Journal articles on the topic 'Ultrafast spectroscopy'

To see the other types of publications on this topic, follow the link: Ultrafast spectroscopy.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Ultrafast spectroscopy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Wirth, Mary J. "ULTRAFAST SPECTROSCOPY." Analytical Chemistry 62, no. 4 (February 15, 1990): 270A—277A. http://dx.doi.org/10.1021/ac00203a716.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stoutland, P., R. Dyer, and W. Woodruff. "Ultrafast infrared spectroscopy." Science 257, no. 5078 (September 25, 1992): 1913–17. http://dx.doi.org/10.1126/science.1329200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

DeBeer, D., L. G. Van Wagenen, R. Beach, and S. R. Hartmann. "Ultrafast Modulation Spectroscopy." Physical Review Letters 56, no. 11 (March 17, 1986): 1128–31. http://dx.doi.org/10.1103/physrevlett.56.1128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hochstrasser, R. M. "Multidimensional ultrafast spectroscopy." Proceedings of the National Academy of Sciences 104, no. 36 (August 27, 2007): 14189. http://dx.doi.org/10.1073/pnas.0706002104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Reber, Melanie A. R., Yuning Chen, and Thomas K. Allison. "Cavity-enhanced ultrafast spectroscopy: ultrafast meets ultrasensitive." Optica 3, no. 3 (March 17, 2016): 311. http://dx.doi.org/10.1364/optica.3.000311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Silfies, Myles C., Grzegorz Kowzan, Neomi Lewis, and Thomas K. Allison. "Broadband cavity-enhanced ultrafast spectroscopy." Physical Chemistry Chemical Physics 23, no. 16 (2021): 9743–52. http://dx.doi.org/10.1039/d1cp00631b.

Full text
Abstract:
We present an ultrasensitive ultrafast transient absorption spectrometer which allows for all-optical ultrafast measurements in gas-phase systems. We discuss the design of the instrument, show first results, and compare to other techniques.
APA, Harvard, Vancouver, ISO, and other styles
7

KOBAYASHI, Takayoshi, and Satoshi TAKEUCHI. "Ultrafast Near Infrared Spectroscopy." Journal of the Spectroscopical Society of Japan 46, no. 2 (1997): 51–60. http://dx.doi.org/10.5111/bunkou.46.51.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Starosielec, Sebastian, and Daniel Hägele. "Ultrafast spin noise spectroscopy." Applied Physics Letters 93, no. 5 (August 4, 2008): 051116. http://dx.doi.org/10.1063/1.2969041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

GÖBEL, ERNST O. "Ultrafast Spectroscopy of Semiconductors." Optics and Photonics News 3, no. 5 (May 1, 1992): 33. http://dx.doi.org/10.1364/opn.3.5.000033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Leblans, M. "Ultrafast spectroscopy of defects." Radiation Effects and Defects in Solids 134, no. 1-4 (December 1995): 39–45. http://dx.doi.org/10.1080/10420159508227180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

New, G. H. C. "Ultrafast Phenomena in Spectroscopy." Journal of Modern Optics 37, no. 8 (August 1990): 1405. http://dx.doi.org/10.1080/09500349014551591.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Vallée, Fabrice. "Ultrafast spectroscopy of metals." Comptes Rendus de l'Académie des Sciences - Series IV - Physics 2, no. 10 (December 2001): 1469–82. http://dx.doi.org/10.1016/s1296-2147(01)01283-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Umapathy, Siva, Adithya Lakshmanna, and Babita Mallick. "Ultrafast Raman loss spectroscopy." Journal of Raman Spectroscopy 40, no. 3 (March 2009): 235–37. http://dx.doi.org/10.1002/jrs.2199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

HANGYO, Masanori. "Terahertz Far-Infrared Spectroscopy III. Ultrafast Spectroscopy." Journal of the Spectroscopical Society of Japan 54, no. 3 (2005): 181–98. http://dx.doi.org/10.5111/bunkou.54.181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Rose, Peter A., and Jacob J. Krich. "Numerical method for nonlinear optical spectroscopies: Ultrafast ultrafast spectroscopy." Journal of Chemical Physics 150, no. 21 (June 7, 2019): 214105. http://dx.doi.org/10.1063/1.5094062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Keller, Emily L., Nathaniel C. Brandt, Alyssa A. Cassabaum, and Renee R. Frontiera. "Ultrafast surface-enhanced Raman spectroscopy." Analyst 140, no. 15 (2015): 4922–31. http://dx.doi.org/10.1039/c5an00869g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Guennec, Adrien Le, Patrick Giraudeau, Stefano Caldarelli, and Jean-Nicolas Dumez. "Ultrafast double-quantum NMR spectroscopy." Chemical Communications 51, no. 2 (2015): 354–57. http://dx.doi.org/10.1039/c4cc07232d.

Full text
Abstract:
The acquisition of double-quantum NMR spectra in less than three seconds is demonstrated and the synergies between double-quantum and ultrafast NMR spectroscopy for the analysis of complex mixtures are illustrated.
APA, Harvard, Vancouver, ISO, and other styles
18

Borri, P., W. W. Langbein, and J. M. Hvam. "Ultrafast Spectroscopy of Semiconductor Devices." Materials Science Forum 297-298 (December 1998): 67–72. http://dx.doi.org/10.4028/www.scientific.net/msf.297-298.67.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Meech, Steve. "Virtual Issue on Ultrafast Spectroscopy." Journal of Physical Chemistry B 125, no. 23 (June 17, 2021): 6037–39. http://dx.doi.org/10.1021/acs.jpcb.1c04148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Doerr, Allison. "Ultrafast spectroscopy: timing is everything." Nature Methods 4, no. 2 (February 2007): 111. http://dx.doi.org/10.1038/nmeth0207-111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Galiana, Gigi, Rosa T. Branca, and Warren. "Ultrafast Intermolecular Zero Quantum Spectroscopy." Journal of the American Chemical Society 127, no. 50 (December 2005): 17574–75. http://dx.doi.org/10.1021/ja054463m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Orenstein, Joseph. "Ultrafast spectroscopy of quantum materials." Physics Today 65, no. 9 (September 2012): 44–50. http://dx.doi.org/10.1063/pt.3.1717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Hochstrasser, Robin M. "Ultrafast Spectroscopy of Protein Dynamics." Journal of Chemical Education 75, no. 5 (May 1998): 559. http://dx.doi.org/10.1021/ed075p559.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Diller, R., M. Iannone, R. Bogomolni, and R. M. Hochstrasser. "Ultrafast infrared spectroscopy of bacteriorhodopsin." Biophysical Journal 60, no. 1 (July 1991): 286–89. http://dx.doi.org/10.1016/s0006-3495(91)82050-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Mi, Xin, Zuhe Yu, Qian Jiang, Xiaofeng Li, and Panming Fu. "Four-level ultrafast modulation spectroscopy." Optics Communications 152, no. 4-6 (July 1998): 361–64. http://dx.doi.org/10.1016/s0030-4018(98)00197-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Rossky, Peter J. "Quantum simulation of ultrafast spectroscopy." Journal of the Optical Society of America B 7, no. 8 (August 1, 1990): 1727. http://dx.doi.org/10.1364/josab.7.001727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Lindley, Matthew, Kotaro Hiramatsu, Hayate Nomoto, Fukashi Shibata, Tsuyoshi Takeshita, Shigeyuki Kawano, and Keisuke Goda. "Ultrafast Simultaneous Raman-Fluorescence Spectroscopy." Analytical Chemistry 91, no. 24 (November 27, 2019): 15563–69. http://dx.doi.org/10.1021/acs.analchem.9b03563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Bressler, Christian, and Majed Chergui. "Ultrafast X-ray Absorption Spectroscopy." Chemical Reviews 104, no. 4 (April 2004): 1781–812. http://dx.doi.org/10.1021/cr0206667.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Kennis, John TM, and Marie-Louise Groot. "Ultrafast spectroscopy of biological photoreceptors." Current Opinion in Structural Biology 17, no. 5 (October 2007): 623–30. http://dx.doi.org/10.1016/j.sbi.2007.09.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Kobayashi, Takayoshi. "Ultrafast spectroscopy of conjugated polymers." Synthetic Metals 71, no. 1-3 (April 1995): 1663–66. http://dx.doi.org/10.1016/0379-6779(94)02996-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Kunsch, J. "Photoconductive gratings in ultrafast spectroscopy." Optics Communications 75, no. 5-6 (March 1990): 358–64. http://dx.doi.org/10.1016/0030-4018(90)90196-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Vardeny, Z. V. "Ultrafast spectroscopy of conducting polymers." Journal of Molecular Structure 292 (March 1993): 279–88. http://dx.doi.org/10.1016/0022-2860(93)80106-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

ISHIDA, Yukiaki. "Ultrafast Time-Resolved Photoemission Spectroscopy." Hyomen Kagaku 37, no. 1 (2016): 31–36. http://dx.doi.org/10.1380/jsssj.37.31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Lin, S. H., B. Fain, and C. Y. Yeh. "Ultrafast time-resolved fluorescence spectroscopy." Physical Review A 41, no. 5 (March 1, 1990): 2718–29. http://dx.doi.org/10.1103/physreva.41.2718.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Lee, Kyung-Koo, Kwang-Hee Park, Jun-Ho Choi, Jeong-Hyon Ha, Seung-Joon Jeon, and Minhaeng Cho. "Ultrafast Vibrational Spectroscopy of Cyanophenols." Journal of Physical Chemistry A 114, no. 8 (March 4, 2010): 2757–67. http://dx.doi.org/10.1021/jp908696k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kersting, R., U. Lemmer, R. F. Mahrt, B. Mollay, H. Kauffmann, H. Kurz, E. O. Göbel, and H. Bässler. "Ultrafast Fluorescence Spectroscopy of PPV." Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 256, no. 1 (November 1994): 9–16. http://dx.doi.org/10.1080/10587259408039226.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Cheville, R. A., R. D. Averitt, and N. J. Halas. "Ultrafast large dynamic range spectroscopy." Optics Communications 110, no. 3-4 (August 1994): 327–33. http://dx.doi.org/10.1016/0030-4018(94)90434-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Palit, Dipak K. "Ultrafast Spectroscopy of Photonic Materials." Proceedings of the National Academy of Sciences, India Section A: Physical Sciences 85, no. 4 (November 5, 2015): 507–17. http://dx.doi.org/10.1007/s40010-015-0253-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Marquardt, Roberto. "Theoretical Methods for Ultrafast Spectroscopy." ChemPhysChem 14, no. 7 (April 18, 2013): 1350–61. http://dx.doi.org/10.1002/cphc.201201096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Di Donato, Mariangela, and Marie Louise Groot. "Ultrafast infrared spectroscopy in photosynthesis." Biochimica et Biophysica Acta (BBA) - Bioenergetics 1847, no. 1 (January 2015): 2–11. http://dx.doi.org/10.1016/j.bbabio.2014.06.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Alarcos, Noemí, Mario Gutiérrez, Marta Liras, Félix Sánchez, Miquel Moreno, and Abderrazzak Douhal. "Direct observation of breaking of the intramolecular H-bond, and slowing down of the proton motion and tuning its mechanism in an HBO derivative." Physical Chemistry Chemical Physics 17, no. 22 (2015): 14569–81. http://dx.doi.org/10.1039/c5cp01437a.

Full text
Abstract:
Exploring the mechanism of proton motion coupled to a charge-transfer reaction in a new HBO derivative in solution using steady-state and ultrafast emission spectroscopy shows an abnormal spectroscopic and dynamical behavior.
APA, Harvard, Vancouver, ISO, and other styles
42

Wolf, Thomas J. A., and Markus Gühr. "Photochemical pathways in nucleobases measured with an X-ray FEL." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 377, no. 2145 (April 2019): 20170473. http://dx.doi.org/10.1098/rsta.2017.0473.

Full text
Abstract:
The conversion of light energy into other molecular energetic degrees of freedom is often dominated by ultrafast, non-adiabatic processes. Femtosecond spectroscopy with optical pulses has helped in shaping our understanding of crucial processes in molecular energy-conversion. The advent of new, ultrashort and bright X-ray free electron laser sources opens the possibility to use X-ray-typical element and site sensitivity for ultrafast molecular research. We present two types of spectroscopy, ultrafast Auger and ultrafast X-ray absorption spectroscopy, and discuss their sensitivity to molecular processes. While Auger spectroscopy is able to monitor bond distance changes in the vicinity of an X-ray created core hole, near-edge absorption spectroscopy can deliver high-fidelity information on non-adiabatic transitions involving lone-pair orbitals. We demonstrate these features on the example of the UV-excited nucleobase thymine, investigated at the oxygen K-edge. We find a C–O bond elongation in the Auger data in addition to ππ* / nπ* non-adiabatic transition in X-ray near-edge absorption. We compare the results from both methods and draw a conclusive scenario of non-adiabatic molecular relaxation after UV excitation. This article is part of the theme issue ‘Measurement of ultrafast electronic and structural dynamics with X-rays’.
APA, Harvard, Vancouver, ISO, and other styles
43

Chergui, Majed. "Empirical rules of molecular photophysics in the light of ultrafast spectroscopy." Pure and Applied Chemistry 87, no. 6 (June 1, 2015): 525–36. http://dx.doi.org/10.1515/pac-2014-0939.

Full text
Abstract:
AbstractThe advent of ultrafast laser spectroscopy has allowed entirely new possibilities for the investigation of the ultrafast photophysics of inorganic metal-based molecular complexes. In this review we show different regimes where non-Kasha behavior shows up. We also demonstrate that while ultrafast intersystem crossing is a common observation in metal complexes, the ISC rates do not scale with the magnitude of the spin-orbit coupling constant. Structural dynamics and density of states play a crucial role in such ultrafast ISC processes, which are not limited to molecules containing heavy atoms.
APA, Harvard, Vancouver, ISO, and other styles
44

Leone, Stephen R., and Daniel M. Neumark. "Probing matter with nonlinear spectroscopy." Science 379, no. 6632 (February 10, 2023): 536–37. http://dx.doi.org/10.1126/science.add4509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Zhu, Tong, Jordan M. Snaider, Long Yuan, and Libai Huang. "Ultrafast Dynamic Microscopy of Carrier and Exciton Transport." Annual Review of Physical Chemistry 70, no. 1 (June 14, 2019): 219–44. http://dx.doi.org/10.1146/annurev-physchem-042018-052605.

Full text
Abstract:
We highlight the recent progress in ultrafast dynamic microscopy that combines ultrafast optical spectroscopy with microscopy approaches, focusing on the application transient absorption microscopy (TAM) to directly image energy and charge transport in solar energy harvesting and conversion systems. We discuss the principles, instrumentation, and resolutions of TAM. The simultaneous spatial, temporal, and excited-state-specific resolutions of TAM unraveled exciton and charge transport mechanisms that were previously obscured in conventional ultrafast spectroscopy measurements for systems such as organic solar cells, hybrid perovskite thin films, and molecular aggregates. We also discuss future directions to improve resolutions and to develop other ultrafast imaging contrasts beyond transient absorption.
APA, Harvard, Vancouver, ISO, and other styles
46

Singh, Prabhat K., Aruna K. Mora, and Sukhendu Nath. "Ultrafast fluorescence spectroscopy reveals a dominant weakly-emissive population of fibril bound thioflavin-T." Chemical Communications 51, no. 74 (2015): 14042–45. http://dx.doi.org/10.1039/c5cc04256a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Wang, Bo, Gaoshuai Wei, Jianing Chen, and Li Wang. "Terahertz response of ultrafast spin polarization in semi-insulating GaAs." Applied Physics Letters 121, no. 2 (July 11, 2022): 021101. http://dx.doi.org/10.1063/5.0099739.

Full text
Abstract:
Due to its high sensitivity and time-resolved ability, terahertz time-domain spectroscopy is a powerful tool for investigating ultrafast carrier dynamics in semiconductors. In addition to charges, spins of ultrafast carriers provide an alternate degree of freedom to design modern electronic devices but are rarely studied by terahertz time-domain spectroscopy. Here, ultrafast spin polarization in semi-insulating GaAs is studied by optical-pump terahertz-probe experiments at room temperature. We used circularly and linearly polarized femtosecond laser pulses to inject nonequilibrium carriers in GaAs and observed that both the transmitted and reflected terahertz signals exhibited different dynamical evolutions under the excitations of linearly and circularly polarized laser pulses, which are ascribed to the generation and relaxation of spin-polarized electrons. The lifetime of the ultrafast spin polarization was obtained from our experiments, highlighting the potentialities of terahertz spectroscopy for the investigation of spin relaxation in semiconductors.
APA, Harvard, Vancouver, ISO, and other styles
48

Nakanishi, S., H. Itoh, T. Fuji, T. Kashiwagi, N. Tsurumachi, M. Furuichi, H. Nakatsuka, and M. Kamada. "Application of synchrotron radiation to ultrafast spectroscopy." Journal of Synchrotron Radiation 5, no. 3 (May 1, 1998): 1072–74. http://dx.doi.org/10.1107/s0909049597014805.

Full text
Abstract:
A novel application of synchrotron radiation to ultrafast optical spectroscopy is demonstrated. The application is based on the short coherence time of broadband synchrotron radiation and employs a conventional interferometer. From a detailed study of the coherence of synchrotron radiation, it is shown that the coherent interference between two synchrotron radiation beams, split from a single beam, can provide ultimate time resolution down to a few femtoseconds. Experimental results of ultrafast spectroscopy using broadband synchrotron radiation are presented; these include free-induction decay and photon echoes in the visible and ultraviolet regions.
APA, Harvard, Vancouver, ISO, and other styles
49

Chábera, Pavel, Lisa A. Fredin, Kasper S. Kjær, Nils W. Rosemann, Linnea Lindh, Om Prakash, Yizhu Liu, et al. "Band-selective dynamics in charge-transfer excited iron carbene complexes." Faraday Discussions 216 (2019): 191–210. http://dx.doi.org/10.1039/c8fd00232k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

KOBAYASHI, Shunsuke. "Nonlinear Spectroscopy: Theory and Applications. VI. Ultrafast Nonlinear Spectroscopy." Journal of the Spectroscopical Society of Japan 46, no. 6 (1997): 302–16. http://dx.doi.org/10.5111/bunkou.46.302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography