To see the other types of publications on this topic, follow the link: Ultrahard.

Journal articles on the topic 'Ultrahard'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Ultrahard.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

MATSUSHITA, TETSUO. "Ultrahard chromium plating." Jitsumu Hyomen Gijutsu 34, no. 11 (1987): 459–62. http://dx.doi.org/10.4139/sfj1970.34.459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sahota, P. K., Y. Liu, R. Skomski, P. Manchanda, R. Zhang, M. Franchin, H. Fangohr, G. C. Hadjipanayis, A. Kashyap, and D. J. Sellmyer. "Ultrahard magnetic nanostructures." Journal of Applied Physics 111, no. 7 (April 2012): 07E345. http://dx.doi.org/10.1063/1.3679453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nuwer, Rachel. "Ultrahard Recyclable Plastics." Scientific American 311, no. 6 (November 18, 2014): 52. http://dx.doi.org/10.1038/scientificamerican1214-52a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Riedel, Ralf. "Novel Ultrahard Materials." Advanced Materials 6, no. 7-8 (July 1994): 549–60. http://dx.doi.org/10.1002/adma.19940060705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shul’zhenko, A. A., E. E. Ashkinazi, A. N. Sokolov, V. G. Gargin, V. G. Ral’chenko, V. I. Konov, L. I. Aleksandrova, et al. "Novel hybrid ultrahard material." Journal of Superhard Materials 32, no. 5 (October 2010): 293–300. http://dx.doi.org/10.3103/s1063457610050011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Herrmann, M., I. Sigalas, M. Thiele, M. M. Müller, H. J. Kleebe, and A. Michaelis. "Boron suboxide ultrahard materials." International Journal of Refractory Metals and Hard Materials 39 (July 2013): 53–60. http://dx.doi.org/10.1016/j.ijrmhm.2012.02.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Siegal, M. P., D. R. Tallant, P. N. Provencio, D. L. Overmyer, R. L. Simpson, and L. J. Martinez-Miranda. "Ultrahard carbon nanocomposite films." Applied Physics Letters 76, no. 21 (May 22, 2000): 3052–54. http://dx.doi.org/10.1063/1.126576.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Blank, V., M. Popov, N. Lvova, K. Gogolinsky, and V. Reshetov. "Nano-sclerometry measurements of superhard materials and diamond hardness using scanning force microscope with the ultrahard fullerite C60 tip." Journal of Materials Research 12, no. 11 (November 1997): 3109–14. http://dx.doi.org/10.1557/jmr.1997.0406.

Full text
Abstract:
The new procedure for the hardness measurements of superhard materials including diamond using the scanning force microscope with the ultrahard fullerite C60 tip was developed. It is shown that diamond is plastically deformed under the indentation by the ultrahard fullerite indenter at room temperature. Now the correct measurements of diamond hardness have become possible. The hardness values measured are 137 ± 6 and 167 ± 5 GPa for the diamond faces (100) and (111), respectively.
APA, Harvard, Vancouver, ISO, and other styles
9

Bybee, Karen. "Improved ROP in Ultrahard Rock." Journal of Petroleum Technology 58, no. 12 (December 1, 2006): 76–77. http://dx.doi.org/10.2118/1206-0076-jpt.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Brazhkin, Vadim V. "Ultrahard nanomaterials: myths and reality." Uspekhi Fizicheskih Nauk 190, no. 06 (July 2019): 561–84. http://dx.doi.org/10.3367/ufnr.2019.07.038635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Irifune, Tetsuo, Ayako Kurio, Shizue Sakamoto, Toru Inoue, and Hitoshi Sumiya. "Ultrahard polycrystalline diamond from graphite." Nature 421, no. 6923 (February 6, 2003): 599–600. http://dx.doi.org/10.1038/421599b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Tian, Yongjun, Bo Xu, Dongli Yu, Yanming Ma, Yanbin Wang, Yingbing Jiang, Wentao Hu, et al. "Ultrahard nanotwinned cubic boron nitride." Nature 493, no. 7432 (January 16, 2013): 385–88. http://dx.doi.org/10.1038/nature11728.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Dubrovinskaia, Natalia, and Leonid Dubrovinsky. "Controversy about ultrahard nanotwinned cBN." Nature 502, no. 7472 (October 23, 2013): E1—E2. http://dx.doi.org/10.1038/nature12620.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Sealy, Cordelia. "Glassy route to ultrahard ceramics." Materials Today 7, no. 10 (October 2004): 15. http://dx.doi.org/10.1016/s1369-7021(04)00438-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Sealy, Cordelia. "Modeling solves ultrahard material problem." Materials Today 20, no. 7 (September 2017): 344–45. http://dx.doi.org/10.1016/j.mattod.2017.08.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Lowther, John E. "Symmetric Structures of Ultrahard Materials." Journal of the American Ceramic Society 85, no. 1 (December 20, 2004): 55–58. http://dx.doi.org/10.1111/j.1151-2916.2002.tb00038.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Ryzhov, V. V., A. A. Sapozhnikov, and I. Yu Turchanovskii. "Converters for ultrahard x-rays." Russian Physics Journal 38, no. 12 (December 1995): 1258–62. http://dx.doi.org/10.1007/bf00559387.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Blank, V. D., V. M. Levin, V. M. Prokhorov, S. G. Buga, G. A. Dubitskii, and N. R. Serebryanaya. "Elastic properties of ultrahard fullerites." Journal of Experimental and Theoretical Physics 87, no. 4 (October 1998): 741–46. http://dx.doi.org/10.1134/1.558716.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Solozhenko, Vladimir L., and Yann Le Godec. "A Hunt for Ultrahard Materials." Journal of Applied Physics 126, no. 23 (December 21, 2019): 230401. http://dx.doi.org/10.1063/1.5139489.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Brazhkin, V. V. "Ultrahard nanomaterials: myths and reality." Physics-Uspekhi 63, no. 6 (June 30, 2020): 523–44. http://dx.doi.org/10.3367/ufne.2019.07.038635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Dumitru, G., V. Romano, H. P. Weber, M. Sentis, and W. Marine. "Femtosecond ablation of ultrahard materials." Applied Physics A: Materials Science & Processing 74, no. 6 (June 1, 2002): 729–39. http://dx.doi.org/10.1007/s003390101183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Irifune, T., A. Kurio, S. Sakamoto, T. Inoue, and H. Sumiya. "Correction: Ultrahard polycrystalline diamond from graphite." Nature 421, no. 6925 (February 2003): 806. http://dx.doi.org/10.1038/421806b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Wei Chao, 魏超, 马玉平 Ma Yuping, 韩源 Han Yuan, 张遥 Zhang Yao, and 陈雪辉 Chen Xuehui. "Femtosecond Laser Processing of Ultrahard Materials." Laser & Optoelectronics Progress 56, no. 19 (2019): 190003. http://dx.doi.org/10.3788/lop56.190003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Veprek, S., A. S. Argon, and R. F. Zhang. "Design of ultrahard materials: Go nano!" Philosophical Magazine 90, no. 31-32 (November 7, 2010): 4101–15. http://dx.doi.org/10.1080/14786430903365294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Popov, Mikhail, Mikhail Alekseev, Alexey Kirichenko, Boris Kulnitskiy, Igor Perezhogin, Elizaveta Tyukalova, and Vladimir Blank. "A catalytic depolymerization of ultrahard fullerite." Journal of Materials Research 30, no. 11 (May 12, 2015): 1772–78. http://dx.doi.org/10.1557/jmr.2015.118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Shang, Yuchen, Zhaodong Liu, Jiajun Dong, Mingguang Yao, Zhenxing Yang, Quanjun Li, Chunguang Zhai, et al. "Ultrahard bulk amorphous carbon from collapsed fullerene." Nature 599, no. 7886 (November 24, 2021): 599–604. http://dx.doi.org/10.1038/s41586-021-03882-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Xu Bo and Tian Yong-Jun. "High pressure synthesis of nanotwinned ultrahard materials." Acta Physica Sinica 66, no. 3 (2017): 036201. http://dx.doi.org/10.7498/aps.66.036201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Sumiya, H., K. Harano, and T. Irifune. "Ultrahard diamond indenter prepared from nanopolycrystalline diamond." Review of Scientific Instruments 79, no. 5 (May 2008): 056102. http://dx.doi.org/10.1063/1.2918985.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Muche, Dereck N. F., Maxwell A. T. Marple, Ivan Hung, Zhehong Gan, Ricardo H. R. Castro, and Sabyasachi Sen. "Size-Induced Structural Disorder Enables Ultrahard Oxides." Journal of Physical Chemistry C 121, no. 25 (June 15, 2017): 13898–905. http://dx.doi.org/10.1021/acs.jpcc.7b03323.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Sealy, Cordelia. "Synthesis of ultrahard material under no pressure." Materials Today 10, no. 6 (June 2007): 8. http://dx.doi.org/10.1016/s1369-7021(07)70113-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Xin, S. W., M. Zhang, T. T. Yang, Y. Y. Zhao, B. R. Sun, and T. D. Shen. "Ultrahard bulk nanocrystalline VNbMoTaW high-entropy alloy." Journal of Alloys and Compounds 769 (November 2018): 597–604. http://dx.doi.org/10.1016/j.jallcom.2018.07.331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Solozhenko, Vladimir L., and Samir F. Matar. "Prediction of Novel Ultrahard Phases in the B–C–N System from First Principles: Progress and Problems." Materials 16, no. 2 (January 16, 2023): 886. http://dx.doi.org/10.3390/ma16020886.

Full text
Abstract:
The modern synthesis of superhard and, especially, ultrahard phases is a fascinating area of research that could lead to the design of new, industrially important materials. Computational methods built within the well-established quantum mechanics framework of density functional theory (DFT) play an important role in the search for these advanced materials and the prediction of their properties. The close relationship between the physical properties of carbon and boron nitride has led to particular interest in the B–C–N ternary system, characterized by the small radii of the elements, resulting in short interatomic distances and reduced volumes—the parameters being ‘recipes’ for very high hardness in three-dimensional structures. The purpose of this review is to provide a brief outline of recent developments and problems in predicting novel ultrahard carbon allotropes as well as binary and ternary compounds of the B–C–N system with particular emphasis on the analysis of the models used to evaluate the hardness of the theoretically predicted structures.
APA, Harvard, Vancouver, ISO, and other styles
33

Hu, Kuo, Ran Liu, Zhen Yao, Yuan-Yuan Liu, Yuan-Yuan Wang, Shuang-Chen Lu, and Bing-Bing Liu. "Novel ultrahard carbon structures by cold-compressing tubes." CrystEngComm 23, no. 10 (2021): 2091–98. http://dx.doi.org/10.1039/d0ce01155j.

Full text
Abstract:
Four novel superhard carbon structures named L-, CM-, and K-carbon and Cco-C160 are proposed by cold-compressing carbon nanotubes based on DFT theory, which adopt the 5 + 6 + 7, 5 + 6 + 8, 6 + 14 and 4 + 6 + 8 topological structures, respectively.
APA, Harvard, Vancouver, ISO, and other styles
34

Yur’ev, A. B., N. Kh Mukhatdinov, O. P. Atkonova, N. A. Kozyrev, and L. V. Korneva. "Production of ultrahard (80–100)-mm grinding balls." Steel in Translation 40, no. 4 (April 2010): 382–83. http://dx.doi.org/10.3103/s0967091210040182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Meng, D., W. Yue, F. Lin, C. Wang, and Z. Wu. "Thermal stability of ultrahard polycrystalline diamond composite materials." Journal of Superhard Materials 37, no. 2 (March 2015): 67–72. http://dx.doi.org/10.3103/s106345761502001x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Gao, Yang, Tengfei Cao, Filippo Cellini, Claire Berger, Walter A. de Heer, Erio Tosatti, Elisa Riedo, and Angelo Bongiorno. "Ultrahard carbon film from epitaxial two-layer graphene." Nature Nanotechnology 13, no. 2 (December 18, 2017): 133–38. http://dx.doi.org/10.1038/s41565-017-0023-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Silva, Clênio, Roberto B. Figueiredo, Berenice M. Gonzalez, Luciano A. Montoro, and Augusta Isaac. "Designing ultrahard aluminum nanocomposites by severe mechanochemical processing." Materials Science and Engineering: A 801 (January 2021): 140422. http://dx.doi.org/10.1016/j.msea.2020.140422.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Trent, E. M. "Advances in ultrahard material applications technology vol 2." Tribology International 18, no. 1 (February 1985): 57. http://dx.doi.org/10.1016/0301-679x(85)90016-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Chu, Binhua, Da Li, Kuo Bao, Fubo Tian, Defang Duan, Xiaojing Sha, Pugeng Hou, et al. "Ultrahard boron-rich tantalum boride: Monoclinic TaB 4." Journal of Alloys and Compounds 617 (December 2014): 660–64. http://dx.doi.org/10.1016/j.jallcom.2014.06.185.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Martinez, Lorenzo. "Recent developments in the search for ultrahard materials." JOM 47, no. 11 (November 1995): 48. http://dx.doi.org/10.1007/bf03221308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Le Godec, Yann, Alexandre Courac, and Vladimir L. Solozhenko. "High-pressure synthesis of superhard and ultrahard materials." Journal of Applied Physics 126, no. 15 (October 21, 2019): 151102. http://dx.doi.org/10.1063/1.5111321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

König, W., and A. Neises. "Wear mechanisms of ultrahard, non-metallic cutting materials." Wear 162-164 (April 1993): 12–21. http://dx.doi.org/10.1016/0043-1648(93)90479-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Trent, E. M. "Advances in ultrahard material applications technology vol 2." Precision Engineering 7, no. 2 (April 1985): 112–13. http://dx.doi.org/10.1016/0141-6359(85)90104-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Yan, Chih-shiue, Ho-kwang Mao, Wei Li, Jiang Qian, Yusheng Zhao, and Russell J. Hemley. "Ultrahard diamond single crystals from chemical vapor deposition." physica status solidi (a) 201, no. 4 (March 2004): R25—R27. http://dx.doi.org/10.1002/pssa.200409033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Liu, X. C., H. W. Zhang, and K. Lu. "Strain-Induced Ultrahard and Ultrastable Nanolaminated Structure in Nickel." Science 342, no. 6156 (October 17, 2013): 337–40. http://dx.doi.org/10.1126/science.1242578.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Jinlong, Lv, Cheng Lei, Wang Zhuqing, and Hideo Miura. "The high speed collision induced ultrahard recrystallized pure Ni." Materials Science and Engineering: A 736 (October 2018): 349–53. http://dx.doi.org/10.1016/j.msea.2018.09.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Rafaja, D., V. Klemm, M. Motylenko, M. R. Schwarz, T. Barsukova, E. Kroke, D. Frost, L. Dubrovinsky, and N. Dubrovinskaia. "Synthesis, microstructure and hardness of bulk ultrahard BN nanocomposites." Journal of Materials Research 23, no. 4 (April 2008): 981–93. http://dx.doi.org/10.1557/jmr.2008.0117.

Full text
Abstract:
Ultrahard boron nitride compacts containing nanosized domains of the cubic (c-BN), wurtzitic (w-BN), and hexagonal (h-BN) phase were synthesized at high-pressure/high-temperature (HP/HT) conditions. Hot-pressed and pyrolytic BN, both containing h-BN as a main component, were used as starting materials. The HP/HT products were investigated by x-ray diffraction via Rietveld and line-profile analysis, as well as high-resolution transmission electron microscopy. c-BN was the dominant phase in all products, complemented by up to 25 wt% w-BN and some remaining “compressed h-BN.” In particular samples, partial crystallographic coherence of adjacent crystallites to x-rays was observed, which has been previously found in superhard transition metal nitride-based nanocomposite coatings. In the BN nanocomposites, the partial coherence of nanocrystallites to x-rays was improved by their strong local preferred orientation, which is made possible by the well-known orientation relationships among h-BN, w-BN, and c-BN phases. The correlation between the weight fraction and the average size of the c-BN crystallites helped to describe the formation of c-BN/(w-BN) nanocomposites from submicron-sized h-BN domains in the starting materials. The Knoop and Vickers hardness of specimens with crystallite sizes ranging from 6 to ∼50 nm was found to be significantly higher than that of c-BN single crystals, despite the presence of residual h-BN.
APA, Harvard, Vancouver, ISO, and other styles
48

Bengu, E., C. Collazo-Davila, D. Grozea, E. Landree, I. Widlow, M. Guruz, and L. D. Marks. "In situ growth and characterization of ultrahard thin films." Microscopy Research and Technique 42, no. 4 (September 15, 1998): 295–301. http://dx.doi.org/10.1002/(sici)1097-0029(19980915)42:4<295::aid-jemt8>3.0.co;2-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Karre, Rajamallu, Yixuan Hu, Shuangxi Song, Xiaodong Wang, Joydip Joardar, and Kolan Madhav Reddy. "Observations of multi-component boride precipitates in ultrahard boron carbide." Materials Characterization 176 (June 2021): 111106. http://dx.doi.org/10.1016/j.matchar.2021.111106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Wouters, Dirk. "Breaking the 10-nm grain size barrier in ultrahard metals." MRS Bulletin 39, no. 8 (August 2014): 653. http://dx.doi.org/10.1557/mrs.2014.174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography