" é feito com um núcleo impresso em 3D para substituir o endoesqueleto dos dedos humanos, com uma pele elástica de silicone para substituir a camada epidérmica elástica e resiliente e um enchimento de hidrogel para substituir a camada dérmica. No dedo humano, a camada dérmica é mais macia do que a camada epidérmica e contém uma quantidade considerável de água, portanto, deve ser protegida pela camada epidérmica, que é mais resistente. Esta não só protege a camada subjacente do desgaste mecânico, mas também fornece uma barreira contra a perda de água. Por outro lado, a camada dérmica, ao ser mais suave, ajuda numa melhor adaptação local da pele para agarrar os objectos eficientemente. A camada epidérmica de silicone destina-se a ser elástica, maleável e protege o hidrogel de maneira que este não perca água ao longo do tempo. O enchimento de hidrogel do dedo é feito de poliacrilato de sódio e água destilada; o material utilizado como silicone é Ecoflex 00-30 e o endoesqueleto do dedo é feito de acrilonitrilo butadina estireno (ABS).Também foi desenvolvido um protótipo de baixo custo de uma pinça sub-atuada integrando três destes dedos. Tem um mecanismo baseado nos "push base toys" e foi inteiramente impresso numa impressora "fusion deposition modelling" (FDM) com material ácido poliláctico (PLA). Um único motor acciona o sistema puxando para cima e para baixo os tendões que estão integrados nos dedos, forçando-os abrir ou fechar, com o propósito de agarrar ou soltar objetos.Os dedos foram primeiramente testados individualmente. A força necessária para a flexão total dos dedos foi medida e comparada com uma versão anterior do dedo que contém apenas a camada epidérmica sem a camada dérmica de hidrogel. Os resultados mostram uma melhora na redução da força necessária para a flexão. Também a pinça integrada com a nova versão dos dedos foi desenvolvida e testada para agarrar vários objectos incluindo frutas macias.No final da dissertação, alguns ensaios de \textit{pick and place} são analisados e é concluído que foi conseguido um dedo "soft" óptimo que pode ser usado em pinças e próteses. Apesar do seu excelente desempenho, o preço geral dos materias usados para a pinça robótica desenvolvida nesta dissertação é de 15 Euros, incluindo o actuador. Também é apresentado trabalho futuro tanto para a pinça como para o dedo "soft".
On this project, an innovative and bio-inspired finger is developed, resembling the physiology of a biological human finger. The soft finger is made of a 3D-printed core to substitute the fingers’ endoskeleton, a silicon elastomer skin to substitute the elastic and resilient epidermal layer and a hydrogel filling to substitute the dermal layer. The dermal layer in human finger is softer than the epidermal layer and contains a considerable amount of water, and therefore should be protected by the more resilient epidermal layer, that not only protects the underlying layer from mechanical wear, but it also provides a barrier against losing the water. On the other hand, the softer dermal layer helps in better local adaptation of the skin to objects for efficient grasping. The silicone epidermal layer is intended to be elastic, malleable and protects the hydrogel from losing water over the time. The hydrogel filling of the finger is made from sodium polyacrylate (SPA) and distilled water; the material used as the silicone is Ecoflex 00-30 and the finger core is made of acrylonitrile butadine styrene (ABS).A low-cost prototype of an under-actuated gripper was also developed integrating three of these fingers. It has a mechanism based on the push base toys and it was fully printed on a fusion deposition modelling (FDM) printed with polylactic acid material (PLA). A single motor actuates the system by pulling up and down the tendons that are integrated in the fingers, making them open or close, in order to grip or drop objects.Fingers were tested first individually.The required force for full flexion of the fingers were measured and compared to a previous version of the finger that contains only the epidermal layer without containing the hydrogel dermal layer. Results show an improvement in reduction of the required force for flexion. Also the integrated gripper with the new version of the fingers were developed and tested for grasping several objects including soft fruits.At the end of the dissertation, some gripping tests are analysed and concluding that was achieved an optimal soft finger that can be used in grippers and prosthesis. Despite its excellent performance, the overall bill of materials of the full gripper developed in this dissertation is 15 Euros, including the actuator. Also future work is presented both for the gripper and the soft finger.
Jafargholibeik, Nasim. "Design and optimization of a three-fingered robot hand." Thesis, 2011. http://hdl.handle.net/10155/154.
Full textUOIT
Book chapters on the topic "Under-actuated finger"
Liu, Yifan, and Wenzeng Zhang. "Hybrid Under-Actuated Robotic Finger with Triple Pulley-Belt Mechanism." In Informatics in Control, Automation and Robotics, 447–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25992-0_62.
Full textNiola, Vincenzo, Cesare Rossi, and Sergio Savino. "Influence of the Tendon Design on the Behavior of an Under-Actuated Finger." In Advances in Service and Industrial Robotics, 1033–42. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61276-8_111.
Full textSavino, Sergio. "Multibody Model of Under-Actuated Tendon Driven Finger to Study the Antagonist Tendon." In Mechanisms and Machine Science, 175–82. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48375-7_19.
Full textSun, Jie, and Wenzeng Zhang. "COSA Finger: A Coupled and Self-Adaptive Under-actuated Unit for Humanoid Robotic Hand." In Social Robotics, 172–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-17248-9_18.
Full textFeng, Rui, and Yifan Wei. "Analyses of a Novel Under-Actuated Double Fingered Dexterous Hand." In Intelligent Robotics and Applications, 727–38. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65292-4_63.
Full textConference papers on the topic "Under-actuated finger"
Bandara, D. S. V., R. A. R. C. Gopura, G. Kajanthan, M. Brunthavan, and H. I. M. M. Abeynayake. "An under-actuated mechanism for a robotic finger." In 2014 IEEE 4th Annual International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER). IEEE, 2014. http://dx.doi.org/10.1109/cyber.2014.6917498.
Full textWassink, Martin, Raffaella Carloni, and Stefano Stramigioli. "Compliance analysis of an under-actuated robotic finger." In EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob 2010). IEEE, 2010. http://dx.doi.org/10.1109/biorob.2010.5628054.
Full textLi, Qi, Dan Wang, Wenzeng Zhang, and Zhenguo Sun. "Switchable under-actuated finger with multiple grasping modes." In 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2013. http://dx.doi.org/10.1109/robio.2013.6739545.
Full textSabetian, Pouya, Amir Feizollahi, Farzad Cheraghpour, and S. Ali A. Moosavian. "A compound robotic hand with two under-actuated fingers and a continuous finger." In 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). IEEE, 2011. http://dx.doi.org/10.1109/ssrr.2011.6106774.
Full textWang, Long, Wenzeng Zhang, Yuming Ye, Qiang Chen, and Dong Du. "The indirect style under-actuated robotic finger with tendon-slider mechanisms." In 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2009. http://dx.doi.org/10.1109/robio.2009.5420428.
Full textOzawa, Ryuta, and Michinori Moriya. "Effects of elasticity on an under-actuated tendon-driven robotic finger." In 2010 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2010. http://dx.doi.org/10.1109/robio.2010.5723444.
Full textAhrary, Alireza. "A novel approach to mechanical design of under-actuated robot finger." In 2012 IEEE International Conference on Control System, Computing and Engineering (ICCSCE). IEEE, 2012. http://dx.doi.org/10.1109/iccsce.2012.6487157.
Full textZhou, Haipeng, Lei Yang, Wenzeng Zhang, Zhenguo Sun, and Qiang Chen. "COSA-UDA finger: A novel coupled and self-adaptive under-actuated finger with upside-down actuator." In 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2012. http://dx.doi.org/10.1109/robio.2012.6491327.
Full textZhao, Longchao, and Satyandra K. Gupta. "Design, Manufacturing, and Characterization of a Pneumatically-Actuated Soft Hand." In ASME 2018 13th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/msec2018-6622.
Full textSarakoglou, Ioannis, Anais Brygo, Dario Mazzanti, Nadia Garcia Hernandez, Darwin G. Caldwell, and Nikos G. Tsagarakis. "HEXOTRAC: A highly under-actuated hand exoskeleton for finger tracking and force feedback." In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2016. http://dx.doi.org/10.1109/iros.2016.7759176.
Full text