Academic literature on the topic 'Ultraviolet radiation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ultraviolet radiation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Ultraviolet radiation"

1

Śpiewak, Radosław. "Ultraviolet radiation." Dermatopedia 2 (2013): 011. http://dx.doi.org/10.14320/dermatopedia.pl.2013.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gallagher, Richard P., Tim K. Lee, Chris D. Bajdik, and Marilyn Borugian. "Ultraviolet radiation." Chronic Diseases and Injuries in Canada 29, Supplement 1 (2010): 51–68. http://dx.doi.org/10.24095/hpcdp.29.s1.04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schwarz, Thomas. "Ultraviolette Strahlung - Immunantwort. Ultraviolet radiation - Immune response." Journal der Deutschen Dermatologischen Gesellschaft 3, s2 (September 2005): S11—S18. http://dx.doi.org/10.1111/j.1610-0387.2005.04393.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kumar, Sunil, and Priyanka Kumari. "High intensity ultraviolet radiation induced changes in aquatic arthropod with retene and riboflavin." Environment Conservation Journal 12, no. 3 (December 22, 2011): 83–87. http://dx.doi.org/10.36953/ecj.2011.120316.

Full text
Abstract:
Ozone depletion is resulting into increase in ultraviolet radiation level in the world. Exposure to UV radiation has been found to have negative effects on aquatic and terrestrial organisms. Adverse effect of natural solar and artificial ultraviolet-B and UV-A radiations was observed in crustacean species Daphnia magna in presence of retene and riboflavin. Daphnia magna exposed to artificial ultraviolet-B with retene causes maximum physiological changes and mortality, indicating that enhanced solar UV-B exposure could be lethal to aquatic fauna. Artificial UV-B had a stronger damaging effect than solar radiation and become highly toxic in presence of retene. Riboflavin is slightly phototoxic in presence of solar and artificial UV radiation. Results on mortality rate indicated highest mortality in retene + ultraviolet-B exposed group followed by riboflavin + artificial ultraviolet - B radiation. A dose and intensity dependent change in mortality rate was observed. Retene and riboflavin photoproducts with ultraviolet radiation generate reactive oxygen species leading to cell injury and mortality thus are threat to aquatic biodiversity.
APA, Harvard, Vancouver, ISO, and other styles
5

Yaji, Tamaki. "Ultraviolet Radiation Sensors." JOURNAL OF THE ILLUMINATING ENGINEERING INSTITUTE OF JAPAN 78, no. 3 (1994): 113–19. http://dx.doi.org/10.2150/jieij1980.78.3_113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Henry, Richard C., and Jayant Murthy. "Ultraviolet Background Radiation." Astrophysical Journal 418 (November 1993): L17. http://dx.doi.org/10.1086/187105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Henry, Richard C. "Ultraviolet Background Radiation." Annual Review of Astronomy and Astrophysics 29, no. 1 (September 1991): 89–128. http://dx.doi.org/10.1146/annurev.aa.29.090191.000513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Parmegiani, Lodovico, Graciela Estela Cognigni, and Marco Filicori. "Ultraviolet radiation dose." Reproductive BioMedicine Online 22, no. 5 (May 2011): 503. http://dx.doi.org/10.1016/j.rbmo.2010.12.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kerr, J. B., and V. E. Fioletov. "Surface ultraviolet radiation." Atmosphere-Ocean 46, no. 1 (January 2008): 159–84. http://dx.doi.org/10.3137/ao.460108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Stanojevic, Milenko, Zorica Stanojevic, Dragan Jovanovic, and Milena Stojiljkovic. "Ultraviolet radiation and melanogenesis." Archive of Oncology 12, no. 4 (2004): 203–5. http://dx.doi.org/10.2298/aoo0404203s.

Full text
Abstract:
Light radiation is a part of the electromagnetic radiation, and it consists of the ultraviolet (UV) radiation, visible light, and infrared radiation. UV radiation energy is absorbed in the form of photons in biomolecules (chromophores) and induces various cellular reactions, out of which photochemical and photosensitizing are the most significant. In contact with the skin UV radiation incites protection mechanisms: the most important are stratum corneum thickening and melanin synthesis (melanogenesis). Basic role of melanin is absorption and scattering of UV rays and neutralization of free radicals. In this review physical characteristics of UV radiation, its biological effects, and relation to melanogenesis and carcinogenesis are discussed.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Ultraviolet radiation"

1

Löfgren, Stefan. "Cataract from ultraviolet radiation /." Stockholm : Karolinska Univ. Press, 2001. http://diss.kib.ki.se/2001/91-7349-065-2/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Podskochy, Alexander. "Ultraviolet radiation and cornea /." Stockholm : Karolinska institutet, 2002. http://diss.kib.ki.se/2002/91-7349-118-7/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tenkate, Thomas D. "Ultraviolet radiation exposure of welders." Thesis, Queensland University of Technology, 1994. https://eprints.qut.edu.au/36715/1/36715_Digitised%20Thesis.pdf.

Full text
Abstract:
Ultraviolet radiation (UVR) is a by-product of the welding process and is emitted by the arc formed between the electrode and the base metal. Exposure to UVR can produce acute and chronic effects on the eyes and skin, including photokeratitis and erythema (acute), and pterygium and skin cancer (chronic). The measurement of UVR can be used to determine the level of hazard posed by a particular source. The personal UVR exposure levels of a group of welders and nearby workers was estimated using a photosensitive polymer film, polysulphone. The polysulphone film was attached to eye protection, the workers clothing and also placed throughout the workarea. The estimated ocular exposures of all subjects were found to exceed the eight-hour maximum permissible exposure limit. As the main UVR protective measure for welders is a welding helmet, the degree of protection afforded by a range of helmets was investigated in a laboratory experiment. Radiation was found to be reflected off the filter and toward the eye after entering through: (1) an opening between the edge of the shield and the side of the face, and (2) an opening between the top lip of the shield and the top of the head. The results of this study suggest that welders require ocular protection in addition to welding helmets, and that all exposed skin surfaces of workers in a welding environment should also be protected.
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Xiang. "Computational analysis of ultraviolet reactors /." Online version of thesis, 2009. http://hdl.handle.net/1850/11175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mitchell, Kirsten Margaret Hilla. "Tropospheric ultraviolet radiation, photolysis and clouds." Thesis, Imperial College London, 2001. http://hdl.handle.net/10044/1/8622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Solomon, Cam Charles. "Melanoma and lifetime ultraviolet radiation exposure /." Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/10913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sheikh, Umar. "Re-entry radiation aerothermodynamics in the vacuum ultraviolet." Thesis, Châtenay-Malabry, Ecole centrale de Paris, 2014. http://www.theses.fr/2014ECAP0036/document.

Full text
Abstract:
L’un des défis majeurs pour la conception des capsules de rentrée concerne la modélisation des transferts convectifs et radiatifs à la surface du véhicule. A certains points des trajectoires de rentrée super-orbitale, jusqu’à 40% du flux radiatif total émane du domaine spectral VUV (vacuum ultraviolet), or c’est dans ce domaine que les incertitudes sont les plus fortes. Ce haut niveau d’incertitudes est dû en particulier à un manque de données expérimentales fiables. Le rayonnement VUV est en effet difficile à mesurer en raison de la forte absorption de l’air et des optiques utilisées pour sa mesure. Des difficultés d’analyse supplémentaires sont causées par le fort degré d’auto-absorption et par l’élargissement spectral des raies dans le VUV. L’objectif central de cette étude était d’obtenir des spectres d’émission expérimentaux calibrés dans le VUV afin d’étudier les processus physico-chimiques dans la couche de choc qui contrôlent le flux radiatif. Plus précisément, les objectifs étaient de comparer les spectres observés parallèlement et perpendiculairement à la couche de choc, d’étudier les effets sur l’intensité des raies spectrales émises dans le VUV de l’auto-absorption et de l’élargissement spectral en fonction de la profondeur de champ radiatif (épaisseur optique). Les mesures effectuées perpendiculairement et parallèlement à la surface d’une maquette placée dans l’écoulement représentent un premier jeu de données expérimentales calibrées dans le VUV qui seront utiles pour valider les codes de calcul destinés à prédire le flux radiatif incident. Les mesures obtenues pour différentes profondeurs de champ radiatif représentent quant à elles un ensemble de données expérimentales uniques pour la validation des modèles de transport radiatif et des coefficients d’élargissement des raies. Cette étude s’appuie également sur des simulations numériques afin d’évaluer les prédictions d’un solveur d’écoulement couplé à deux schémas cinétiques à travers la comparaison des spectres mesurés avec les spectres simulés par le code radiatif Specair. Pour atteindre ces objectifs, un banc optique a été conçu et mis en place pour mesurer l’intensité du rayonnement VUV produit autour d’une maquette bidimensionnelle émoussée, avec une résolution spatiale suffisante pour résoudre le profil d’émission dans la couche de choc. La résolution spatiale a été choisie de façon à pouvoir effectuer des mesures du rayonnement dans les zones d’équilibre et hors équilibre de la couche de choc. Un deuxième système a été conçu pour obtenir des mesures du rayonnement VUV incident sur la surface de la maquette. Ce système est constitué d’un hublot placé sur la surface de la maquette et d’un miroir logé à l’intérieur de la maquette pour transmettre le rayonnement vers le système de détection. La profondeur du champ radiatif peut être variée en modifiant la longueur de la maquette, ce qui change l’épaisseur de la couche de choc observée. Le tunnel à détente X2 a été utilisé pour créer les écoulements à haute enthalpie nécessaires pour produire les couches de choc émissives. Deux conditions d’écoulement ont été générées pour cette étude de façon à reproduire des vitesses équivalentes de vol de 10 et 12.2 km/s. Le système spectroscopique utilisé pour ces études comprend un spectromètre McPherson NOVA 225 sous vide couplé à une caméra ICCD Andor iStar de réponse renforcée dans le VUV. Un tube optique scellé par une fenêtre en fluorine a été installé pour prolonger le trajet optique sous vide jusqu’à la maquette de façon à éliminer l’absorption par l’oxygène moléculaire. Le système spectroscopique a été calibré in situ avec une lampe à deutérium placée à l’endroit de la couche de choc rayonnante. L’intensité spectrale incidente sur la surface de la maquette, intégrée entre 115 et 180 nm, est de 0,744 W/cm²sr pour une vitesse d’écoulement de 10 km/s et 12,3 W/cm²sr à 12.2 km/s. [...]
A major design challenge for re-entry capsules lies in the modelling of convective and radiative heat transfer to the surface of the vehicle. At certain points on superorbital re-entry trajectories, up to 40% of the total radiative heat flux is contributed by the vacuum ultra-violet (VUV) spectral range and it is in this spectral range that the largest uncertainties lie. The high level of uncertainty in the VUV is a result of a lack of published experimental data due to difficulties encountered in measuring radiation in the VUV, such as strong absorption by most optical materials and air. Additional complexities of the VUV spectral range include its strongly self-absorbing nature and spectral line broadening. The primary goal of this study was to obtain calibrated spectral measurements in the VUV that enable the investigation of physical processes occurring in the shock layer that influence the incident radiative heat flux. In particular, the issues to be investigated were the variation in spectral radiance observed across a shock layer compared to the spectral radiance measured through the surface, the effects of self-absorption on spectral line intensity and the broadening of spectral lines in the VUV as a function of depth of radiating flow field. The measurements made across and through the surface of a model provide the first set of calibrated experimental results for the validation of computational codes used to predict incident radiative heat flux. Measurements made with a varying depth of radiating flow field provide a unique set of experimental data for the validation of radiation transport models and broadening coefficients. This study also used computational simulations to investigate the accuracy of a flow field solver coupled with two reaction rate schemes and compared the spectra produced using Specair with experimentally measured values. To achieve these goals, an optical system was designed to measure the VUV radiative emission produced around a blunt two-dimensional model in a spatially resolved manner across the shock layer. Spatial resolution allowed for spectral measurements to be made in both the equilibrium and non-equilibrium parts of the shock layer. A second optical system was designed to obtain measurements of VUV radiation incident on the surface of the model. This system incorporated a window in the surface with a mirror housed within the model to deflect the radiation out of the test section and into the detection system. To effectively vary the depth of the radiating flow field, the length of a two-dimensional model was varied, changing the depth of the shock layer being observed. The X2 expansion tube was used to create the high enthalpy flows required to produce radiating shock layers. Two flow conditions were created for this study that represented flight equivalent velocities of 10.0 km/s and 12.2 km/s. The spectroscopy system utilized for this study consisted of an evacuated McPherson NOVA 225 spectrometer coupled to an Andor iStar VUV enhanced intensified charge coupled device. An evacuated light tube sealed with a magnesium fluoride window was required to extend the evacuated light path to the model and avoid any absorption by molecular oxygen. An in-situ calibration of the VUV spectroscopy system was conducted using a deuterium lamp located in the position of the radiating shock layer. The integrated incident spectral radiance measured through the surface of the model between 115 nm and 180 nm was 0.744 W/cm2 sr for the 10.0 km/s condition and 12.3 W/cm2sr for the faster 12.2km/s condition. [...]
APA, Harvard, Vancouver, ISO, and other styles
8

Ho, Wing-kwok. "Solar ultraviolet radiation : monitoring, dosimetry and protection /." Hong Kong : University of Hong Kong, 1999. http://sunzi.lib.hku.hk/hkuto/record.jsp?B21583791.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mahon, Alexandra Rose. "Ultraviolet absorption detection of DNA in gels." Thesis, Imperial College London, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Meyer, Linda Maren. "Cataract from ultraviolet radiation in the mouse /." Stockholm, 2005. http://diss.kib.ki.se/2005/91-7140-583-6/.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Ultraviolet radiation"

1

Zerefos, Christos S., and Alkiviadis F. Bais, eds. Solar Ultraviolet Radiation. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-03375-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Organization, World Health, and International Agency for Research on Cancer., eds. Solar and ultraviolet radiation. Lyon: IARC, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Organization, World Health, ed. Solar ultraviolet radiation: Global burden of disease from solar ultraviolet radiation. Geneva: World Health Organization, Public Health and the Environment, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cockell, Charles S., and Andrew R. Blaustein, eds. Ecosystems, Evolution, and Ultraviolet Radiation. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4757-3486-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Workshop on Measurement of Ultraviolet Radiation in Tropical Coastal Ecosystems (1994 Honolulu, Hawaii). Ultraviolet radiation and coral reefs. [Honolulu, Hawaii: University of Hawaii Sea Grant College Program, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Moseley, H. Non-ionising radiation: Microwaves, ultraviolet, and laser radiation. Bristol: A. Hilger, in collaboration with the Hospital Physicists' Association, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jonathan, Slavin, and United States. National Aeronautics and Space Administration., eds. The diffuse extreme ultraviolet background. [Washington, DC: National Aeronautics and Space Administration, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vázquez, M., and A. Hanslmeier. Ultraviolet Radiation in the Solar System. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/b136268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kumagai, Tadashi. Ultraviolet B radiation sensitivity in rice. Kerala, India: Research Signpost, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

United States. Environmental Protection Agency, ed. Ultraviolet radiation and oxidation: Ultrox International. [Washington, D.C.]: U.S. Environmental Protection Agency, [1989], 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Ultraviolet radiation"

1

Quintanilla, José Cernicharo. "Ultraviolet Radiation." In Encyclopedia of Astrobiology, 2565. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_3213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Plewig, Gerd, and Albert M. Kligman. "Ultraviolet Radiation." In ACNE and ROSACEA, 674–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-97234-8_88.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hathaway, James A., and David H. Sliney. "ULTRAVIOLET RADIATION." In Physical and Biological Hazards of the Workplace, 197–201. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119276531.ch12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ahrens, Caitlin. "Ultraviolet Radiation." In Encyclopedia of Lunar Science, 1–3. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-319-05546-6_180-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Quintanilla, José Cernicharo. "Ultraviolet Radiation." In Encyclopedia of Astrobiology, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_3213-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ahrens, Caitlin. "Ultraviolet Radiation." In Encyclopedia of Lunar Science, 1235–37. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-319-14541-9_180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Quintanilla, José Cernicharo. "Ultraviolet Radiation." In Encyclopedia of Astrobiology, 3135. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-65093-6_3213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Quintanilla, José Cernicharo. "Ultraviolet Radiation." In Encyclopedia of Astrobiology, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-642-27833-4_3213-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gröbner, Julian. "Ultraviolet Radiation ultraviolet radiation (UV) : Distribution ultraviolet radiation (UV) distribution and Variability ultraviolet radiation (UV) variability." In Encyclopedia of Sustainability Science and Technology, 11149–58. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Diffey, B. L. "Ultraviolet Radiation Safety." In Handbook of Laboratory Health and Safety Measures, 255–97. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-010-9363-7_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Ultraviolet radiation"

1

Sliney, David H. "Dosimetry for ultraviolet radiation exposure of the eye." In Ultraviolet Radiation Hazards. SPIE, 1994. http://dx.doi.org/10.1117/12.180811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Belkin, Michael. "Ultraviolet eye damage: the epidemiological evidence." In Ultraviolet Radiation Hazards. SPIE, 1994. http://dx.doi.org/10.1117/12.180812.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cleaver, James E. "Genetics of human sensitivity to ultraviolet radiation." In Ultraviolet Radiation Hazards. SPIE, 1994. http://dx.doi.org/10.1117/12.180813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Perera, Sharmila C., and Anthony P. Cullen. "Sunlight and human conjunctival action spectrum." In Ultraviolet Radiation Hazards. SPIE, 1994. http://dx.doi.org/10.1117/12.180814.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Coroneo, Minas T. "Ophthalmohelioses and peripheral light focusing by the anterior eye." In Ultraviolet Radiation Hazards. SPIE, 1994. http://dx.doi.org/10.1117/12.180815.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Maloof, Anthony J., Arthur Ho, and Minas T. Coroneo. "Peripheral light focusing by the anterior segment." In Ultraviolet Radiation Hazards. SPIE, 1994. http://dx.doi.org/10.1117/12.180816.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lund, David J., Harry Zwick, Donald A. Gagliano, and Bruce E. Stuck. "Comparison of solar and laser macula retinal injury using scanning laser ophthalmoscopy spectral imaging." In Ultraviolet Radiation Hazards. SPIE, 1994. http://dx.doi.org/10.1117/12.180817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Szabo, Laszlo D., Sandor Ferenczi, Z. Nagy, I. Horkay, Jozsef S. Bakos, G. Bazsa, T. Szalay, et al. "Ultraviolet radiation and skin disorders in Hungary." In Ultraviolet Radiation Hazards. SPIE, 1994. http://dx.doi.org/10.1117/12.180818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lapina, Victoria A., and Alexander E. Dontsov. "Action of UV-A and blue light on enzymes activity and accumulation of lipid peroxidation products in attached and detached frog retinas." In Ultraviolet Radiation Hazards. SPIE, 1994. http://dx.doi.org/10.1117/12.180819.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fleming, R. A., Cho-Fai Wong, and B. W. Thomas. "Statistical variation in experiments for measurements of human UV exposure." In Ultraviolet Radiation Hazards. SPIE, 1994. http://dx.doi.org/10.1117/12.180820.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Ultraviolet radiation"

1

Bowyer, Stuart. Satellite Observations of Extreme Ultraviolet Radiation. Fort Belvoir, VA: Defense Technical Information Center, May 1987. http://dx.doi.org/10.21236/ada185043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Heisler, Gordon M., and Richard H. Grant. Ultraviolet radiation, human health, and the urban forest. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northeastern Research Station, 2000. http://dx.doi.org/10.2737/ne-gtr-268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Stuckey, W. K., and M. J. Meshishnek. Solar Ultraviolet and Space Radiation Effects on Inflatable Materials. Fort Belvoir, VA: Defense Technical Information Center, August 2000. http://dx.doi.org/10.21236/ada384429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wuebbles, D. J., K. O. Jr Patten, and A. S. Grossman. Radiometer measurements and modeling of ultraviolet radiation at LLNL. Office of Scientific and Technical Information (OSTI), January 1995. http://dx.doi.org/10.2172/67756.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chen-Yu, Jessie, and Soak Wai Wong. Ultraviolet Radiation Protection of a Naturally Colored Lightweight Cotton Fabric. Ames: Iowa State University, Digital Repository, November 2016. http://dx.doi.org/10.31274/itaa_proceedings-180814-1732.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Judeikis, Henry, and Melvin Hill. Treatment of Organic Hazardous Wastes with Ozone and Ultraviolet Radiation. Fort Belvoir, VA: Defense Technical Information Center, July 1991. http://dx.doi.org/10.21236/ada252799.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kesavan, Jana, and Jose-Luis Sagripanti. Disinfection of Airborne Organisms by Ultraviolet-C Radiation and Sunlight. Fort Belvoir, VA: Defense Technical Information Center, July 2012. http://dx.doi.org/10.21236/ada566495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Iglesias, Gabrielle. Serratia Marcescens Mutations in the Elevated Ultraviolet Radiation Conditions of the Stratosphere. Ames (Iowa): Iowa State University. Library. Digital Press, January 2011. http://dx.doi.org/10.31274/ahac.8129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Madronich, S., and K. Stamnes. Ultraviolet radiation climatology of the Earth`s surface and lower atmosphere. Final report. Office of Scientific and Technical Information (OSTI), March 1999. http://dx.doi.org/10.2172/319889.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Walker, Ricardo W., Lye Meng Markillie, Alison HA Colotelo, Marybeth E. Gay, Christa M. Woodley, and Richard S. Brown. The Efficacy of Ultraviolet Radiation for Sterilizing Tools Used for Surgically Implanting Transmitters into Fish. Office of Scientific and Technical Information (OSTI), February 2013. http://dx.doi.org/10.2172/1071989.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography