Academic literature on the topic 'Uncertainty Analysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Uncertainty Analysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Uncertainty Analysis"
Griffin, R. L. "Uncertain about uncertainty in pest risk analysis." Acta Horticulturae, no. 1105 (December 2015): 315–20. http://dx.doi.org/10.17660/actahortic.2015.1105.45.
Full textLerche, I., and F. Rocha-Legoretta. "Risking Basin Analysis Results." Energy Exploration & Exploitation 21, no. 2 (April 2003): 81–164. http://dx.doi.org/10.1260/014459803322362459.
Full textChen, Si, Guoqi Xie, Renfa Li, and Keqin Li. "Uncertainty Theory Based Partitioning for Cyber-Physical Systems with Uncertain Reliability Analysis." ACM Transactions on Design Automation of Electronic Systems 27, no. 3 (May 31, 2022): 1–19. http://dx.doi.org/10.1145/3490177.
Full textKim, Eung Seok. "Analysis of Runoff According to Application of SWMM-LID Element Technology (II): Parameter Uncertainty Analysis." Journal of the Korean Society of Hazard Mitigation 20, no. 6 (December 31, 2020): 445–50. http://dx.doi.org/10.9798/kosham.2020.20.6.445.
Full textLongtin, Jon P. "The uncertainty tree: Reducing the uncertainty of uncertainty analysis." Review of Scientific Instruments 73, no. 10 (October 2002): 3698–700. http://dx.doi.org/10.1063/1.1505654.
Full textJiang, Chunlan, Zhengwei Liu, and Jinsong Wu. "Noncommutative uncertainty principles." Journal of Functional Analysis 270, no. 1 (January 2016): 264–311. http://dx.doi.org/10.1016/j.jfa.2015.08.007.
Full textKhosravi, Faramarz, Malte Müller, Michael Glaß, and Jürgen Teich. "Simulation-based uncertainty correlation modeling in reliability analysis." Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 232, no. 6 (March 19, 2018): 725–37. http://dx.doi.org/10.1177/1748006x18758720.
Full textHansen, Lars Peter. "Uncertainty in Economic Analysis and the Economic Analysis of Uncertainty." KNOW: A Journal on the Formation of Knowledge 1, no. 1 (March 2017): 171–97. http://dx.doi.org/10.1086/692519.
Full textPan, Qiuyu, and Zuqiang Meng. "Hybrid Uncertainty Calibration for Multimodal Sentiment Analysis." Electronics 13, no. 3 (February 5, 2024): 662. http://dx.doi.org/10.3390/electronics13030662.
Full textZhou, Shuang, Jianguo Zhang, Qingyuan Zhang, Ying Huang, and Meilin Wen. "Uncertainty Theory-Based Structural Reliability Analysis and Design Optimization under Epistemic Uncertainty." Applied Sciences 12, no. 6 (March 10, 2022): 2846. http://dx.doi.org/10.3390/app12062846.
Full textDissertations / Theses on the topic "Uncertainty Analysis"
Gomolka, Beth. "Service Offering Uncertainty Analysis Tool." Thesis, Linköping University, Linköping University, Department of Management and Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-19945.
Full textCompanies that seek to venture into providing services in addition to providing products have many business issues to consider as there are many differences between providing service and product offerings. One factor that needs to be considered in service offerings is the aspect of time, as services are offered for an extended period of time, creating a unique type of relationship between the customer and the service provider. With product offerings, the point of sale is usually the end of the product provider and customer relationship. The added time aspect in the service offering brings with it the issues of uncertainty as service contracts are made for a certain period of time in the future, where things are unknown.
This thesis looked at types of uncertainties important to service offerings, especially in the manufacturing industry. The uncertainties have an impact on how service offering contracts are constructed, as they can affect the profit and costs of the service provider. The three types of uncertainties that were examined were product malfunction uncertainty, service delivery uncertainty, and customer requirement uncertainty. Using these three types of uncertainty, mathematical models were constructed to represent the cost and revenue of different contract types. The different contract types were identified through a case study with a product manufacturer in Sweden. Different probability distributions were selected to model the three types of uncertainty based on a literature review. The mathematical models were then used to construct a software program, the uncertainty simulator tool, which service contract designers can use to model how uncertainties affect cost and revenue in their contracts.
Zomlot, Loai M. M. "Handling uncertainty in intrusion analysis." Diss., Kansas State University, 2014. http://hdl.handle.net/2097/17603.
Full textDepartment of Computing and Information Sciences
Xinming Ou
Intrusion analysis, i.e., the process of combing through Intrusion Detection System (IDS) alerts and audit logs to identify true successful and attempted attacks, remains a difficult problem in practical network security defense. The primary cause of this problem is the high false positive rate in IDS system sensors used to detect malicious activity. This high false positive rate is attributed to an inability to differentiate nearly certain attacks from those that are merely possible. This inefficacy has created high uncertainty in intrusion analysis and consequently causing an overwhelming amount of work for security analysts. As a solution, practitioners typically resort to a specific IDS-rules set that precisely captures specific attacks. However, this results in failure to discern other forms of the targeted attack because an attack’s polymorphism reflects human intelligence. Alternatively, the addition of generic rules so that an activity with remote indication of an attack will trigger an alert, requires the security analyst to discern true alerts from a multitude of false alerts, thus perpetuating the original problem. The perpetuity of this trade-off issue is a dilemma that has puzzled the cyber-security community for years. A solution to this dilemma includes reducing uncertainty in intrusion analysis by making IDS-nearly-certain alerts prominently discernible. Therefore, I propose alerts prioritization, which can be attained by integrating multiple methods. I use IDS alerts correlation by building attack scenarios in a ground-up manner. In addition, I use Dempster-Shafer Theory (DST), a non-traditional theory to quantify uncertainty, and I propose a new method for fusing non-independent alerts in an attack scenario. Finally, I propose usage of semi-supervised learning to capture an organization’s contextual knowledge, consequently improving prioritization. Evaluation of these approaches was conducted using multiple datasets. Evaluation results strongly indicate that the ranking provided by the approaches gives good prioritization of IDS alerts based on their likelihood of indicating true attacks.
Urganci, Ilksen. "Positional Uncertainty Analysis Using Data Uncertainy Engine A Case Study On Agricultural Land Parcels." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/3/12611409/index.pdf.
Full textand generating realisations of uncertain data for use in uncertainty propagation analyses. A case study area in Kocaeli, Turkey that mostly includes agricultural land parcels is selected in order to evaluate positional uncertainty and obtain uncertainty boundaries for manually digitized fields. Geostatistical evaluation of discrepancy between reference data and digitized polygons are undertaken to analyse auto and cross correlation structures of errors. This process is utilized in order to estimate error model parameters which are employed in defining an uncertainty model within DUE. Error model parameters obtained from training data, are used to generate simulations for test data. Realisations of data derived via Monte Carlo Simulation using DUE, are evaluated to generate uncertainty boundaries for each object guiding user for further analyses with pre-defined information related to the accuracy of spatial entities. It is also aimed to assess area uncertainties affected by the position of spatial entities. For all different correlation structures and object models, weighted average positional error for this study is between 2.66 to 2.91 meters. At the end of uncertainty analysis, deformable object model produced the smallest uncertainty bandwidth by modelling cross correlation.
Filipsson, Monika. "Uncertainty, variability and environmental risk analysis." Doctoral thesis, Linnéuniversitetet, Institutionen för naturvetenskap, NV, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-11193.
Full textNegativa effekter orsakade av skadliga ämnen och möjliga åtgärder bedöms och utvärderas i en miljöriskanalys, som kan delas i riskbedömning, riskkommunikation och riskhantering. Osäkerhet som beror på kunskapsbrist samt naturlig variabilitet finns alltid närvarande i denna process. Syftet med avhandlingen är att utvärdera några tillvägagångssätt samt diskutera hur osäkerhet och variabilitet hanteras då det är nödvändigt att båda hanteras trovärdigt och transparent för att riskbedömningen ska vara användbar för beslutsfattande. Metallers katalytiska effekt på bildning av klorerade aromatiska ämnen under upphettning av flygaska undersöktes (artikel I). Koppar visade en positiv katalytisk effekt medan kobolt, krom och vanadin istället katalyserade nedbrytningen. Kunskap om katalytisk potential för bildning av skadliga ämnen är viktigt vid val och design av förbränningsprocesser för att minska utsläppen, men det är också ett exempel på hur en fara kan identifieras och karaktäriseras. Information om exponeringsfaktorer som är viktiga i riskbedömning (fysiologiska parametrar, tidsanvändning och livsmedelskonsumtion) samlades in och analyserades (artikel II). Interindividuell variabilitet karaktäriserades av medel, standardavvikelse, skevhet, kurtosis (toppighet) och multipla percentiler medan osäkerhet i dessa parametrar skattades med konfidensintervall. Hur dessa statistiska parametrar kan tillämpas i exponeringsbedömningar visas i artikel III och IV. Probability bounds analysis användes som probabilistisk metod, vilket gör det möjligt att separera osäkerhet och variabilitet i bedömningen även när tillgången på data är begränsad. Exponeringsbedömningen i artikel III visade att vid nu rådande föroreningshalter i sediment i en badsjö så medför inte bad någon hälsofara. I artikel IV visades att osäkerhetsintervallet i den skattade exponeringen ökar när hänsyn tas till förändringar i klimatkänsliga modellvariabler. Riskhanterare måste ta hänsyn till försiktighetsprincipen och en ökad osäkerhet kan därmed få konsekvenser för riskhanteringsbesluten. Artikel V fokuserar på riskhantering och en enkät skickades till alla anställda som arbetar med förorenad mark på länsstyrelserna i Sverige. Det konstaterades att anställdas kön, ålder och erfarenhet har en inverkan på granskningsprocessen av riskbedömningar. Kön var den mest signifikanta variabeln, vilken också påverkade perceptionen av kunskap. Skillnader i de anställdas svar kunde också ses beroende på om riskbedömningen finansierades av statliga bidrag eller av en ansvarig verksamhetsutövare.
Söderman, Filip. "Uncertainty Analysis of the Aerodynamic Coefficients." Thesis, KTH, Flygdynamik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-223317.
Full textJohnson, David G. "Representations of uncertainty in risk analysis." Thesis, Loughborough University, 1998. https://dspace.lboro.ac.uk/2134/31941.
Full textWalker, A. M. "Uncertainty Analysis of Zone Fire Models." University of Canterbury. Civil Engineering, 1997. http://hdl.handle.net/10092/8298.
Full textGallagher, Raymond. "Uncertainty modelling in quantitative risk analysis." Thesis, University of Liverpool, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367676.
Full textCui, W. C. "Uncertainty analysis in structural safety assessment." Thesis, University of Bristol, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303742.
Full textGhate, Devendra. "Inexpensive uncertainty analysis for CFD applications." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:6be44a1d-6e2f-4bf9-b1e5-1468f92e21e3.
Full textBooks on the topic "Uncertainty Analysis"
1940-, Ronen Yigal, ed. Uncertainty analysis. Boca Raton, Fla: CRC Press, 1988.
Find full textMarivoet, J. Uncertainty analysis techniques. Luxembourg: Commission of the European Communities, 1987.
Find full textTung, Yeou-Koung. Hydrosystems engineering uncertainty analysis. New York: McGraw-Hill, 2005.
Find full textS, Kushwaha H., and Bhabha Atomic Research Centre. Health, Safety & Environment Group., eds. Uncertainty modeling and analysis. Mumbai: Health, Safety & Environment Group, Bhabha Atomic Research Centre, 2009.
Find full textSensitivity and uncertainty analysis. Boca Raton, Fla: Chapman & Hall/CRC, 2003.
Find full textDe Bièvre, Paul, and Helmut Günzler, eds. Measurement Uncertainty in Chemical Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05173-3.
Full textF, Dunn Patrick, ed. Uncertainty analysis for forensic science. 2nd ed. Tucson, Ariz: Lawyers & Judges Pub., 2009.
Find full textname, No. Measurement uncertainty in chemical analysis. Berlin: Springer, 2003.
Find full textPaul, De Bièvre, and Günzler Helmut, eds. Measurement uncertainty in chemical analysis. Berlin: Springer, 2003.
Find full textPointe, P. R. La, and Y. Zee Ma. Uncertainty analysis and reservoir modeling. Tulsa, OK: American Association of Petroleum Geologists, 2011.
Find full textBook chapters on the topic "Uncertainty Analysis"
Borgonovo, Emanuele. "Uncertainty Quantification." In Sensitivity Analysis, 117–27. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52259-3_13.
Full textYoe, Charles. "Uncertainty." In Principles of Risk Analysis, 27–46. Second edition. | Boca Raton : Taylor and Francis, CRC Press, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9780429021121-2.
Full textYoe, Charles. "Uncertainty." In Primer on Risk Analysis, 29–53. Second edition. | Boca Raton : Taylor & Francis, CRC Press, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9780429021145-2.
Full textMa, Y. Z. "Uncertainty Analysis." In Quantitative Geosciences: Data Analytics, Geostatistics, Reservoir Characterization and Modeling, 593–621. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17860-4_24.
Full textMauskopf, Josephine, and Stephanie Earnshaw. "Uncertainty Analysis." In Budget-Impact Analysis of Health Care Interventions, 129–38. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50482-7_8.
Full textRose, Adam, Fynnwin Prager, Zhenhua Chen, Samrat Chatterjee, Dan Wei, Nathaniel Heatwole, and Eric Warren. "Uncertainty Analysis." In Integrated Disaster Risk Management, 87–97. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-2567-9_7.
Full textCurry, Steve, and John Weiss. "Uncertainty." In Project Analysis in Developing Countries, 187–99. London: Palgrave Macmillan UK, 1993. http://dx.doi.org/10.1057/9780230378506_8.
Full textCurry, Steve, and John Weiss. "Uncertainty." In Project Analysis in Developing Countries, 225–37. London: Palgrave Macmillan UK, 2000. http://dx.doi.org/10.1057/9780230375116_9.
Full textLiu, Baoding. "Uncertain Risk Analysis." In Uncertainty Theory, 115–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13959-8_3.
Full textLiu, Baoding. "Uncertain Reliability Analysis." In Uncertainty Theory, 125–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13959-8_4.
Full textConference papers on the topic "Uncertainty Analysis"
Ye, Ruiqi, Mingxue Liao, Tianyu Cui, and Pin Lv. "The simulation of open one-side uncertain probability for fusion model of data uncertainty and data relation uncertainty." In 2018 IEEE 3rd International Conference on Big Data Analysis (ICBDA). IEEE, 2018. http://dx.doi.org/10.1109/icbda.2018.8367658.
Full textSzekely, Pedro, Yu-Han Chang, Rajiv Maheswaran, Yan Wang, Huihui Cheng, and Karan Singh. "Interactive uncertainty analysis." In the 2012 ACM international conference. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2166966.2167015.
Full textShushkevich, Tatyana V. "Uncertainty Analysis Tools." In 2018 XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE). IEEE, 2018. http://dx.doi.org/10.1109/apeie.2018.8545801.
Full textSeibel, Arthur, and Josef Schlattmann. "Buckling Analysis under Uncertainty." In Second International Conference on Vulnerability and Risk Analysis and Management (ICVRAM) and the Sixth International Symposium on Uncertainty, Modeling, and Analysis (ISUMA). Reston, VA: American Society of Civil Engineers, 2014. http://dx.doi.org/10.1061/9780784413609.215.
Full textChen, Wei, Ruichen Jin, and Agus Sudjianto. "Analytical Uncertainty Propagation via Metamodels in Simulation-Based Design Under Uncertainty." In 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-4356.
Full textWilcox, R. C., and B. M. Ayyub. "Uncertainty modeling of data and uncertainty propagation for risk studies." In Fourth International Symposium on Uncertainty Modeling and Analysis. ISUMA 2003. IEEE, 2003. http://dx.doi.org/10.1109/isuma.2003.1236160.
Full textSong, Gyun, and Man Kim. "Uncertainty Quantification for Passive Safety System and Treatment of Model Uncertainty." In 18th International Probabilistic Safety Assessment and Analysis (PSA 2023). Illinois: American Nuclear Society, 2023. http://dx.doi.org/10.13182/psa23-41009.
Full textNegreiros, J., M. Painho, A. Cristina Costa, P. Cabral, and F. Aguilar. "The local confidence uncertainty plume of SAKWeb©." In RISK ANALYSIS 2008. Southampton, UK: WIT Press, 2008. http://dx.doi.org/10.2495/risk080091.
Full textFabbri, A. G., and C. J. Chung. "On spatial uncertainty in hazard and risk assessment." In RISK ANALYSIS 2014. Southampton, UK: WIT Press, 2014. http://dx.doi.org/10.2495/risk140011.
Full textBu, T., and S. I. Aanonsen. "Surfactant flooding uncertainty analysis." In IOR 1991 - 6th European Symposium on Improved Oil Recovery. European Association of Geoscientists & Engineers, 1991. http://dx.doi.org/10.3997/2214-4609.201411207.
Full textReports on the topic "Uncertainty Analysis"
Worley, B. A. Deterministic uncertainty analysis. Office of Scientific and Technical Information (OSTI), December 1987. http://dx.doi.org/10.2172/5534706.
Full textHalderman, C., and M. Dunn. ATARR Uncertainty Analysis. Fort Belvoir, VA: Defense Technical Information Center, March 1991. http://dx.doi.org/10.21236/ada315475.
Full textCoutts, D. A. Uncertainty and calibration analysis. Office of Scientific and Technical Information (OSTI), March 1991. http://dx.doi.org/10.2172/10188883.
Full textMcCurley, R. Analysis of Infiltration Uncertainty. Office of Scientific and Technical Information (OSTI), October 2003. http://dx.doi.org/10.2172/836530.
Full textSmith, F., and M. Phifer. ENHANCED UNCERTAINTY ANALYSIS FOR SRS COMPOSITE ANALYSIS. Office of Scientific and Technical Information (OSTI), June 2011. http://dx.doi.org/10.2172/1023276.
Full textAaron J. Pawel and Dr. George L. Mesina. Uncertainty Analysis for RELAP5-3D. Office of Scientific and Technical Information (OSTI), August 2011. http://dx.doi.org/10.2172/1042350.
Full textAlexandra E Gertman and Dr. George L Mesina. Uncertainty Analysis of RELAP5-3D. Office of Scientific and Technical Information (OSTI), July 2012. http://dx.doi.org/10.2172/1056002.
Full textMakaruk, Hanna. Uncertainty in Experimental Data Analysis. Office of Scientific and Technical Information (OSTI), December 2020. http://dx.doi.org/10.2172/1734696.
Full textLeyva, Nha. Uncertainty Analysis and Software Verification. Office of Scientific and Technical Information (OSTI), July 2021. http://dx.doi.org/10.2172/1813900.
Full textCardoni, Jeffrey N., and Donald A. Kalinich. Fukushima Daiichi unit 1 uncertainty analysis--Preliminary selection of uncertain parameters and analysis methodology. Office of Scientific and Technical Information (OSTI), February 2014. http://dx.doi.org/10.2172/1204089.
Full text