Academic literature on the topic 'Ultrafast spectroscopy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ultrafast spectroscopy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Ultrafast spectroscopy"

1

Wirth, Mary J. "ULTRAFAST SPECTROSCOPY." Analytical Chemistry 62, no. 4 (February 15, 1990): 270A—277A. http://dx.doi.org/10.1021/ac00203a716.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stoutland, P., R. Dyer, and W. Woodruff. "Ultrafast infrared spectroscopy." Science 257, no. 5078 (September 25, 1992): 1913–17. http://dx.doi.org/10.1126/science.1329200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

DeBeer, D., L. G. Van Wagenen, R. Beach, and S. R. Hartmann. "Ultrafast Modulation Spectroscopy." Physical Review Letters 56, no. 11 (March 17, 1986): 1128–31. http://dx.doi.org/10.1103/physrevlett.56.1128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hochstrasser, R. M. "Multidimensional ultrafast spectroscopy." Proceedings of the National Academy of Sciences 104, no. 36 (August 27, 2007): 14189. http://dx.doi.org/10.1073/pnas.0706002104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Reber, Melanie A. R., Yuning Chen, and Thomas K. Allison. "Cavity-enhanced ultrafast spectroscopy: ultrafast meets ultrasensitive." Optica 3, no. 3 (March 17, 2016): 311. http://dx.doi.org/10.1364/optica.3.000311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Silfies, Myles C., Grzegorz Kowzan, Neomi Lewis, and Thomas K. Allison. "Broadband cavity-enhanced ultrafast spectroscopy." Physical Chemistry Chemical Physics 23, no. 16 (2021): 9743–52. http://dx.doi.org/10.1039/d1cp00631b.

Full text
Abstract:
We present an ultrasensitive ultrafast transient absorption spectrometer which allows for all-optical ultrafast measurements in gas-phase systems. We discuss the design of the instrument, show first results, and compare to other techniques.
APA, Harvard, Vancouver, ISO, and other styles
7

KOBAYASHI, Takayoshi, and Satoshi TAKEUCHI. "Ultrafast Near Infrared Spectroscopy." Journal of the Spectroscopical Society of Japan 46, no. 2 (1997): 51–60. http://dx.doi.org/10.5111/bunkou.46.51.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Starosielec, Sebastian, and Daniel Hägele. "Ultrafast spin noise spectroscopy." Applied Physics Letters 93, no. 5 (August 4, 2008): 051116. http://dx.doi.org/10.1063/1.2969041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

GÖBEL, ERNST O. "Ultrafast Spectroscopy of Semiconductors." Optics and Photonics News 3, no. 5 (May 1, 1992): 33. http://dx.doi.org/10.1364/opn.3.5.000033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Leblans, M. "Ultrafast spectroscopy of defects." Radiation Effects and Defects in Solids 134, no. 1-4 (December 1995): 39–45. http://dx.doi.org/10.1080/10420159508227180.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Ultrafast spectroscopy"

1

Zheng, Junrong. "Ultrafast chemical exchange spectroscopy /." May be available electronically:, 2007. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wen, Xiaoming, and n/a. "Ultrafast spectroscopy of semiconductor nanostructures." Swinburne University of Technology, 2007. http://adt.lib.swin.edu.au./public/adt-VSWT20070426.110438.

Full text
Abstract:
Semiconductor nanostructures exhibit many remarkable electronic and optical properties. The key to designing and utilising semiconductor quantum structures is a physical understanding of the detailed excitation, transport and energy relaxation processes. Thus the nonequilibrium dynamics of semiconductor quantum structures have attracted extensive attention in recent years. Ultrafast spectroscopy has proven to be a versatile and powerful tool for investigating transient phenomena related to the relaxation and transport dynamics in semiconductors. In this thesis, we report investigations into the electronic and optical properties of various semiconductor quantum systems using a variety of ultrafast techniques, including up-conversion photoluminescence, pump-probe, photon echoes and four-wave mixing. The semiconductor quantum systems studied include ZnO/ZnMgO multiple quantum wells with oxygen ion implantation, InGaAs/GaAs self-assembled quantum dots with different doping, InGaAs/InP quantum wells with proton implantation, and silicon quantum dots. The spectra of these semiconductor nanostructures range from the ultraviolet region, through the visible, to the infrared. In the UV region we investigate excitons, biexcitons and oxygen implantation effects in ZnO/ZnMgO multi-quantum wells using four-wave mixing, pump-probe and photoluminescence techniques. Using time-resolved up-conversion photoluminescence, we investigate the relaxation dynamics and state filling effect in InGaAs self-assembled quantum dots with different doping, and the implantation effect in InGaAs/InP quantum wells. Finally, we study the optical properties of silicon quantum dots using time-resolved photoluminescence and photon echo spectroscopy on various time scales, ranging from microseconds to femtoseconds.
APA, Harvard, Vancouver, ISO, and other styles
3

Wen, Xiaoming. "Ultrafast spectroscopy of semiconductor nanostructures." Australasian Digital Thesis Program, 2007. http://adt.lib.swin.edu.au/public/adt-VSWT20070426.110438/index.html.

Full text
Abstract:
Thesis (PhD) - Swinburne University of Technology, Centre for Atom Optics and Ultrafast Spectroscopy, 2007.
Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy, Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, 2007. Typescript. Bibliography: p. 122-144.
APA, Harvard, Vancouver, ISO, and other styles
4

Foo, Edward. "Ultrafast spectroscopy of quantum dots." Thesis, University of Oxford, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.393775.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Olaizola, S. M. "Ultrafast spectroscopy of InGaN quantum wells." Thesis, University of Sheffield, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.414678.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Abdel, Baki Katia. "Ultrafast spectroscopy of 2D hybrid perovskites." Thesis, Cachan, Ecole normale supérieure, 2014. http://www.theses.fr/2014DENS0052/document.

Full text
Abstract:
Les pérovskites hybrides organiques-inorganiques ont attiré l'attention en raison de leurs applications potentielles dans des dispositifs optiques et plus récemment dans les dispositifs photovoltaïques. L'arrangement cristallin des pérovskites forme une structure en multi-puits quantiques dans laquelle les états excitoniques présentent une grande force d'oscillateur et une énergie de liaison importante, ce qui rend la réalisation de microcavités dans le régime de couplage fort possible à la température ambiante. Etant un matériau relativement nouveau, les pérovskites ont encore beaucoup de comportements qui ne sont pas bien compris et beaucoup de travail de recherche est nécessaire. Ce manuscrit est divisé en deux parties. Dans la première partie, la dynamique des excitons sur une pérovskite particulière (C6H5-C2H4-NH3)2PbI4 (PEPI) est étudiée à température ambiante par mesure de type pompe-sonde sous faible et fort régime d'excitation. Sous forte densité d'excitation, un processus de recombinaison Auger des excitons est présent. Une relaxation intrabande ultra-rapide a été observée. La deuxième partie du manuscrit est consacrée à l'étude de la microphotoluminescence à temperature ambiante de microcavités à base de PEPI à haut facteur de qualité. Des nouvelles pérovskites avec des propriétés optimisées (propriétés optiques d'émission, rugosité de surface et photostabilité) ont également été synthétisées
The reason for choosing this thesis comes from the fact that in the near future,I would like to gain more knowledge and experience in scientific research and especially in the study of non linear effects in optical microcavities where new opportunities are opened and high efficient light sources could be exploited.In last ten years, an increasing number of studies are dedicated on hybrid organic-inorganic materials, due to the possibility of combining the properties both of inorganic(high mobility, electrical pumping, band engineering ) and of organic materials (low cost technology, high luminescence quantum yield at room temperature).In this context , organic-inorganic perovskites having a chemical formula (R-NH3)2MX4 where M is a metal, X halogen and R an organic chains presents a natural hybrid system . When deposited by spin coating, the molecules self-organize to form a multiple quantum wells structure. Because of the strong binding energy, optical features can be seen at room temperature. Moreover, such pervoskite presents great flexibility in their optical properties such that the spectral position of the excitonic transitions can be tailored by substituting different halides X, and the photoluminescence efficiency can be tailored by changing the organic part R. This kind of perovskites has been studied both for fundamental studies and for applications in optoelectronics. In order to increase the coupling between light and matter (exciton), perovskite has been inserted in planar microcavity and strong coupling regime has been achieved at room temperature. The strong coupling of light with exciton give rise to polariton quasi-particles, which have new properties not seen in either photons or excitons. In order to go further and have better study in stimulated scattering of polaritons in these microcavities ,a better understanding of the electronic structure as well as the excitonic interactions in these quantum wells are necessary due to the lack of information on the dynamic and on the carrier interaction of these structures. In order to study the hybrid polaritons, it will be first necessary to improve the knowledge about the relaxation in the perovskite layers. So, ultrafast pump-probe experiments will be performed on hybrid microcavities, and also on perovskite layers
APA, Harvard, Vancouver, ISO, and other styles
7

Langhojer, Florian. "New techniques in liquid-phase ultrafast spectroscopy." Doctoral thesis, kostenfrei, 2009. http://www.opus-bayern.de/uni-wuerzburg/volltexte/2009/3933/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

De, Paula Ana Maria. "Optical spectroscopy of ultrafast processes in semiconductors." Thesis, University of Oxford, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293697.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yuen-Zhou, Joel. "A Quantum Information Approach to Ultrafast Spectroscopy." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10317.

Full text
Abstract:
In the first part of the dissertation, we develop a theoretical approach to analyze nonlinear spectroscopy experiments based on the formalism of quantum state (QST) and process tomography (QPT). In it, a quantum system is regarded as a black box which can be systematically tested in its performance, very much like an electric circuit is tested by sending a series of inputs and measuring the corresponding outputs, but in the quantum sense. We show how to collect a series of pump-probe or photon-echo experiments, and by varying polarizations and frequency components of the perturbations, reconstruct the quantum state (density matrix) of the probed system for a set of different initial conditions, hence simultaneously achieving QST and QPT. Furthermore, we establish the conditions under which a set of two-dimensional optical spectra also yield the desired results. Simulations of noisy experiments with inhomogeneous broadening show the feasibility of the protocol. A spin-off of this work is our suggestion of a witness that distinguishes between spectroscopic time-oscillations corresponding to vibronic only coherences against their electronic counterparts. We conclude by noting that the QST/QPT approach to nonlinear spectroscopy sheds light on the amount of quantum information contained in the output of an experiment, and hence, is a convenient theoretical and experimental paradigm even when the goal is not to perform a full QPT. In the second part of the thesis, we discuss a methodology to study the electronic dynamics of complex molecular systems, such as photosynthetic units, in the framework of time-dependent density functional theory (TD-DFT). By treating the electronic degrees of freedom as the system and the nuclear ones as the bath, we develop an open quantum systems (OQS) approach to TD-DFT. We formally extend the theoretical backbone of TD-DFT to OQS, and suggest a Markovian bath functional which can be readily included in electronic structure codes.
APA, Harvard, Vancouver, ISO, and other styles
10

IJAZ, PALVASHA. "Ultrafast laser spectroscopy of novel fluorescent nanocrystals." Doctoral thesis, Università degli studi di Genova, 2020. http://hdl.handle.net/11567/1001620.

Full text
Abstract:
Optical properties of colloidal semiconductor nanocrystals (NCs) have been widely investigated using optical spectroscopy techniques since their birth. In particular, low-temperature spectroscopy minimizes the additional complexity induced by thermal effects, and therefore has been extensively used to investigate the temperature dependent excitonic behavior of various semiconductor materials. It has been well established that the composition, structure and the nature of the NCs surface strongly influence their optical properties. Present PhD dissertation focuses on two main generations of semiconductor colloidal NCs, i.e. 2D metal chalcogenide nanoplatelets (NPLs) and lead halide perovskite NCs. The former generation of material demonstrate remarkable optoelectronic properties, with a narrow and homogeneously broadened emission linewidth (at room temperature), fast exciton recombination and high fluorescence quantum efficiency. These advantageous properties can be further tuned in heterostructures by coating them with another semiconductor materials for instance CdSe/CdS/CdTe core/crown/barrier NPLs. Due to the staggered band offset between CdSe and CdTe, we observed emission from an indirect transition around 650 nm. As CdS forms a barrier for hole relaxation between crown and core regions, the CdSe/CdS/CdTe yielded an additional emission peak from the CdSe core, in contrast with CdSe/CdTe core/crown nanoplatelets without a barrier. The resulting dual emission was investigated as a function of temperature. The different nature of both emission peaks (direct in CdSe vs. indirect across the CdSe/CdTe interface) yielded a spectrally and temporally stable indirect transition as a function of temperature, while the emission rate of the CdSe emission increased at lower temperatures, and the spectral position shifted to shorter wavelengths. The second generation of material studied here i.e “lead halide perovskite” NCs is one of the most investigated semiconductor material in the last decade due to their ease of preparation, broadly tunable band gap, near unity fluorescence quantum efficiency and excellent color purity. We carried out a comprehensive study of size, composition and surface functionalization dependent optical properties of lead halide perovskite NCs. Contrary to most of the previous findings, we observe a single, narrow emission peak at low temperature for NCs with various sizes, compositions and surface coatings. Temperature-dependent photoluminescence (PL) and PL-lifetime data for different compositions (APbBr3, A=Cs, MA, FA) reveal that MA-based NCs were the most sensitive to temperature variations with least preservation of PL, featuring the highest thermal broadening of PL and longest lifetimes, whereas FA based NCs were the most resilient. Furthermore, a comparison of the photophysical properties of NCs having different surface coatings shows that their optical properties are strongly influenced by surface chemistry, with quaternary bromide capped NCs being the most stable samples at elevated temperature, as they retained the highest PL intensity. Considering all these results together, we provide unequivocal evidence that lead halide perovskite NCs exhibit no inhomogeneity in their PL and additionally their optical properties are strongly surface functionalization dependent. These fundamental insight into the optical properties of both generation of materials would be key for the development of future photonic devices.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Ultrafast spectroscopy"

1

Klose, Edgar, and Bernd Wilhelmi, eds. Ultrafast Phenomena in Spectroscopy. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-75826-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Svelto, O., S. De Silvestri, and G. Denardo, eds. Ultrafast Processes in Spectroscopy. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4615-5897-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Orazio, Svelto, De Silvestri Sandro, Denardo G. 1935-, and International Symposium on Ultrafast Processes in Spectroscopy (9th : 1995 : Trieste, Italy), eds. Ultrafast processes in spectroscopy. New York: Plenum Press, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Silvestri, Sandro De, Orazio Svelto, and G. Denardo. Ultrafast processes in spectroscopy. New York: Springer, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

D, Fayer Michael, ed. Ultrafast infrared and raman spectroscopy. New York: Marcel Dekker, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fleming, Graham R. Chemical applications of ultrafast spectroscopy. New York: Oxford University Press, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chemical applications of ultrafast spectroscopy. New York: Oxford University Press, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shah, Jagdeep. Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03770-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shah, Jagdeep. Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-662-03299-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

(Firm), Lucent Technologies, ed. Ultrafast spectroscopy of semiconductors and semiconductor nanostructures. 2nd ed. Berlin: Springer Verlag, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Ultrafast spectroscopy"

1

Sengupta, Suranjana. "Ultrafast Spectroscopy." In Characterization of Terahertz Emission from High Resistivity Fe-doped Bulk Ga0.69In0.31As Based Photoconducting Antennas, 31–34. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-8198-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zinth, Wolfgang, and Wolfgang Kaiser. "Ultrafast Coherent Spectroscopy." In Topics in Applied Physics, 235–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-662-02546-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zinth, Wolfgang, and Wolfgang Kaiser. "Ultrafast coherent spectroscopy." In Topics in Applied Physics, 235–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0070983.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ding, Feng, Eric C. Fulmer, Prabuddha Mukherjee, and Martin T. Zanni. "Femtosecond 3D IR spectroscopy." In Ultrafast Phenomena XV, 404–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-68781-8_131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Borisevich, N. A., N. A. Lysak, S. A. Tikhomirov, and G. B. Tolstorozhev. "Picosecond Ketyl Radical Spectroscopy." In Ultrafast Phenomena VI, 565–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83644-2_158.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Glezer, Eli N. "Techniques of Ultrafast Spectroscopy." In Spectroscopy and Dynamics of Collective Excitations in Solids, 375–416. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5835-4_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zinth, W., and W. Kaiser. "Ultrafast Coherent Raman Spectroscopy." In Springer Proceedings in Physics, 166–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-72758-0_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vasa, P., and D. Mathur. "Ultrafast Single-Molecule Spectroscopy." In Biological and Medical Physics, Biomedical Engineering, 61–76. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39614-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Blanchard, G. J. "Ultrafast Stimulated Emission Spectroscopy." In Topics in Fluorescence Spectroscopy, 253–303. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/0-306-47070-5_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

von der Linde, D., B. Danielzik, K. Sokolowski-Tinten, and P. Harten. "Picosecond Photoionization Mass Spectroscopy and Optical Spectroscopy of Hot Semiconductor Surfaces." In Ultrafast Phenomena VI, 420–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83644-2_119.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Ultrafast spectroscopy"

1

Reber, Melanie, Yuning Chen, and Thomas Allison. "CAVITY-ENHANCED ULTRAFAST SPECTROSCOPY: ULTRAFAST MEETS ULTRASENSITIVE." In 71st International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2016. http://dx.doi.org/10.15278/isms.2016.tc10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Liebel, Matz, Franco V. A. Camargo, Giulio Cerullo, and Niek F. van Hulst. "Ultrafast Transient Holographic Microscopy." In Applied Industrial Spectroscopy. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/ais.2021.jw1a.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Allison, Thomas K., Melanie A. R. Reber, and Yuning Chen. "Cavity-Enhanced Ultrafast Spectroscopy: Ultrafast meets Ultrasensitive." In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/up.2016.um3a.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Graener, H., T. Q. Ye, and A. Laubereau. "Picosecond Holeburning Spectroscopy in the Infrared of Hydrogen-Bonded Systems." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/up.1990.md4.

Full text
Abstract:
Photophysical and -chemical spectral holeburning is a well established technique in various spectroscopic fields and for different time-scales. Its ultrafast counterpart in the infrared however was lacking although detailed dynamical information can be provided by this powerful spectroscopy. We have, for the first time, observed spectral holes in the infrared on the picosecond time scale studying the OH stretching vibration as a spectroscopic probe of hydrogen bonds in condensed matter. In this report results on the terpolymer polyvinylbutyral (PVB) will be discussed.
APA, Harvard, Vancouver, ISO, and other styles
5

Belabas, N. "Ultrafast multidimensional fourier transform spectroscopy." In Fourier Transform Spectroscopy. Washington, D.C.: OSA, 2003. http://dx.doi.org/10.1364/fts.2003.ftha1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fazzi, D., F. Scotognella, A. Milani, D. Brida, C. Manzoni, E. Cinquanta, L. Ravagnan, et al. "Ultrafast spectroscopy of dinaphthylpolyynes." In 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC. IEEE, 2013. http://dx.doi.org/10.1109/cleoe-iqec.2013.6801026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cundiff, Steven T. "Ultrafast Spectroscopy of Semiconductors." In Frontiers in Optics. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/fio.2008.swc1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Steinbacher, Andreas, Heiko Hildenbrand, Christian Kramer, Martin Schäferling, Harald Giessen, and Tobias Brixner. "Chirality-Sensitive Ultrafast Spectroscopy." In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/up.2016.um3a.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chapman, Richard T., Adam S. Wyatt, Yu Zhang, James O. F. Thompson, Charlotte E. Sanders, Greg M. Greetham, and Emma Springate. "Ultrafast Spectroscopy at Artemis." In 2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2023. http://dx.doi.org/10.1109/cleo/europe-eqec57999.2023.10232132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Svanberg, S. "Time-Resolved Spectroscopic Techniques in Laser Medicine." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/up.1994.fb.1.

Full text
Abstract:
Time-resolved spectroscopy observing fluorescence decay in biological chromophores provides improved molecular identification and allows studies of the dynamic behaviour of biomolecules. Such spectroscopy enables atherosclerotic plaque to be distinguished from normal vessel wall, which can allow spectroscopic guidance in transluminal laser ablation of atherosclerotic plaque1,2.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Ultrafast spectroscopy"

1

Arias, Eduardo, Ivana Moggio, and Ronald F. Ziolo. Ultrafast Spectroscopy of Chromophores. Fort Belvoir, VA: Defense Technical Information Center, January 2012. http://dx.doi.org/10.21236/ada566311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wagner, Kelvin, Balakishore Yellampalle, Sam Weaver, and Steve Blair. (DURIP-97) Ultrafast Nonlinear Optical Spectroscopy. Fort Belvoir, VA: Defense Technical Information Center, June 1999. http://dx.doi.org/10.21236/ada368435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Alfano, Robert R. Picosecond and Femtosecond Spectroscopic Instrumentation for Ultrafast Spectroscopy and Lasers. Fort Belvoir, VA: Defense Technical Information Center, March 1986. http://dx.doi.org/10.21236/ada170126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Alfano, R. R. Picosecond and Femtosecond Spectroscopic Instrumentation for Ultrafast Spectroscopy and Lasers. Fort Belvoir, VA: Defense Technical Information Center, March 1986. http://dx.doi.org/10.21236/ada224435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

van Veenendaal, Michel. Ultrafast spectroscopy on nonequilibrium systems (Final Report). Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1853985.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Tianqi. Ultrafast laser spectroscopy in complex solid state materials. Office of Scientific and Technical Information (OSTI), December 2014. http://dx.doi.org/10.2172/1226570.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fayer, Michael D. Ultrafast Multidimensional Infrared Vibrational Echo Spectroscopy of Gases and Liquids. Fort Belvoir, VA: Defense Technical Information Center, September 2008. http://dx.doi.org/10.21236/ada487539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Paul F. Barbara. Ultrafast Spectroscopy of Delocalized Excited States of the Hydrated Electron. Office of Scientific and Technical Information (OSTI), September 2005. http://dx.doi.org/10.2172/850367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Villa-Aleman, E., A. Houk, and W. Spencer. Advanced Ultrafast Spectroscopy for Chemical Detection of Nuclear Fuel Cycle Materials. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1395974.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mukamel, Shaul. Nonlinear Ultrafast Spectroscopy of Electron and Energy Transfer in Molecule Complexes. Office of Scientific and Technical Information (OSTI), February 2006. http://dx.doi.org/10.2172/875998.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography