Academic literature on the topic 'Ultramafic soils'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ultramafic soils.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Ultramafic soils"

1

van der Ent, Antony, Tanguy Jaffré, Laurent L'Huillier, Neil Gibson, and Roger D. Reeves. "The flora of ultramafic soils in the Australia–Pacific Region: state of knowledge and research priorities." Australian Journal of Botany 63, no. 4 (2015): 173. http://dx.doi.org/10.1071/bt15038.

Full text
Abstract:
In the Australia–Pacific Region ultramafic outcrops are both widespread and extensive, covering thousands of km2. Soils derived from ultramafic bedrock impose edaphic challenges and are widely known to host highly distinctive floras with high levels of endemism. In the Australia–Pacific Region, the ultramafics of the island of New Caledonia are famed for harbouring 2150 species of vascular plants of which 83% are endemic. Although the ultramafic outcrops in Western Australia are also extensive and harbour 1355 taxa, only 14 species are known to be endemic or have distributions centred on ultramafics. The ultramafic outcrops in New Zealand and Tasmania are small and relatively species-poor. The ultramafic outcrops in Queensland are much larger and host 553 species of which 18 (or possibly 21) species are endemic. Although New Caledonia has a high concentration of Ni hyperaccumulator species (65), only one species from Western Australia and two species from Queensland have so far been found. No Ni hyperaccumulator species are known from Tasmania and New Zealand. Habitat destruction due to forest clearing, uncontrolled fires and nickel mining in New Caledonia impacts on the plant species restricted to ultramafic soils there. In comparison with the nearby floras of New Guinea and South-east Asia, the flora of the Australia–Pacific Region is relatively well studied through the collection of a large number of herbarium specimens. However, there is a need for studies on the evolution of plant lineages on ultramafic soils especially regarding their distinctive morphological characteristics and in relation to hyperaccumulation.
APA, Harvard, Vancouver, ISO, and other styles
2

Aiba, Shin-ichiro, Yoshimi Sawada, Masaaki Takyu, Tatsuyuki Seino, Kanehiro Kitayama, and Rimi Repin. "Structure, floristics and diversity of tropical montane rain forests over ultramafic soils on Mount Kinabalu (Borneo) compared with those on non-ultramafic soils." Australian Journal of Botany 63, no. 4 (2015): 191. http://dx.doi.org/10.1071/bt14238.

Full text
Abstract:
We describe here the structure, floristics and diversity of tropical montane rain forests over ultramafic soils on Mount Kinabalu, Borneo, and compared them with those on non-ultramafic soils. We used 14 sample plots from 1580 to 3080 m elevation, six on ultramafic soils and eight on non-ultramafic soils, and identified all trees ≥4.8 cm diameter. The plot area ranged from 0.1 to 1 ha, the majority (nine plots) being 0.25 ha. Forests on ultramafic soils showed more stunted structure, especially at higher altitudes, than those on non-ultramafic soils and on ridges than on slopes. Species of Coniferae (Araucariaceae and Podocarpaceae) and Myrtaceae strongly dominated on ultramafic soils occupying 61–96% of basal area in each plot, compared with 22–63% on non-ultramafic soils. Among 287 species found in the 14 plots, only nine species (including four species endemic to Mount Kinabalu) were strictly restricted to ultramafic soils. Nonmetric multidimensional scaling demonstrated that elevational change in species composition was accelerated on ultramafic soils and on ridges. Tree species diversity was generally lower on ultramafic soils than on non-ultramafic soils at the comparative altitudes. Multiple regression analysis suggested that soil nutrients (phosphorus and nitrogen) could be the cause of vegetation differentiation between ultramafic and non-ultramafic soils, although the data on soil metals are lacking. Comparison of our results with those from other mountains with ultramafic soils in South-east Asia demonstrated the uniqueness of the montane rain forests over ultramafic soils on Mount Kinabalu.
APA, Harvard, Vancouver, ISO, and other styles
3

Marescotti, Pietro, Paola Comodi, Laura Crispini, Lara Gigli, Azzurra Zucchini, and Silvia Fornasaro. "Potentially Toxic Elements in Ultramafic Soils: A Study from Metamorphic Ophiolites of the Voltri Massif (Western Alps, Italy)." Minerals 9, no. 8 (August 20, 2019): 502. http://dx.doi.org/10.3390/min9080502.

Full text
Abstract:
Ultramafic soils are characterized by severe edaphic conditions induced by a low content of essential nutrients, an adverse Ca/Mg ratio, a low water-holding capacity, and high contents of geogenic potentially toxic elements (PTEs), in particular Cr, Ni, and Co. These metals commonly exceed the content limits set by environmental agencies and governments, representing serious environmental risks for ecosystems and human health. In alpine environments, ultramafic soils are characterized by modest thickness and poor horizon differentiation. Several studies on ultramafic soils have shown that their properties may be directly related to the characteristics of the parent rocks, but most of these studies deal with soil chemistry, metal availability, isotopic composition, and pedological characterization. The aim of this research is to investigate how much the geotectonic characteristics of ultramafic bedrocks, such as the degree of serpentinization, metamorphic imprint, and deformation, may affect the mineralogical and chemical variations of ultramafic soils, including the occurrence and potential mobility of the PTEs. Using a multiscale and multi-analytical approach, we fully characterize the properties and mineralogical composition of soil profiles with different ultramafic parent rocks, i.e., partially serpentinized peridotite, massive serpentinites, and foliated serpentinites, sampled within the Voltri Massif High Pressure–Low Temperature (HP–LT) metaophiolite (Western Alps, Italy). Our results, related to soils located at comparable latitude, altitude, landscape position, and pedological environment, outline that the degree of serpentinization, the metamorphic imprint, and the deformation history of the ultramafic parent rocks are key factors influencing soil evolution, mineralogy, and chemistry, as well as PTEs distribution and mobility. Moreover, this study shows that the high content of Cr, Ni, and Co in the studied ultramafic soils has to be considered of geogenic origin and highlights the need for new approaches and methods to obtain indications on the potential contamination of natural or anthropogenic soils.
APA, Harvard, Vancouver, ISO, and other styles
4

Trethowan, Liam A., Benjamin Blonder, Endang Kintamani, Deden Girmansyah, Timothy M. A. Utteridge, and Francis Q. Brearley. "Metal‐rich soils increase tropical tree stoichiometric distinctiveness." Plant and Soil 461, no. 1-2 (January 31, 2021): 579–89. http://dx.doi.org/10.1007/s11104-021-04839-7.

Full text
Abstract:
Abstract Background and aims Ultramafic soils have high metal concentrations, offering a key opportunity to understand if such metals are strong predictors of leaf stoichiometry. This is particularly relevant for tropical forests where large knowledge gaps exist. Methods On the tropical island of Sulawesi, Indonesia, we sampled forests on sand, limestone, mafic and ultramafic soils that present a range of soil metal concentrations. We asked how variation in 12 soil elements (metals and macronutrients) influenced leaf stoichiometry and whether stoichiometric distinctiveness (the average difference between a species and all others in a multivariate space, the axes of which are the concentrations of each leaf element) is influenced by increasing soil metal concentrations. Results Positive correlations between corresponding elements in soils and leaves were only found for Ca and P. Noticeably, soil Cr had a negative effect upon leaf P. Whilst most species had low stoichiometric distinctiveness, some species had greater distinctiveness on stressful metal-rich ultramafic soils, generally caused by the accumulation of Al, Co, Cr or Ni. Conclusions Our observation of increased stoichiometric distinctiveness in tropical forests on ultramafic soils indicates greater niche differentiation, and contrasts with the assumption that stressful environments remove species with extreme phenotypes.
APA, Harvard, Vancouver, ISO, and other styles
5

Reeves, Roger D., W. Scott Laidlaw, Augustine Doronila, Alan J. M. Baker, and (the late) George N. Batianoff. "Erratic hyperaccumulation of nickel, with particular reference to the Queensland serpentine endemic Pimelea leptospermoides." Australian Journal of Botany 63, no. 2 (2015): 119. http://dx.doi.org/10.1071/bt14195.

Full text
Abstract:
Many hyperaccumulators of nickel (Ni) are endemic to ultramafic soils and always show very high Ni concentrations. Others occur on a variety of substrates but accumulate high Ni from the ultramafic ones. Pimelea leptospermoides is unusual in being an ultramafic endemic that shows a very wide range of Ni concentrations. The present work sought to establish the factors governing the wide variation in Ni uptake by P. leptospermoides, and aimed to investigate the likelihood of this variation originating from plant differences or soil differences. Multiple paired plant and soil samples were taken over the geographic range of occurrence of P. leptospermoides. Plant and soil metal concentrations and soil pH were measured. No evidence was found to suggest that the plants belong to populations with inherent ‘high-Ni’ and ‘low-Ni’ accumulation capability. Instead, the soil pH (covering a range from 6.0 to 8.3) and the total soil Ni concentrations of the ultramafic soils were found to be the major influences on the level of Ni accumulation. The wide variation observed in Ni accumulation by P. leptospermoides from ultramafic soils can be explained by a combination of variations in soil pH and total soil Ni concentrations.
APA, Harvard, Vancouver, ISO, and other styles
6

van der Ent, Antony, Guillaume Echevarria, Philip Nti Nkrumah, and Peter D. Erskine. "Frequency distribution of foliar nickel is bimodal in the ultramafic flora of Kinabalu Park (Sabah, Malaysia)." Annals of Botany 126, no. 6 (June 29, 2020): 1017–27. http://dx.doi.org/10.1093/aob/mcaa119.

Full text
Abstract:
Abstract Background and Aims The aim of this study was to test the frequency distributions of foliar elements from a large dataset from Kinabalu Park (Sabah, Malaysia) for departure from unimodality, indicative of a distinct ecophysiological response associated with hyperaccumulation. Methods We collected foliar samples (n = 1533) comprising 90 families, 198 genera and 495 plant species from ultramafic soils, further foliar samples (n = 177) comprising 45 families, 80 genera and 120 species from non-ultramafic soils and corresponding soil samples (n = 393 from ultramafic soils and n = 66 from non-ultramafic soils) from Kinabalu Park (Sabah, Malaysia). The data were geographically (Kinabalu Park) and edaphically (ultramafic soils) constrained. The inclusion of a relatively high proportion (approx. 14 %) of samples from hyperaccumulator species [with foliar concentrations of aluminium and nickel (Ni) >1000 μg g–1, cobalt, copper, chromium and zinc >300 μg g–1 or manganese (Mn) >10 mg g–1] allowed for hypothesis testing. Key Results Frequency distribution graphs for most elements [calcium (Ca), magnesium (Mg) and phosphorus (P)] were unimodal, although some were skewed left (Mg and Mn). The Ni frequency distribution was bimodal and the separation point for the two modes was between 250 and 850 μg g–1. Conclusions Accounting for statistical probability, the established empirical threshold value (>1000 μg g–1) remains appropriate. The two discrete modes for Ni indicate ecophysiologically distinct behaviour in plants growing in similar soils. This response is in contrast to Mn, which forms the tail of a continuous (approximately log-normal) distribution, suggestive of an extension of normal physiological processes.
APA, Harvard, Vancouver, ISO, and other styles
7

Jones, David T., Homathevi Rahman, David E. Bignell, and Anggoro H. Prasetyo. "Forests on ultramafic-derived soils in Borneo have very depauperate termite assemblages." Journal of Tropical Ecology 26, no. 1 (December 8, 2009): 103–14. http://dx.doi.org/10.1017/s0266467409990356.

Full text
Abstract:
Abstract:Previous studies in Sundaland (Borneo, Sumatra, Java and Peninsular Malaysia) have shown that termite assemblages in natural forests have a characteristic structure. These typical forest assemblages contain many soil-feeding species. However, this study investigated four natural forest sites in Borneo with depauperate termite assemblages, and compared their soils with soils from four other sites that have typical termite assemblages. In contrast to the typical assemblages, the four depauperate assemblages all have low species density (<35%), low relative abundance (<30%), a virtual absence of soil-feeders, significantly fewer wood-feeders, and a near-absence of species of Rhinotermitidae, Amitermes-group, Termes-group, Pericapritermes-group and Oriensubulitermes-group. The depauperate sites are on ultramafic-derived soils and have significantly higher concentrations of calcium, magnesium, nickel, chromium, cobalt, copper and zinc compared with the non-ultramafic soils at sites with typical assemblages. In addition, soil pH at the depauperate sites is significantly higher (>pH 5.4) compared with soils at the typical sites (which are all below pH 4.7). Possible mechanisms to explain the depauperate termite assemblages on ultramafic soils include metal toxicity, high pH disrupting gut physiology, and microbial interactions with metals.
APA, Harvard, Vancouver, ISO, and other styles
8

Bulmer, C. E., and L. M. Lavkulich. "Pedogenic and geochemical processes of ultramafic soils along a climatic gradient in southwestern British Columbia." Canadian Journal of Soil Science 74, no. 2 (May 1, 1994): 165–77. http://dx.doi.org/10.4141/cjss94-024.

Full text
Abstract:
This paper presents information on pedogenic processes, weathering status and geochemical evolution of ultramafic soils at three areas in southwestern British Columbia characterized by climatic conditions ranging from relatively wet–cool to relatively dry–cool. The soils of the Coquihalla serpentine belt have Podzolic profiles that resulted from intense weathering in a moist environment. The Tulameen area has a moderately dry climate, and Brunisolic soils have developed in serpentinized peridotite and dunite. Brunisolic soils with composite profiles of tephra overlying serpenite developed in a dry environment at the Shulaps area. We investigated the weathering status of five soils using a variety of chemical and mineralogical techniques. Chlorite and mica weathering was indicated by XRD analysis of clay fractions for the Podzolic soils at the Coquihalla area. Serpentine dissolution was also indicated by geochemical analysis of these upland soil profiles. Weathering and leaching depleted Mg from B horizons relative to parent materials. Chromium accumulated in B horizons of the soils, and was associated with high levels of Fed. The distribution of total and extractable Ni and Co indicated that these elements were transported to the C horizons in all but the driest environments. Redistribution of Mn also occurred, but to a lesser extent. The distribution patterns of Cr, Mn, Co, and Ni were useful indicators during the early stages of ultramafic pedogenesis. Key words: Serpentine, ultramafic rocks, mineralogy, soil processes, trace minerals
APA, Harvard, Vancouver, ISO, and other styles
9

Woodell, S. R. J., A. J. M. Baker, J. Proctor, and R. D. Reeves. "The Vegetation of Ultramafic (Serpentine) Soils." Journal of Ecology 82, no. 2 (June 1994): 427. http://dx.doi.org/10.2307/2261312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Read, Jennifer, John M. Ferris, and Tanguy Jaffré. "Foliar mineral content of Nothofagus species on ultramafic soils in New Caledonia and non-ultramafic soils in Papua New Guinea." Australian Journal of Botany 50, no. 5 (2002): 607. http://dx.doi.org/10.1071/bt01091.

Full text
Abstract:
Nothofagus species dominate the upper canopy of some New Caledonian rainforests on ultramafic soils. The characteristics of Nothofagus that facilitate its dominance of these forests are uncertain, but may include a superior capacity to resist the severe soil conditions. In this study, we compared foliar concentrations of macronutrients and heavy metals of Nothofagus species from ultramafic soils in New Caledonia with those from non-ultramafic soils in New Guinea. The concentrations of N and P were significantly lower (4–5-fold difference) and Fe, Cr and Ni significantly higher (140–600-fold difference) in the New Caledonian soils than in the New Guinean soils. The magnitude of difference between the two regions in mean foliar mineral concentrations was considerably less. Analysis of the full leaf data set indicated significant differences between the five New Caledonian and five New Guinea species only in P (c. 2.5-fold higher in New Guinean species) and Cr (c. 6-fold higher in New Caledonian species). The absence of significant differences between regions for most foliar elements is associated with leaf : soil ratios (foliar concentration : soil concentration) that show negative correlations with soil mineral-element concentrations. The highest leaf : soil ratios were recorded in New Caledonian species in K and Ca : Mg. The lowest ratios were recorded in the New Caledonian species in Cr, Ni and Fe. There is no evidence of accumulation of heavy metals in the New Caledonian species, with foliar concentrations similar to those of other New Caledonian species growing on non-ultramafic soils. Instead, the limited evidence suggests they are 'excluders'. In general, the New Caledonian Nothofagus species appear to have relatively low foliar concentrations of macronutrients compared with other New Caledonian rainforest species, suggesting that canopy dominance may be in part due to high nutrient efficiency in terms of growth rate per unit nutrient uptake.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Ultramafic soils"

1

Boulet, Frederic. "Mycorrhizal symbiosis as a strategy for survival in ultramafic soils." University of Western Australia. Soil Science and Plant Nutrition Discipline Group, 2003. http://theses.library.uwa.edu.au/adt-WU2004.0051.

Full text
Abstract:
Ultramafic soils enriched in nickel, such as found in Australia and New Caledonia, are associated with unique, diverse and poorly known vegetation communities. Re-establishment of these highly specific ecosystems is still a challenge for Ni mining companies. Ultramafic vegetation communities are the outcome of a long evolution process resulting in their adaptation to the extreme soil conditions found on ultramafic outcrops. Mycorrhizal fungi, a very common plant symbiont, are generally thought to be beneficial to plants in other ecosystems, providing plants with phosphorus and even promoting metal tolerance in plants in some cases. We examined the hypothesis that mycorrhizal fungi may contribute to the survival of plants in ultramafic soil conditions. Bandalup Hill, an ultramafic outcrop enriched in Ni (South West of Western Australia) was selected to assess the contribution of mycorrhizal fungi to ultramafic plants. Soil constraints, in particular the degree of Ni toxicity, were assessed at two sites with ultramafic soils within the outcrop. Total metal, nutrient, DTPA extractable Ni and available P were measured in soil while Ni, Ca and Mg were tested in the soil solution. In addition, nutrients and metals were analyzed in shoots of some plant species occurring at each site: Eucalyptus flocktoniae, Melaleuca pomphostoma, Melaleuca coronicarpa and Hakea verucosa. Topsoils in Bandalup Hill and plant shoots had high levels of Ni, and very low levels of P, K and N. Variation in DTPA extractable Ni between sites reflected the variation in shoot Ni level of E. flocktoniae and M. pomphostoma. Variations in soil solution Ni levels reflected variations in shoot Ni levels of M. coronicarpa and H. verucosa between sites. The germination requirements of the plant species used to assess the soil constraints was assessed. Species selected included Eucalyptus flocktoniae, Melaleuca coronicarpa, and Hakea verucosa. Seeds of E. flocktoniae and M. coronicarpa had a higher germination rate if pre-treated with smoke water, while no pre-treatment was required to germinate H. verucosa seeds. The unusual germination requirement of E. flocktoniae and M. coronicarpa involve complex chemical signals that may be present in the soil when the conditions are more favorable for plant establishment. Such unusual germination requirement may represent an adaptation to the hostile conditions of the ultramafic soils of Bandalup Hill. The mycorrhizal association and root characteristics of the selected plant species was also assessed after 8 weeks of growth in undisturbed ultramafic topsoil cores from Bandalup Hill. Roots of these species (including H. verucosa from a previously designated non-mycorrhizal family, Proteaceae) were associated with mycorrhizal fungi. Roots of E. flocktoniae and M. coronicarpa were colonized by both arbuscular mycorrhizal fungi (AMF) and ectomycorrhizal fungi (ECM), while roots of H. verucosa only contained some AM fungal structures. All species had high shoot to root ratios and their root characteristics reflected their association with mycorrhizal fungi. Based on the previous observations, uninoculated and inoculated E. flocktoniae seedlings were grown for 10 to 16 weeks in sand amended with Ni at 0, 0.2, 1 and 2.3 mg/kg. Mycorrhizal inoculum consisted of spores of Pisolithus sp. (ECM) or a mix of AMF spores and colonized root fragments, both originating from Bandalup Hill. Another inoculum consisted in Pisolithus sp. spores from a site with ultramafic soils in New Caledonia. Inoculation with AM and ECM fungi from Bandalup Hill was beneficial to E. flocktoniae. Benefits consisted mainly of a reduction of Ni shoot translocation at the highest Ni soil level. At 1 mg/kg soil Ni, E. flocktoniae exhibited a certain degree of tolerance to Ni. A substantial increase in growth and nutrient uptake with Pisolithus sp. from Western Australia was also observed. The contribution of AM fungi from Bandalup Hill to E. flocktoniae, M. coronicarpa, H. verucosa, and Trifolium subterraneum (clover) was then examined in ultramafic soil from Bandalup Hill.Steaming of ultramafic soil increased the availability and plant uptake of P. Consequently, uninoculated seedlings grew better, and inoculation with AM fungi decreased the growth of native plant species but did not affect their shoot Ni concentration. The presence of AM fungi increased the concentration of P in shoots of native plants species. Inoculation had no effect on the growth and nutrient content of subterranean clover. As mining activities have the potential to reduce the infectivity of AM fungi in topsoils, the effect of disturbance and storage practices on the AM infectivity of ultramafic topsoils collected in summer or winter from Bandalup Hill was investigated. Disturbance consisted in passing topsoil through a 2mm seive and cutting roots into 1cm fragments. Disturbed topsoil was then stored at room temperature in pots that were either sealed from the atmosphere or left open, and pots were maintained at field capacity. E. flocktoniae seedlings were planted in undisturbed and disturbed topsoil just after topsoil collect and then after 3, 6 and 9 months of topsoil storage. AM fungi present in the topsoil collected in summer was less susceptible to initial disturbance than AM fungi present in topsoil collected during winter. Also, storage of topsoil in sealed pots watered to field capacity was more detrimental to its infectivity than storage of topsoil in dry conditions. Mycorrhizal fungi can contribute to the survival of some native plant species in the ultramafic soils of Bandalup Hill and they may represent another strategy to improve the success of Ni mine revegetation. However, such contribution may not be the unique avenue for native plants to survive in ultramafic soils of Bandalup Hill.
APA, Harvard, Vancouver, ISO, and other styles
2

Kawase, Daiju. "Phylogenetic differentiation and population genetic structure of plants distributed in specific soils derived from ultramafic rocks." 京都大学 (Kyoto University), 2008. http://hdl.handle.net/2433/136935.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

FORNASARO, SILVIA. "Potentially toxic elements in ultramafic rocks and soils: A case study from the Voltri Massif (NW Italy)." Doctoral thesis, Università degli studi di Genova, 2019. http://hdl.handle.net/11567/944849.

Full text
Abstract:
High concentrations of potentially toxic elements (PTEs) in surface and near-surface environment may be attributed to both anthropogenic sources, including industrial and agricultural activity, and geogenic source, mainly due to natural weathering of rocks. Considering the geogenic sources, ultramafic rocks (e.g., dunite, peridotite, pyroxenite, and serpentinites) are among the most critical from the environmental point of view; in fact, they are characterized by high contents of Cr, Ni, Co, and other PTEs which can have potential harmful impact on ecosystems and human health if released into soils and waters during weathering and pedogenic processes. As a matter of the fact, weathering of ultramafic rock produces ultramafic soil containing high concentration of PTEs, including Cr, Ni, and Co compared to soils derived from non-ultramafic bedrock. Although ultramafic rocks and relative soils cover approximately 1% of the Earth’s surface, they are distributed worldwide and are commonly associated with ophiolite complexes; for this reason, they play an important role in environmental management. The main objective of this PhD thesis was to determinate the mineralogy and the chemistry of PTEs of ultramafic soil profiles from the Voltri Massif and to evaluate how lithological, textural, and structural properties of the ultramafic bedrock with various degree of serpentinization and deformation may affect the PTEs re-distribution and the fate in the soils during pedogenesis, as well as to assess their environmental implications in the ecosystem. The multidisciplinary and multiscale approach, used in this PhD thesis, has allowed to highlight a series of considerations that led to the following conclusions: • In the studied rocks, Cr, Ni, and, subordinately, Co are invariably the PTEs with the highest concentrations; in addition, V, Cu, and Zn are generally found in high concentrations. The main factors controlling the PTEs distribution within the studied ultramafic rocks appeared to be the serpentinization degree and the deformation style and intensity. The main source of the PTEs are spinel-group minerals. Moreover, PTEs-bearing phases are also represented by the other rock-forming minerals (such as serpentines, olivines, pyroxenes, and chlorites) and some accessory phases (e.g., ilmenite and other oxides, sulfides). • The studied ultramafic soil profiles vary in thickness from 35 to 80 cm and are characterized by weakly developed A and C horizons and a very thin O horizon (up to 5-10 cm). In general, in the soils the mineralogy of the skeleton (sandy and silty fractions) is closely related to bedrock mineralogy as expected for primitive A-C soils (in order of abundance: antigorite, chlorite, spinel-group minerals, pyroxenes, authigenic phases, quartz, olivine, and tremolite). The clay fraction is mainly composed by amorphous or low-crystalline Fe-oxyhydroxides, serpentines, smectite and illite/smectite mixed-layer clay, and clinochlore. Cr and Ni values have very variable concentrations over a wide range. Cr and Ni decrease according to serpentinization degree of bedrock. Co, Zn, and Cu do not show a clear correlation with bedrock serpentinization. V increase with the serpentinization of the bedrock. The PTEs concentrations in the studied ultramafic soil profiles are linked both to the primary minerals, inherited by bedrocks (e.g., serpentines, spinel-group minerals, pyroxenes, chlorites), and to their stable authigenic products (Fe-oxyhydroxides and clay minerals). The PTEs leached from the primary minerals is mainly scavenge by goethite, and subordinate by clay. • The results evidence that Cr, Ni, and, Co systematically exceed (up to one order of magnitude) the residential and industrial threshold values (CSC) according to Italian law (D.M. 471/1999; D.Lgs 152/2006) both in rocks and soils. However, combining all my results, I have demonstrated that the critical PTEs concentrations in the studied profiles have a geogenic origin and are linked both to the primary minerals, inherited by bedrocks, and to their stable authigenic products. Considering the high stability of authigenic products in supergenic environment, it is evident that this mineral species are effective and often permanent traps for the most important PTEs of ultramafic soils and bedrocks, thus reducing its bioavailability. A study of this kind that combine the bulk chemistry of outcropping rocks and the relative soil profiles with their geological, structural, mineralogical, and crystallochemical data, can be also a useful tool in environmental concerns to determine the PTEs distribution, to evaluate their potential mobility and bioavailability as well as to discriminate the natural geochemical background from possible source of contamination.
APA, Harvard, Vancouver, ISO, and other styles
4

Maleri, Rudolf A. "The ability of terrestrial Oligochaeta to survive in ultramafic soils and the assessment of toxicity at different levels of organisation." Thesis, Stellenbosch : University of Stellenbosch, 2006. http://hdl.handle.net/10019.1/1200.

Full text
Abstract:
Thesis (PhD (Botany and Zoology)) -- University of Stellenbosch, 2006.
Metals are natural elements of the earth crust usually present at low concentrations in all soils. Although many metals such as cobalt, copper, iron and zinc are essential to living organisms, at elevated concentrations most metals are toxic to organisms living in and on soils. Elevated concentrations of metals are caused either by anthropogenic deposition following remobilisation from the earth crust or are of natural origin. Ultramafic soils do not only pose unfavourable living conditions such as drought and poor organic content, these soils are also characterized by extremely high concentrations of a range of metals known to be toxic under normal circumstances. Ultramafic soils are of high ecological importance as a high proportion of endemic organisms, especially plants, live on these soils. As it is known that earthworms do occur in ultramafic soils, the aims of the present study were to investigate the abilities of earthworms to survive in these soils and the influences of elevated chromium, cobalt, copper, manganese and nickel levels. For the evaluation of the metal background conditions, soils originating from ultramafic rocks of the Barberton Greenstone Belt, Mpumalanga, South Africa were collected and different fractions representing different levels of bioavailability were analyzed for arsenic, chromium, cobalt, copper, manganese and nickel. To assess the mobile, readily available metal fraction, i.e. Ca2+- exchangeable metal cations, a 0.01 mol/L CaCl2 extraction was performed. To investigate the mobilisable metal fraction, representing the amount of easily remobilisable complexed and carbonated metal ions, a DTPA (di-ethylene-triamine-pentaacetic acid) extraction was conducted. In relation to non-ultramafic or anthropogenic contaminated soils, a far lower proportion of metals were extractable by the above mentioned extraction methods. To investigate the availability and effects of these metals on earthworms, two ecophysiologically different species were employed. Aporrectodea caliginosa and Eisenia fetida were long-term exposed to the ultramafic soils collected at the Barberton region and a control soil from a location at Stellenbosch with a known history of no anthropogenic metal contamination. The responses to the ecological stress originating in the ultramafic soils were measured on different levels of earthworm organisation. As endpoints affecting population development, cocoon production, fecundity and viability were evaluated. On individual level, growth, metal body burden and tissue distribution were investigated. As endpoints on subcellular level, the membrane integrity was assessed by the neutral red retention assay, the mitochondrial activity was measured by the MTT colorimetric assay and as a biomarker for the DNA integrity, the comet assay was performed. Focussing on manganese and nickel, the uptake by E. fetida of these metals was investigated with the exclusion of soil related properties using an artificial aqueous medium to draw comparisons to the uptake of these metals in natural soils. The possible development of resistance towards nickel was tested by exposing pre-exposed (for more than 10 generations) E. fetida specimens to ultramafic soils with concentrations of more than 4000 mg/kg nickel. The results showed that, except on the endpoint survival, which was less sensitive than all other bioassays, significant responses to the ultramafic challenge were observed in all earthworm bioassays and on all levels of organisation. The sensitivity of the responses of the earthworms towards the ultramafic conditions was not predictable by the level of organisation. The two species showed different strategies of metal elimination. In A. caliginosa, metals such as nickel, manganese and chromium were transported to the posterior section and the posterior section was subsequently pushed off by autotomization. In E. fetida, metals such as chromium and nickel were sequestered in storage compartments in the coelomic cells or fluid. Other metals, such as cobalt, were not taken up at elevated concentrations. Although an increased accumulation of nickel was observed in E. fetida specimens pre-exposed to nickel, development of resistance or cross resistance was not observed in this species. In contrast, pre-exposed specimen exposed to elevated concentrations of nickel showed a higher sensitivity in terms of survival, indicating the absence of acclimatisation or even genetic adaptation. A comparison of the two species employed indicated that A. caliginosa was less suited for the assessment of the ultramafic soils due to the high individual variation in metal body burden, the mass loss observed and the slow reproduction rate even in the control soils. This happened despite the fact that A. caliginosa was a soil dwelling species supposed to be better adapted to the soil substrate than the litter dwelling E. fetida. The toxicity of the ultramafic soils was not necessarily related to total or environmentally available amounts of the selected metals. Thus, it can be speculated that either these soils contained unidentified toxicants with resulting interactions between toxicants playing an important role or earthworms were able to remobilize metals occurring in these soils. As the singular application of an ecotoxicological endpoint did not give reliable results, especially seen over the duration of the exposures, it can be concluded that, when studying soils with such a complex composition, the utilisation of endpoints addressing different levels of organisation is necessary for the assessment of toxic stress emerging from these ultramafic soils.
APA, Harvard, Vancouver, ISO, and other styles
5

Cook, Stephen John. "The distribution and behaviour of platinum in soils of the Tulameen ultramafic complex, southern British Columbia : applications to geochemical exploration for chromite-associated platinum deposits." Thesis, University of British Columbia, 1991. http://hdl.handle.net/2429/29803.

Full text
Abstract:
Exploration for chromitite-associated Pt deposits is hampered by a poor understanding of the distribution and behaviour of Pt in the surficial environment. This study investigates Pt content, residence sites and PGE mineralogy of soils developed on till and colluvium above the Tulameen ultramafic complex in southern British Columbia. Seventy-six soil profiles, as well as sediments, bogs and waters were sampled above the dunite core of the Tulameen complex, within which Pt occcurrences consist of massive-to-discontinuous segregations of platinic chromitite. Pt content of the -212 um fraction of soils and sediments was determined by fire assay-inductively coupled plasma spectroscopy. Samples from fourteen selected profiles were then examined in detail to determine Pt mineralogy and its distribution between different size, density and magnetic fractions. Pt concentrations in the -212 um fraction of C horizon soils range from 2 to 885 ppb and are closely related to soil dunite content, as estimated from MgO content and verified by XRD mineralogy. Dunite colluvium (mean: 24.2% MgO), locally-derived dunitic till (mean: 16.5% MgO) and exotic non-dunitic till (mean: 5.7% MgO) have median Pt concentrations of 88 ppb, 36 ppb and 8 ppb, respectively. This trend is evident in all size and density fractions. Pt content of heavy mineral (SG > 3.3) fractions is 10-2Ox greater than in light mineral fractions. Pt is most abundant in the heavy magnetic fraction from non-dunitic tills and dunitic tills remote from known mineralization, but the proportion of Pt in the heavy non-magnetic fraction increases with increasing proximity to mineralization. SEM and microprobe studies of heavy fractions from C horizons identified Pt-Fe-Cu alloys as free grains, and as inclusions in Mg-silicates and chromites. Chromite occurs as Mg-Cr-rich anhedral fragments and as Fe-rich euhedral to subhedral crystals. The latter, relatively more important in the magnetic fraction, are interpreted as Pt-poor grains disseminated throughout the dunite whereas fragments are relatively more important in the non-magnetic fraction and are interpreted as remnants of Pt-bearing massive chromitite segregations. The abundance of chromite fragments in soils near chromitite segregations accounts for the high Pt content of the non-magnetic heavy fractions of these soils. The -270 mesh fraction or the magnetic heavy fraction of C horizon soils would be the most suitable sample media for reconnaissance geochemical sampling. However, the greater contrast, more limited dispersion and Mg-Cr-rich chromite association of the non-magnetic heavy fraction make it a more suitable media for detailed geochemical sampling.
Science, Faculty of
Earth, Ocean and Atmospheric Sciences, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
6

Lopez, Séverine. "Déterminisme de la diversité bactérienne rhizosphérique des hyperaccumulateurs de nickel." Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0335/document.

Full text
Abstract:
La connaissance de la diversité microbienne des milieux ultramafiques est essentielle pour établir le fonctionnement écologique de ces milieux, qui présentent de fortes teneurs en Ni et sont caractérisés par une flore particulière, e.g. plantes hyperaccumulatrices de Ni. La rhizosphère des hyperaccumulateurs comporte une forte proportion de bactéries résistantes au Ni, qui peuvent aussi agir sur la nutrition des plantes et sur les propriétés physico-chimiques du sol. Le premier défi de cette thèse a été de cerner le déterminisme de la diversité bactérienne de la rhizosphère d’hyperaccumulateurs de Ni. Le second a été de tester l'intérêt de souches PGPR (Plant Growth Promoting Rhizobacteria) pour optimiser l'agromine à partir d'interactions entre les rhizobactéries et les hyperaccumulateurs de Ni. La démarche s'est appuyée sur un ensemble de prospections dans deux régions climatiques et sur des analyses de séquençage haut débit. Des tests de cultures de plantes hyperaccumulatrices inoculées ont également été conduits. Les résultats montrent que le déterminisme de la diversité bactérienne est variable selon l'échelle spatiale. A l'échelle mondiale, le type de végétation est le facteur majeur structurant les communautés bactériennes, elle-même contrôlée indirectement par le climat. L’influence directe du climat (température et humidité) sur la diversité est significative mais moindre. A l'échelle d'une région climatique, la physico-chimie des sols ultramafiques structure et détermine la diversité des communautés bactériennes rhizosphériques. Enfin, l'inoculation de souches PGPR fortement bioaccumulatrices de Ni modifie la dynamique du Ni dans le sol, ce qui démontre qu'il existe une compétition pour le Ni entre la plante et la bactérie inoculée. En conclusion, le déterminisme de la diversité des communautés bactériennes rhizosphériques est dépendant de l'échelle spatiale considérée. En outre, le choix de la souche PGPR à inoculer, dans un contexte d'amélioration de l'agromine du Ni, est primordial
Knowledge of the microbial diversity in ultramafic areas is essential to establish the ecological functioning of these environments, which display high level of Ni and are characterized by the presence of particular plants, e.g. Ni hyperaccumulators. The rhizosphere of these plants promotes a high proportion of Ni resistant bacteria that can act on plant nutrition and soil physicochemical properties. The first challenge of this thesis was to understand the bacterial rhizosphere diversity of Ni hyperaccumulators. The second was to test the interest of PGPR (Plant Growth Promoting Rhizobacteria) strains in order to improve agromining based on rhizobacteria and Ni hyperaccumulators interactions. The approach was based on two-contrasted climatic areas prospection and on high-throughput sequencing analyzes. Tests on culture of hyperaccumulator plants inoculated were also conducted. The results show that the determinism of this bacterial diversity is variable according to the spatial scale. On a global scale, the vegetation type, indirectly influenced by the climate, is the major factor structuring bacterial communities. The direct influence of the climate (temperature and humidity) on bacterial diversity is significant but lower. At the scale of a climatic region, the physic-chemistry of ultramafic soils structures and determines the rhizosphere bacterial community diversity. Finally, the inoculation of highly Ni bioaccumulative PGPR strains modifies the Ni dynamic in the soil, demonstrating that there is a competition for this metal between the inoculated bacteria and the hyperaccumulator plant. In conclusion, the rhizosphere bacterial community diversity is dependent on the considered spatial scale. Furthermore, these results emphasize how the choice of the PGPR strain to inoculate is important in order to improve Ni agromining
APA, Harvard, Vancouver, ISO, and other styles
7

Lopez, Séverine. "Déterminisme de la diversité bactérienne rhizosphérique des hyperaccumulateurs de nickel." Electronic Thesis or Diss., Université de Lorraine, 2018. http://www.theses.fr/2018LORR0335.

Full text
Abstract:
La connaissance de la diversité microbienne des milieux ultramafiques est essentielle pour établir le fonctionnement écologique de ces milieux, qui présentent de fortes teneurs en Ni et sont caractérisés par une flore particulière, e.g. plantes hyperaccumulatrices de Ni. La rhizosphère des hyperaccumulateurs comporte une forte proportion de bactéries résistantes au Ni, qui peuvent aussi agir sur la nutrition des plantes et sur les propriétés physico-chimiques du sol. Le premier défi de cette thèse a été de cerner le déterminisme de la diversité bactérienne de la rhizosphère d’hyperaccumulateurs de Ni. Le second a été de tester l'intérêt de souches PGPR (Plant Growth Promoting Rhizobacteria) pour optimiser l'agromine à partir d'interactions entre les rhizobactéries et les hyperaccumulateurs de Ni. La démarche s'est appuyée sur un ensemble de prospections dans deux régions climatiques et sur des analyses de séquençage haut débit. Des tests de cultures de plantes hyperaccumulatrices inoculées ont également été conduits. Les résultats montrent que le déterminisme de la diversité bactérienne est variable selon l'échelle spatiale. A l'échelle mondiale, le type de végétation est le facteur majeur structurant les communautés bactériennes, elle-même contrôlée indirectement par le climat. L’influence directe du climat (température et humidité) sur la diversité est significative mais moindre. A l'échelle d'une région climatique, la physico-chimie des sols ultramafiques structure et détermine la diversité des communautés bactériennes rhizosphériques. Enfin, l'inoculation de souches PGPR fortement bioaccumulatrices de Ni modifie la dynamique du Ni dans le sol, ce qui démontre qu'il existe une compétition pour le Ni entre la plante et la bactérie inoculée. En conclusion, le déterminisme de la diversité des communautés bactériennes rhizosphériques est dépendant de l'échelle spatiale considérée. En outre, le choix de la souche PGPR à inoculer, dans un contexte d'amélioration de l'agromine du Ni, est primordial
Knowledge of the microbial diversity in ultramafic areas is essential to establish the ecological functioning of these environments, which display high level of Ni and are characterized by the presence of particular plants, e.g. Ni hyperaccumulators. The rhizosphere of these plants promotes a high proportion of Ni resistant bacteria that can act on plant nutrition and soil physicochemical properties. The first challenge of this thesis was to understand the bacterial rhizosphere diversity of Ni hyperaccumulators. The second was to test the interest of PGPR (Plant Growth Promoting Rhizobacteria) strains in order to improve agromining based on rhizobacteria and Ni hyperaccumulators interactions. The approach was based on two-contrasted climatic areas prospection and on high-throughput sequencing analyzes. Tests on culture of hyperaccumulator plants inoculated were also conducted. The results show that the determinism of this bacterial diversity is variable according to the spatial scale. On a global scale, the vegetation type, indirectly influenced by the climate, is the major factor structuring bacterial communities. The direct influence of the climate (temperature and humidity) on bacterial diversity is significant but lower. At the scale of a climatic region, the physic-chemistry of ultramafic soils structures and determines the rhizosphere bacterial community diversity. Finally, the inoculation of highly Ni bioaccumulative PGPR strains modifies the Ni dynamic in the soil, demonstrating that there is a competition for this metal between the inoculated bacteria and the hyperaccumulator plant. In conclusion, the rhizosphere bacterial community diversity is dependent on the considered spatial scale. Furthermore, these results emphasize how the choice of the PGPR strain to inoculate is important in order to improve Ni agromining
APA, Harvard, Vancouver, ISO, and other styles
8

Bourles, Alexandre. "Les rhizobactéries des sols ultramafiques de Nouvelle-Calédonie : Caractérisation, rôle dans l'adaptation des plantes à la contrainte édaphique et interaction avec les champignons mycorhiziens à arbuscules." Thesis, Nouvelle Calédonie, 2019. http://www.theses.fr/2019NCAL0002.

Full text
Abstract:
Un tiers de la surface de la Nouvelle-Calédonie est recouvert par des massifs ultramafiques caractérisés par des conditions édaphiques extrêmes contribuant au développement d’une flore unique. L'interaction avec les microorganismes du sol et notamment les rhizobactéries constitue une adaptation essentielle chez ces plantes. C'est dans ce contexte que s'insère cette thèse dont l'objectif est de comprendre le rôle de ces rhizobactéries dans l'adaptation des plantes à la contrainte édaphique. Cette thèse s'intéresse plus particulièrement aux bactéries appartenant au genre Burkholderia et Curtobacterium isolées des sols ultramafiques de Nouvelle-Calédonie. Ce travail a été scindé en trois objectifs : (1) Caractériser les isolats bactériens, (2) Evaluer la réponse adpatative des bactéries à la contrainte édaphique et (3) Evaluer l'action promotrice de la croissance des plantes. Ce travail a permis de mettre en évidence l'existence des taxons bactériens originaux inféodés aux sols ultramafiques avec des mécanismes particuliers impliqués dans la tolérance aux métaux et jouant un rôle majeur dans l'adaptation des plantes à la contrainte édaphique. Des essais de co-inoculation avec des champignons mycorhiziens à arbuscules ont montré des effets bénéfiques sur la mise en place de la symbiose mycorhizienne entraînant une amélioration de la croissance des plantes. D'un point de vue appliqué, les résultats de ce travail de thèse ont permis de montrer que l'interaction de ces rhizobactéries avec les champignons mycorhiziens à arbuscules constitue une voie prometteuse pour la restauration des sites miniers dégradés de Nouvelle-Calédonie
In New caledoia, a tropical archipelago in the South Pacific Ocean, one third of the main island is covered by ultramafic solis that contribute to the development of a unique flora. Interaction with soils microorganisms, particularly rhizobacteria, is an essential adaptation in plants found on ultramafic soils. The objective of this thesis is to understand the role of these rhizobacteria isolated from New Caledonia ultramafic soils in the adpatation of plants to soils constraints. This thesis focuses on bacteria belonging to the genera Burkholdelria and Curtobacterium isolated from New Caledonian ultramafic soils. This work is divided into three objectives, (1) The characterization of the bacterial isolates, (2) The Evaluation of the adaptive response of bacteria to metal stress and (3) The evaluation of the plant growth promoting effect. This work highlights the existence of original taxa subordinated to ultramafic soils with particular mechanisms of resistance to metals involving in the adapatation of plants to soils stress. Mechanisms of resistance to metals depending on the bacterial species considered have been identified and are responsible of alleviation of metal in plants. Co-inoculation trials with arbuscular mycorrhizal fungi have shown beneficial effects on the development of mycorrhizal improving the plant growth. In addiction, the results obtained make interesting conclusions on the adpatation of plant species in ultramafic soils for improving ecological restoration program. Moreover, the interaction of the rhizobacteria with arbuscular mycorrhizal fungi seems to be a promising way to restore degraded mining sites in New Caledonia
APA, Harvard, Vancouver, ISO, and other styles
9

Tisserand, Romane. "The Ni biogeochemical cycle in a tropical agromining crop system." Electronic Thesis or Diss., Université de Lorraine, 2021. https://docnum.univ-lorraine.fr/ulprive/DDOC_T_2021_0115_TISSERAND.pdf.

Full text
Abstract:
L'hyperaccumulation est un phénomène qui a été découvert il y a 45 ans seulement, il a fait l'objet de nombreuses recherches, en raison du comportement inhabituel des métaux dans l'écosystème et en raison du potentiel de solutions fondées sur la nature qui en découle. La description du cycle biogéochimique du Ni des plantes hyperaccumulatrices est nécessaire pour élucider leur rôle écologique dans leur environnement naturel, mais aussi pour comprendre leur comportement potentiel dans des cultures tropicales d’agromine. L'exploitation agricole et l'exportation de la biomasse riche en Ni interrompront le cycle du Ni. Il est donc important de comprendre les mécanismes qui régissent le cycle biogéochimique du Ni dans les systèmes naturels et de cultures : Quels sont les cycles du Ni et leur impact sur le fonctionnement écologique des forêts tropicales d’hyperaccumulateurs ? Quelle est la vitesse des flux de Ni à travers les compartiments sol-plante et quelle est la dynamique et le renouvellement du Ni dans un système tropical d'hyperaccumulateurs ? À quelle vitesse une culture tropicale Agromine peut-elle épuiser le Ni dans le sol ? Comment pouvons-nous gérer la fertilisation des sols pour une culture d’agromine tropicale de Ni durable ? Les objectifs de ce doctorat étaient donc les suivants (i) d'étudier le cycle biogéochimique d'une forêt naturelle de Phyllanthus rufuschaneyi afin d'évaluer les flux de Ni dans l'écosystème ; (ii) de manipuler un tel écosystème afin d'effectuer un test de sensibilité de l'écosystème pour le flux suivant : retour de la litière au sol ; de l'absence de retour (exportation) à un doublement du retour ; (iii) d'optimiser le système de culture de P. rufuschaneyi pour l'agromine du Ni. Deux peuplements parallèles de P. rufuschaneyi ont été instrumentés, surveillés et comparés pendant deux ans (2018 et 2019), (i) une forêt secondaire naturelle de 100 m2 et (ii) un champ densément planté dans lequel les retours de litière au sol ont été calibrés ; de l'absence de retour (exportation) à un doublement du retour. Cette étude n'a pas révélé l'allopathie des plantes hyperaccumulatrices tropicales. Les plantes hyperaccumulatrices de Ni influent sur la constitution des stocks de Ni disponibles dans les couches arables. Le cycle du Ni est principalement régi par des flux internes, notamment la dégradation et le recyclage de la litière. Ce pourcentage de renouvellement du Ni ne semble pas être influencé par le taillis à court terme mais par la présence initiale de litière sur le sol. La fertilisation NPK n'a aucun effet sur le rendement en Ni à court terme (75 kg Ni ha-1 an-1), même si la fertilisation en azote a tendance à réduire le rendement en Ni de P. rufuschaneyi. Il convient de tenir compte du renouvellement du nickel lors de la conception des cultures d’agromine tropicales. Une étude plus approfondie de l’altération permettrait de préciser son rôle dans la reconstitution des stocks de Ni disponible et de nutriments
Hyperaccumulation is a phenomenon that was only discovered 45 years ago, it has been the focused of very intensive research because of the unusual behaviour of metals in the ecosystem and also because it offers a vast potential for nature-based solutions. Describing the Ni biogeochemical cycle within the soil-hyperaccumulator plants ecosystem is necessary to elucidate the ecological role of hyperaccumulator plants in their natural environment, but also to understand their potential behaviour under tropical agromining systems. Agromining and exporting Ni rich-biomass will interrupt the cycle. It is therefore important to understand the mechanisms which govern the Ni biogeochemical cycle in both natural and agromining systems: What are the Ni cycles (internal and external) and their impact on the ecological functioning of tropical hyperaccumulator forest? How rapid are the Ni fluxes across the soil-plant compartments, and what is the turnover of Ni in a hyperaccumulator tropical system? How fast can a tropical Agromining crop deplete Ni in soil? How can we manage soil fertilisation for a sustainable tropical Ni agromining crop? Therefore, the objectives were: (i) to study the biogeochemical cycling of a natural forest of Phyllanthus rufuschaneyi in order to assess and evaluate the natural fluxes of Ni in the ecosystem; (ii) to manipulate such an ecosystem in order to perform a sensitivity test of the ecosystem for the following flux: litter return to the soil; (iii) to optimize the cropping system of P. rufuschaneyi for Ni agromining. Two parallel stands of P. rufuschaneyi were instrumented, monitored and compared over two years (2018 and 2019), (i) a natural secondary 100-m2 forest and (ii) a densely planted field in which litter returns to the soil were calibrated; from no return (export) to a doubling of the return.This study did not prove allelopathy of tropical hyperaccumulator plants, despite the extreme influence of Ni hyperaccumulators in building up available Ni stocks in topsoils. Nickel cycle was mainly driven by internal fluxes, i.e. degradation and recycling of the hyperaccumulator biomass. The percentage of Ni recycled by litterfall tended to decrease with increasing litter addition to the soil and was not influenced by coppicing, at least in the short term. Major nutrient (NPK) fertilisation did not affect Ni yield (i.e. 75kg Ni ha-1 yr-1) in the short term either, even if N fertilisation reduced Ni concentrations in leaves and plant biomass production. Nickel turnover should be taken into account when designing tropical agromining crops and natural secondary forests are a good surrogate to evaluate the long term impacts of agromining. Further study of the weathering processes would help to precise the contribution of bedrock and soil mineral horizons in the Ni and nutrient budgets of the system
APA, Harvard, Vancouver, ISO, and other styles
10

Raous, Sophie. "Dynamique du nickel et d’autres éléments en traces métalliques (Co, Cr, Cu et Mn) dans des matériaux miniers ultramafiques." Thesis, Vandoeuvre-les-Nancy, INPL, 2011. http://www.theses.fr/2011INPL004N/document.

Full text
Abstract:
Une solution pour stabiliser les résidus d’extraction minière de latérites nickélifères est de les végétaliser avec des plantes natives de ces sols ultramafiques. L’objectif de cette thèse était d’étudier la réactivité géochimique des stériles miniers nickélifères des massifs de Niquelândia et Barro Alto (Goiás) dans l’optique de mettre en œuvre ce procédé de revégétalisation.La minéralogie et la réactivité des phases porteuses d’ETM dans les stériles ont été déterminées. L’influence du transport et de la composition de la solution au contact du stérile sur la mobilisation du Ni ont ensuite été étudiées par des expériences en colonne saturée et insaturée. Enfin, la comparaison de la composition de la solution circulant dans les sols naturels ultramafiques avec celle circulant dans des parcelles expérimentales de minerais types a permis d’obtenir une première évaluation de l’adaptabilité des plantes aux stériles.Deux phases majeures sont présentes dans les stériles : un matériau garniéritique, principalement composé de smectites ferrifères riches en Ni échangeable (1230 mg kg-1) ; et un matériau limonitique, principalement composé de goethite, pauvre en nickel mobile, mais riche en Cr(VI) échangeable (980 mg kg-1) complexé en sphère interne à la surface des goethites. Goethite et smectite ont servi de modèles pour affiner la détermination des mécanismes impliqués dans la mobilisation du nickel (modélisation PHREEQC). Outre les réactions de complexation de sphère externe et interne cette étude montre que la dissolution des phases minérales (phyllosilicates, oxydes de fer et de manganèse) et l’adsorption des complexes métal-(citrate/EDTA) jouent un rôle important dans la composition de la solution dans les stériles
A way to ensure physical and chemical stability of mining spoils heaps from nickeliferous laterites is to revegetate them using the native vegetation of the ultramafic soils. The aim of this work was to study the geochemical reactivity of nickeliferous mining spoils of Niquelândia and Barro Alto complexes (Goiás) for the further application of such a revegetation process. Mineralogy and reactivity of TME bearing phases in the spoils were determined. The influence of transport and percolating solution composition on the Ni mobilisation were then studied using saturated and unsaturated column experiments. Finally, the comparison of the composition of solution circulating in natural ultramafic soils with those circulating in experimental plots composed of typical mining ores allowed us to have a first evaluation of the adaptability of natural vegetation to spoils. Two main phases are present in the spoils: a garnieritic spoil, mainly composed of ferruginous smectites enriched in exchangeable Ni (1230 mg kg-1); and a limonitic spoil, mainly composed of goethite with little mobile Ni but very high exchangeable Cr(VI) contents (980 mg kg-1) located as outer sphere complexes at the goethite surface. Synthetic goethite and purified smectite served as model phases to refine the characterisation of main reactive mechanisms implied in Ni mobilisation (PHREEQC modelling). Besides outer (smectite, garnierite) and inner (goethite, limonite) sphere complexation reactions, we showed that the dissolution of mineral phases (phylosilicates, goethite and manganese oxides) and the adsorption of metal-citrate or metal-EDTA complexes do have an important role in the composition of the solution circulating in the spoils
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Ultramafic soils"

1

K, Fletcher W., and British Columbia. Geological Survey Branch., eds. Distribution and behaviour of platinum in soils of the Tulameen ultramafic complex, southern British Columbia. [Victoria]: Province of British Columbia, Geological Survey Branch, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

International Conference on Serpentine Ecology (1st 1991 University of California, Davis). The vegetation of ultramafic (serpentine) soils: Procedings of the first International Conference on Serpentine Ecology ... 1991. Andover: Intercept, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

International Conference on Serpentine Ecology (1st 1991 University of California, Davis). The vegetation of ultramafic (serpentine) soils: Proceedings of the First International Conference on Serpentine Ecology, University of California, Davis, 19-22 June 1991. Andover, Hampshire, England: Intercept, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Ultramafic soils"

1

Bockheim, James G. "Ultramafic Soils." In Soil Geography of the USA, 267–81. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06668-4_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Echevarria, Guillaume. "Genesis and Behaviour of Ultramafic Soils and Consequences for Nickel Biogeochemistry." In Agromining: Farming for Metals, 135–56. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61899-9_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Echevarria, Guillaume. "Genesis and Behaviour of Ultramafic Soils and Consequences for Nickel Biogeochemistry." In Agromining: Farming for Metals, 215–38. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58904-2_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gambi, O. Vergnano. "The distribution and ecology of the vegetation of ultramafic soils in Italy." In The Ecology of Areas with Serpentinized Rocks, 217–47. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-3722-5_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Batterbury, Simon P. J., and Matthias Kowasch. "Introduction: Geographical Understanding and “Listening” in New Caledonia-Kanaky." In Geographies of New Caledonia-Kanaky, 1–9. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-49140-5_1.

Full text
Abstract:
AbstractThis chapter is an introduction to “Geographies of New Caledonia-Kanaky”, edited by Matthias Kowasch and Simon Batterbury. The archipelago is a “biodiversity hotspot” with high species endemism, ultramafic soils and nickel resources that have been mined extensively for nearly 150 years. It remains a territory of France, and after three referendums on independence, decolonisation is an unfinished and ongoing process that still divides communities in their interpretation of history and their aspirations for the future. The 21 chapters of the book, including this introduction and the conclusion, reflect different themes and offer cultural, political, social and ecological perspectives. New Caledonia-Kanaky (NC-K) is a “window on the world” in terms of decolonisation paths, environmental and social justice, racial inequality, biodiversity and the impacts of mining. The book has seven parts: (1) biodiversity, environmental protection and policies; (2) fisheries and agriculture; (3) extractive industries, mining development and waste management; (4) land reform and urban development; (5) cultural heritage, languages and education; (6) small-scale politics and gender questions; and lastly (7) decolonisation and political independence.
APA, Harvard, Vancouver, ISO, and other styles
6

Lessovaia, Sofia N., Sergey Goryachkin, Yury Polekhovsky, Viktoria Ershova, and Alexey Filimonov. "Abiotic and Biotic Processes of Mineral Weathering in Tundra Soils on Ultramafic and Mafic Rocks of the Polar Urals, Russia." In Lecture Notes in Earth System Sciences, 223–36. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24987-2_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sequeira, Eugénio, Calos Aguiar, and Carlos Meireles. "Ultramafics of Bragança Massif: Soils, Flora and Vegetation." In Natural Heritage from East to West, 143–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01577-9_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Alexander, Earl B., Roger G. Coleman, Todd Keeler-Wolfe, and Susan P. Harrison. "Introduction." In Serpentine Geoecology of Western North America. Oxford University Press, 2007. http://dx.doi.org/10.1093/oso/9780195165081.003.0003.

Full text
Abstract:
Ultramafic, or colloquially “serpentine,” rocks and soils have dramatic effects on the vegetation that grows on them. Many plants cannot grow in serpentine soils, leaving distinctive suites of plants to occupy serpentine habitats. Plants that do grow on serpentine soils may be stunted, and plant distributions are commonly sparse relative to other soils in an area. Plant communities on serpentine soils are usually distinctive, even if one does not recognize the plant species. Because of these distinctive features, ultramafic rocks and serpentine soils are of special interest to all observers of landscapes. Geology underlies both conceptually and literally the distinctive vegetation on serpentine soils. The occurrence of special floras on particular substrates within particular regions makes rocks and soils of key significance to plant evolution and biogeography. Sophisticated interpretations of these interrelationships require a combined knowledge of geology, soils, and botany that few people possess. Even highly specialized professionals generally lack the requisite expertise in all three disciplines. The science of ecology, which in principle concerns interactions among all aspects of the environment, seldom incorporates a deep understanding of rocks and soils. Some scientists have attempted to bridge this gap through creating a discipline known as geoecology (Troll 1971, Huggett 1995), which forms the basis for our interdisciplinary exploration of serpentine rocks and soils in western North America. The term “serpentine” is applied in a general sense to all ultramafic rocks, soils developed from them, and plants growing on them. Ultramafic rocks are those with very high magnesium and iron concentrations. The word serpentine is derived from the Latin word serpentinus, meaning “resembling a serpent, or a serpent’s skin,” because many serpentine rocks have smooth surfaces mottled in shades of green to black. The distinctive chemistry of ultramafic rocks and serpentine soils restricts the growth of many plants and makes them refuges for plants that thrive in serpentine habitats, including serpentine endemics (species that are restricted to these soils) and other species that have evolved means of tolerating these habitats. Often the means of tolerance include visible adaptations such as slow growth and relatively thick, spiny foliage.
APA, Harvard, Vancouver, ISO, and other styles
9

Alexander, Earl B., Roger G. Coleman, Todd Keeler-Wolfe, and Susan P. Harrison. "Synthesis and Future Directions." In Serpentine Geoecology of Western North America. Oxford University Press, 2007. http://dx.doi.org/10.1093/oso/9780195165081.003.0031.

Full text
Abstract:
Ultramafic rocks come from deep within the earth. Most rocks on the surface of the earth are quite different from them. Unique rocks make unique soils and support special plants. Exploring the links and interactions among these unique rocks, soils, and vegetation is an interdisciplinary endeavor that has been accomplished by experts in three areas. It has helped elucidate serpentine rock–soil–plant relationships and provide a rationale for the unusual soil properties and vegetation associated with ultramafic rocks. Examples from arctic tundra to temperate rainforest and hot desert in western North America provide a framework for the investigation of serpentine geoecosystems around the world. The unusual character of most serpentine vegetation is readily apparent even to an untrained eye. Although a vast number of rock and soil types make up the earth’s surface, few have as dramatic and visible effects on ecosystems as do ultramafic, or serpentine materials. Most ultramafic rocks in western North America have been derived from the mantle of earth via ocean crust. Magnesium is highly concentrated in the mantle and calcium, potassium, and phosphorous are relatively low. Calcium and potassium are further depleted from peridotite in the partial melting of ultramafic rock at the base of the ocean crust. As oceanic plates drift from spreading centers, most of the ocean crust is subducted and returns to the mantle (chapter 2). Only relatively small fragments of ocean crust are added to the continents. Because eukaryotic organisms, from protozoa to plants and animals, have evolved on continental crust, they are adapted to soils with higher concentrations of calcium, potassium, and phosphorus (elements with higher concentrations in continental crust than in ultramafic rocks from the base of the ocean crust) and much lower concentrations of magnesium. Having evolved on continents, plants depend on relatively high ratios of calcium and potassium to magnesium, elements that they use for a wide range of physiological functions. Although there has been a long history of evolutionary adaptation to the chemistry of the continental crust, special adaptations have allowed some plants to colonize the atypical conditions of serpentine.
APA, Harvard, Vancouver, ISO, and other styles
10

O’Geen, Anthony T., Randy A. Dahlgren, and Daniel Sánchez-Mata. "California Soils and Examples of Ultramafic Vegetation." In Terrestrial Vegetation of California, 3rd Edition, 71–106. University of California Press, 2007. http://dx.doi.org/10.1525/california/9780520249554.003.0003.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Ultramafic soils"

1

Cardace, Dawn. "METABOLIC POTENTIALS IN SOILS DERIVED FROM ULTRAMAFIC BEDROCK." In 54th Annual GSA Northeastern Section Meeting - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019ne-328217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Feldman, Anthony, Elisabeth Hausrath, Elizabeth Rampe, Oliver Tschauner, and Tanya S. Peretyazhko. "ULTRAMAFIC SOILS: ANALOGUES FOR INCIPIENT WEATHERING ON MARS." In Joint 118th Annual Cordilleran/72nd Annual Rocky Mountain Section Meeting - 2022. Geological Society of America, 2022. http://dx.doi.org/10.1130/abs/2022cd-373783.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Favas, Paulo. "IN-SITU PHYTOEXTRACTION OF NICKEL BY ODONTARRHENA SERPYLLIFOLIA ON ULTRAMAFIC SOILS OF PORTUGAL." In GEOLINKS 2019 Multidisciplinary International Scientific Conference. SAIMA CONSULT LTD, 2019. http://dx.doi.org/10.32008/geolinks2019/b3/v1/12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Feldman, Anthony, Elisabeth Hausrath, Thomas G. Sharp, Elizabeth Rampe, Antonio Lanzirotti, and Matthew Newville. "WARM AND WET CONDITIONS PROMOTE NANOCRYSTALLINITY IN FE-RICH X-RAY AMORPHOUS MATERIAL WHILE COOL AND WET CONDITIONS PROMOTE FORMATION OF PURELY AMORPHOUS SI/FE-RICH MATERIAL IN TERRESTRIAL ULTRAMAFIC SOILS CHEMICALLY RELEVANT TO MARS." In GSA Connects 2022 meeting in Denver, Colorado. Geological Society of America, 2022. http://dx.doi.org/10.1130/abs/2022am-382792.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Méndez-Méndez, Kimberly, Angus K. Moore, Juxxara Ortiz Silvestry, Yahaira D. Álvarez Gandía,, K. Stephen Hughes, and Darryl E. Granger. "Chemical Weathering of Mafic and Ultramafic Volcanic Arc Bedrock in a Tropical Montane Setting." In Soil Erosion Research Under a Changing Climate, January 8-13, 2023, Aguadilla, Puerto Rico, USA. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2023. http://dx.doi.org/10.13031/soil.2023524.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Méndez-Méndez, Kimberly, Angus K. Moore, Juxxara Ortiz Silvestry, Yahaira D. Álvarez Gandía,, K. Stephen Hughes, and Darryl E. Granger. "Chemical Weathering of Mafic and Ultramafic Volcanic Arc Bedrock in a Tropical Montane Setting." In Soil Erosion Research Under a Changing Climate, January 8-13, 2023, Aguadilla, Puerto Rico, USA. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2023. http://dx.doi.org/10.13031/soil.23524.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography