Academic literature on the topic 'Unbiased Estimation of Estimator Variance'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Unbiased Estimation of Estimator Variance.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Unbiased Estimation of Estimator Variance"
Thanoon, Shaymaa Riyadh. "A comparison between Bayes estimation and the estimation of the minimal unbiased quadratic Standard of the bi-division variance analysis model in the presence of interaction." Tikrit Journal of Pure Science 25, no. 2 (March 17, 2020): 116. http://dx.doi.org/10.25130/j.v25i2.966.
Full textAladeitan, BENEDICTA, Adewale F. Lukman, Esther Davids, Ebele H. Oranye, and Golam B. M. Kibria. "Unbiased K-L estimator for the linear regression model." F1000Research 10 (August 19, 2021): 832. http://dx.doi.org/10.12688/f1000research.54990.1.
Full textHamza Raheem, Sairan. "Comparison Among Three Estimation Methods to Estimate Cascade Reliability Model (2+1) Based On Inverted Exponential Distribution." Ibn AL- Haitham Journal For Pure and Applied Sciences 33, no. 4 (October 20, 2020): 82. http://dx.doi.org/10.30526/33.4.2512.
Full textVincent, Odhiambo, Hellen Waititu, and Nyakundi Omwando Cornelious. "Nonparametric Estimation of Error Variance under Simple Random Sampling without Replacement." International Journal of Mathematics And Computer Research 10, no. 10 (October 21, 2022): 2925–33. http://dx.doi.org/10.47191/ijmcr/v10i10.02.
Full textRytgaard, Mette. "Estimation in the Pareto Distribution." ASTIN Bulletin 20, no. 2 (November 1990): 201–16. http://dx.doi.org/10.2143/ast.20.2.2005443.
Full textPisarenko, V. F., A. A. Lyubushin, V. B. Lysenko, and T. V. Golubeva. "Statistical estimation of seismic hazard parameters: Maximum possible magnitude and related parameters." Bulletin of the Seismological Society of America 86, no. 3 (June 1, 1996): 691–700. http://dx.doi.org/10.1785/bssa0860030691.
Full textVillanueva, Beatriz, and Javier Moro. "Variance and efficiency of the combined estimator in incomplete block designs of use in forest genetics: a numerical study." Canadian Journal of Forest Research 31, no. 1 (January 1, 2001): 71–77. http://dx.doi.org/10.1139/x00-138.
Full textHahn, Ute, and Dietrich Stoyan. "Unbiased stereological estimation of the surface area of gradient surface processes." Advances in Applied Probability 30, no. 4 (December 1998): 904–20. http://dx.doi.org/10.1239/aap/1035228199.
Full textHahn, Ute, and Dietrich Stoyan. "Unbiased stereological estimation of the surface area of gradient surface processes." Advances in Applied Probability 30, no. 04 (December 1998): 904–20. http://dx.doi.org/10.1017/s0001867800008715.
Full textNg, Set Foong, Pei Eng Ch’ng, Yee Ming Chew, and Kok Shien Ng. "Applying the Method of Lagrange Multipliers to Derive an Estimator for Unsampled Soil Properties." Scientific Research Journal 11, no. 1 (June 1, 2014): 15. http://dx.doi.org/10.24191/srj.v11i1.5416.
Full textDissertations / Theses on the topic "Unbiased Estimation of Estimator Variance"
Kannappa, Sandeep Mavuduru. "Reduced Complexity Viterbi Decoders for SOQPSK Signals over Multipath Channels." International Foundation for Telemetering, 2010. http://hdl.handle.net/10150/604300.
Full textHigh data rate communication between airborne vehicles and ground stations over the bandwidth constrained Aeronautical Telemetry channel is attributed to the development of bandwidth efficient Advanced Range Telemetry (ARTM) waveforms. This communication takes place over a multipath channel consisting of two components - a line of sight and one or more ground reflected paths which result in frequency selective fading. We concentrate on the ARTM SOQPSKTG transmit waveform suite and decode information bits using the reduced complexity Viterbi algorithm. Two different methodologies are proposed to implement reduced complexity Viterbi decoders in multipath channels. The first method jointly equalizes the channel and decodes the information bits using the reduced complexity Viterbi algorithm while the second method utilizes the minimum mean square error equalizer prior to applying the Viterbi decoder. An extensive numerical study is performed in comparing the performance of the above methodologies. We also demonstrate the performance gain offered by our reduced complexity Viterbi decoders over the existing linear receiver. In the numerical study, both perfect and estimated channel state information are considered.
Du, Jichang. "Covariate-matched estimator of the error variance in nonparametric regression." Diss., Online access via UMI:, 2007.
Find full textCarlsson, Martin. "Variance Estimation of the Calibration Estimator with Measurement Errors in the Auxiliary Information." Thesis, Örebro universitet, Handelshögskolan vid Örebro Universitet, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-68928.
Full textCardoso, João Nuno Martins. "Robust mean variance." Master's thesis, Instituto Superior de Economia e Gestão, 2015. http://hdl.handle.net/10400.5/10706.
Full textEste estudo empírico tem como objectivo avaliar o impacto da estimação robusta nos portefólios de média variância. Isto foi conseguido fazendo uma simulação do comportamento de 15 acções do SP500. Esta simulação inclui dois cenários: um com amostras que seguem uma distribuição normal e outro com amostras contaminadas não normais. Cada cenário inclui 200 reamostragens. O performance dos portefólios estimados usando a máxima verosimilhança (clássicos) e dos portefólios estimados de forma robusta são comparados, resultando em algumas conclusões: Em amostras normais, portefólios robustos são marginalmente menos eficientes que os portefólios clássicos. Contudo, em amostras não normais, os portefólios robustos apresentam um performance muito superior que os portefólios clássicos. Este acréscimo de performance está positivamente correlacionado com o nível de contaminação da amostra. Em suma, assumindo que os retornos financeiros têm uma distribuição não normal, podemos afirmar que os estimadores robustos resultam em portefólios de média variância mais estáveis.
This empirical study's objective is to evaluate the impact of robust estimation on mean variance portfolios. This was accomplished by doing a simulation on the behavior of 15 SP500 stocks. This simulation includes two scenarios: One with normally distributed samples and another with contaminated non-normal samples. Each scenario includes 200 resamples. The performance of maximum likelihood (classical) estimated portfolios and robustly estimated portfolios are compared, resulting in some conclusions: On normally distributed samples, robust portfolios are marginally less efficient than classical portfolios. However, on non-normal samples, robust portfolios present a much higher performance than classical portfolios. This increase in performance is positively correlated with the level of contamination present on the sample. In summary, assuming that financial returns do not present a normal distribution, we can state that robust estimators result in more stable mean variance portfolios.
Sadeghkhani, Abdolnasser. "Estimation d'une densité prédictive avec information additionnelle." Thèse, Université de Sherbrooke, 2017. http://hdl.handle.net/11143/11238.
Full textAbstract: In the context of Bayesian theory and decision theory, the estimation of a predictive density of a random variable represents an important and challenging problem. Typically, in a parametric framework, usually there exists some additional information that can be interpreted as constraints. This thesis deals with strategies and improvements that take into account the additional information, in order to obtain effective and sometimes better performing predictive densities than others in the literature. The results apply to normal models with a known or unknown variance. We describe Bayesian predictive densities for Kullback--Leibler, Hellinger, reverse Kullback-Leibler losses as well as for α--divergence losses and establish links with skew--normal densities. We obtain dominance results using several techniques, including expansion of variance, dual loss functions in point estimation, restricted parameter space estimation, and Stein estimation. Finally, we obtain a general result for the Bayesian estimator of a ratio of two exponential family densities.
Baba, Harra M'hammed. "Estimation de densités spectrales d'ordre élevé." Rouen, 1996. http://www.theses.fr/1996ROUES023.
Full textNaftali, Eran 1971. "First order bias and second order variance of the Maximum Likelihood Estimator with application to multivariate Gaussian data and time delay and Doppler shift estimation." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/88334.
Full textHarti, Mostafa. "Estimation robuste sous un modèle de contamination non symétrique et M-estimateur multidimensionnel." Nancy 1, 1986. http://www.theses.fr/1986NAN10063.
Full textKrishnan, Rajet. "Problems in distributed signal processing in wireless sensor networks." Thesis, Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/1351.
Full textTeixeira, Marcos Vinícius. "Estudos sobre a implementação online de uma técnica de estimação de energia no calorímetro hadrônico do atlas em cenários de alta luminosidade." Universidade Federal de Juiz de Fora (UFJF), 2015. https://repositorio.ufjf.br/jspui/handle/ufjf/4169.
Full textApproved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-04-25T15:26:43Z (GMT) No. of bitstreams: 1 marcosviniciusteixeira.pdf: 5877294 bytes, checksum: 8fe056549285d49782c2d9ec8e16f786 (MD5)
Made available in DSpace on 2017-04-25T15:26:43Z (GMT). No. of bitstreams: 1 marcosviniciusteixeira.pdf: 5877294 bytes, checksum: 8fe056549285d49782c2d9ec8e16f786 (MD5) Previous issue date: 2015-08-21
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Este trabalho tem como objetivo o estudo de técnicas para a estimação da amplitude de sinais no calorímetro de telhas (TileCal) do ATLAS no LHC em cenários de alta luminosidade. Em alta luminosidade, sinais provenientes de colisões adjacentes são observados, ocasionando o efeito de empilhamento de sinais. Neste ambiente, o método COF (do inglês, Constrained Optimal Filter), apresenta desempenho superior ao algoritmo atualmente implementado no sistema. Entretanto, o COF requer a inversão de matrizes para o cálculo da pseudo-inversa de uma matriz de convolução, dificultando sua implementação online. Para evitar a inversão de matrizes, este trabalho apresenta métodos interativos, para a daptação do COF, que resultam em operações matemáticas simples. Baseados no Gradiente Descendente, os resultados demonstraram que os algoritmos são capazes de estimar a amplitude de sinais empilhados, além do sinal de interesse com eficiência similar ao COF. Visando a implementação online, este trabalho apresenta estudos sobre a complexidade dos métodos iterativos e propõe uma arquitetura de processamento em FPGA. Baseado em uma estrutura sequencial e utilizando lógica aritmética em ponto fixo, os resultados demonstraram que a arquitetura desenvolvida é capaz executar o método iterativo, atendendo os requisitos de tempo de processamento exigidos no TileCal.
This work aims at the study of techniques for online energy estimation in the ATLAS hadronic Calorimeter (TileCal) on the LHC collider. During further periods of the LHC operation, signals coming from adjacent collisions will be observed within the same window, producing a signal superposition. In this environment, the energy reconstruction method COF (Constrained Optimal Filter) outperforms the algorithm currently implemented in the system. However , the COF method requires an inversion of matrices and its online implementation is not feasible. To avoid such inversion of matrices, this work presents iteractive methods to implement the COF, resulting in simple mathematical operations. Based on the Gradient Descent, the results demonstrate that the algorithms are capable of estimating the amplitude of the superimposed signals with efficiency similar to COF. In addition, a processing architecture for FPGA implementation is proposed. The analysis has shown that the algorithms can be implemented in the new TilaCal electronics, reaching the processing time requirements.
Books on the topic "Unbiased Estimation of Estimator Variance"
Malley, James D. Optimal Unbiased Estimation of Variance Components. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4615-7554-2.
Full textOptimal unbiased estimation of variance components. Berlin: Springer-Verlag, 1986.
Find full textNewey, Whitney K. Kernel estimation of partial means and a general variance estimator. Cambridge, Mass: Dept. of Economics, Massachusetts Institute of Technology, 1992.
Find full textOuyang, Zhao. Finite population corrections of the Horvitz-Thompson estimator and their application in estimating the variance of regression estimators. Fort Collins, Colo: U.S. Dept. of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station, 1997.
Find full textT, Schreuder Hans, Boes Duane C, and Rocky Mountain Forest and Range Experiment Station (Fort Collins, Colo.), eds. Finite population corrections of the Horvitz-Thompson estimator and their application in estimating the variance of regression estimators. Fort Collins, Colo. (3825 E. Mulberry St., Fort Collins 80524): U.S. Dept. of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station, 1997.
Find full textT, Schreuder Hans, Boes Duane C, and Rocky Mountain Forest and Range Experiment Station (Fort Collins, Colo.), eds. Finite population corrections of the Horvitz-Thompson estimator and their application in estimating the variance of regression estimators. Fort Collins, Colo. (3825 E. Mulberry St., Fort Collins 80524): U.S. Dept. of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station, 1997.
Find full textMalley, J. D. Optimal unbiased estimation of variance components. Springer, 1986.
Find full textOptimal Unbiased Estimation of Variance Components. Springer, 2012.
Find full textMalley, James D. Optimal Unbiased Estimation of Variance Components. Springer London, Limited, 2012.
Find full textAmina Ali Abd El-Fattah Saleh. Nonlinear unbiased estimators that dominate the intra-block estimator. 1986.
Find full textBook chapters on the topic "Unbiased Estimation of Estimator Variance"
Pillonetto, Gianluigi, Tianshi Chen, Alessandro Chiuso, Giuseppe De Nicolao, and Lennart Ljung. "Bias." In Regularized System Identification, 1–15. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95860-2_1.
Full textMalley, James D. "The Algebraic Structure of Variance Components." In Optimal Unbiased Estimation of Variance Components, 99–128. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4615-7554-2_9.
Full textMalley, James D. "The General Solution to Optimal Unbiased Estimation." In Optimal Unbiased Estimation of Variance Components, 60–69. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4615-7554-2_6.
Full textMalley, James D. "The Basic Model and The Estimation Problem." In Optimal Unbiased Estimation of Variance Components, 1–10. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4615-7554-2_1.
Full textMalley, James D. "Statistical Consequences of the Algebraic Structure Theory." In Optimal Unbiased Estimation of Variance Components, 129–37. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4615-7554-2_10.
Full textMalley, James D. "Concluding Remarks." In Optimal Unbiased Estimation of Variance Components, 138–39. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4615-7554-2_11.
Full textMalley, James D. "Basic Linear Technique." In Optimal Unbiased Estimation of Variance Components, 11–14. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4615-7554-2_2.
Full textMalley, James D. "Linearization of the Basic Model." In Optimal Unbiased Estimation of Variance Components, 15–28. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4615-7554-2_3.
Full textMalley, James D. "The Ordinary Least Squares Estimates." In Optimal Unbiased Estimation of Variance Components, 29–35. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4615-7554-2_4.
Full textMalley, James D. "The Seely-Zyskind Results." In Optimal Unbiased Estimation of Variance Components, 36–59. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4615-7554-2_5.
Full textConference papers on the topic "Unbiased Estimation of Estimator Variance"
Amini, Mohammadhadi, Arif I. Sarwat, S. S. Iyengar, and Ismail Guvenc. "Determination of the minimum-variance unbiased estimator for DC power-flow estimation." In IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2014. http://dx.doi.org/10.1109/iecon.2014.7048486.
Full textSpring, Ryan, and Anshumali Shrivastava. "Mutual Information Estimation using LSH Sampling." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/389.
Full textJensen, Tobias Lindstrom, and Elisabeth De Carvalho. "An Optimal Channel Estimation Scheme for Intelligent Reflecting Surfaces Based on a Minimum Variance Unbiased Estimator." In ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020. http://dx.doi.org/10.1109/icassp40776.2020.9053695.
Full textAgarwal, Ankush, and Emmanuel Gobet. "Finite variance unbiased estimation of stochastic differential equations." In 2017 Winter Simulation Conference (WSC). IEEE, 2017. http://dx.doi.org/10.1109/wsc.2017.8247930.
Full textLee, S. M. S. "Minimum variance unbiased estimation based on bootstrap iterations." In Proceedings 23rd International Conference Information Technology Interfaces. ITI 2001. IEEE, 2001. http://dx.doi.org/10.1109/iti.2001.938024.
Full textFillatre, Lionel, and Marc Antonini. "Uniformly minimum variance unbiased estimation for asynchronous event-based cameras." In 2014 IEEE International Conference on Image Processing (ICIP). IEEE, 2014. http://dx.doi.org/10.1109/icip.2014.7025834.
Full textChen, Kewei, Vijay Gupta, and Yih-Fang Huang. "Minimum variance unbiased estimation in the presence of an adversary." In 2017 IEEE 56th Annual Conference on Decision and Control (CDC). IEEE, 2017. http://dx.doi.org/10.1109/cdc.2017.8263658.
Full textAl-Isawi, Jasim M., Abdulhussein S. AL-Mouel, and Ali Hasan Ali. "Quadratic unbiased estimator of variance components in a multivariate repeated measurements model." In PROCEEDING OF THE 1ST INTERNATIONAL CONFERENCE ON ADVANCED RESEARCH IN PURE AND APPLIED SCIENCE (ICARPAS2021): Third Annual Conference of Al-Muthanna University/College of Science. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0093503.
Full textHsieh, Chien-Shu. "Optimal Filtering for Systems with Unknown Inputs Via Unbiased Minimum-Variance Estimation." In TENCON 2006 - 2006 IEEE Region 10 Conference. IEEE, 2006. http://dx.doi.org/10.1109/tencon.2006.344113.
Full textCui, Beibei, Xinmin Song, and Lin Tian. "Unbiased minimum-variance estimation for systems with measurement-delay and unknown inputs." In 2018 Chinese Automation Congress (CAC). IEEE, 2018. http://dx.doi.org/10.1109/cac.2018.8623167.
Full textReports on the topic "Unbiased Estimation of Estimator Variance"
Kott, Phillip S. The Degrees of Freedom of a Variance Estimator in a Probability Sample. RTI Press, August 2020. http://dx.doi.org/10.3768/rtipress.2020.mr.0043.2008.
Full textStock, James, and Mark Watson. Asymptotically Median Unbiased Estimation of Coefficient Variance in a Time Varying Parameter Model. Cambridge, MA: National Bureau of Economic Research, August 1996. http://dx.doi.org/10.3386/t0201.
Full textKline, Patrick. A Note on Variance Estimation for the Oaxaca Estimator of Average Treatment Effects. Cambridge, MA: National Bureau of Economic Research, January 2014. http://dx.doi.org/10.3386/w19784.
Full textCattaneo, Matias D., Richard K. Crump, and Weining Wang. Beta-Sorted Portfolios. Federal Reserve Bank of New York, July 2023. http://dx.doi.org/10.59576/sr.1068.
Full text