Academic literature on the topic 'Ultrafast microscopy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ultrafast microscopy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Ultrafast microscopy"

1

Yarotski, Dzmitry, and Antoinette J. Taylor. "Microscopy: Ultrafast Scanning Tunneling Microscopy." Optics and Photonics News 13, no. 12 (December 1, 2002): 26. http://dx.doi.org/10.1364/opn.13.12.000026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dyba, M., T. A. Klar, S. Jakobs, and S. W. Hell. "Ultrafast dynamics microscopy." Applied Physics Letters 77, no. 4 (July 24, 2000): 597–99. http://dx.doi.org/10.1063/1.127056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ischenko, A. A., Yu I. Tarasov, E. A. Ryabov, S. A. Aseyev, and L. Schäfer. "ULTRAFAST TRANSMISSION ELECTRON MICROSCOPY." Fine Chemical Technologies 12, no. 1 (February 28, 2017): 5–25. http://dx.doi.org/10.32362/2410-6593-2017-12-1-5-25.

Full text
Abstract:
Ultrafast laser spectral and electron diffraction methods complement each other and open up new possibilities in chemistry and physics to light up atomic and molecular motions involved in the primary processes governing structural transitions. Since the 1980s, scientific laboratories in the world have begun to develop a new field of research aimed at this goal. “Atomic-molecular movies” will allow visualizing coherent dynamics of nuclei in molecules and fast processes in chemical reactions in real time. Modern femtosecond and picosecond laser sources have made it possible to significantly change the traditional approaches using continuous electron beams, to create ultrabright pulsed photoelectron sources, to catch ultrafast processes in the matter initiated by ultrashort laser pulses and to achieve high spatio-temporal resolution in research. There are several research laboratories all over the world experimenting or planning to experiment with ultrafast electron diffraction and possessing electron microscopes adapted to operate with ultrashort electron beams. It should be emphasized that creating a new-generation electron microscope is of crucial importance, because successful realization of this project demonstrates the potential of leading national research centers and their ability to work at the forefront of modern science.
APA, Harvard, Vancouver, ISO, and other styles
4

Liebel, Matz, Franco V. A. Camargo, Giulio Cerullo, and Niek F. van Hulst. "Ultrafast Transient Holographic Microscopy." Nano Letters 21, no. 4 (February 4, 2021): 1666–71. http://dx.doi.org/10.1021/acs.nanolett.0c04416.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Weiss, S., D. F. Ogletree, D. Botkin, M. Salmeron, and D. S. Chemla. "Ultrafast scanning probe microscopy." Applied Physics Letters 63, no. 18 (November 1993): 2567–69. http://dx.doi.org/10.1063/1.110435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yang, D. S., O. F. Mohammed, and A. H. Zewail. "Scanning ultrafast electron microscopy." Proceedings of the National Academy of Sciences 107, no. 34 (August 9, 2010): 14993–98. http://dx.doi.org/10.1073/pnas.1009321107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Baiz, Carlos R., Denise Schach, and Andrei Tokmakoff. "Ultrafast 2D IR microscopy." Optics Express 22, no. 15 (July 25, 2014): 18724. http://dx.doi.org/10.1364/oe.22.018724.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

King, Wayne E., Geoffrey H. Campbell, Alan Frank, Bryan Reed, John Schmerge, Bradley Siwick, Brent Stuart, and Peter Weber. "Toward Ultrafast Electron Microscopy." Microscopy and Microanalysis 10, S03 (August 2004): 14–15. http://dx.doi.org/10.1017/s1431927604555733.

Full text
Abstract:
Extended abstract of a paper presented at the Pre-Meeting Congress: Materials Research in an Aberration-Free Environment, at Microscopy and Microanalysis 2004 in Savannah, Georgia, USA, July 31 and August 1, 2004.
APA, Harvard, Vancouver, ISO, and other styles
9

Errico, Claudia, Olivier Couture, and Mickael Tanter. "Ultrafast ultrasound localization microscopy." Journal of the Acoustical Society of America 141, no. 5 (May 2017): 3951. http://dx.doi.org/10.1121/1.4988974.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Taheri, Mitra L., Nigel D. Browning, and John Lewellen. "Symposium on Ultrafast Electron Microscopy and Ultrafast Science." Microscopy and Microanalysis 15, no. 4 (July 3, 2009): 271. http://dx.doi.org/10.1017/s1431927609090771.

Full text
Abstract:
Dynamic characterization techniques have been utilized in the fields of biology, chemistry, physics, and materials science for many years. Techniques range from neutron scattering to X-ray diffraction. Two of the fields experiencing much development recently have been electron-based techniques. Namely, ultrafast electron diffraction (UED) and ultrafast electron microscopy (UEM) have been advancing rapidly, but unfortunately, in parallel. We are approaching an era where the convergence of these two techniques could open up a wide range of scientific and technological opportunities and advancements.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Ultrafast microscopy"

1

Li, Jing. "Ultrafast thermoreflectance microscopy." Thesis, Boston University, 2013. https://hdl.handle.net/2144/11118.

Full text
Abstract:
Thesis (Ph.D.)--Boston University
As electronic and photonic devices shrink to the nanoscale, heat dissipation becomes the bottleneck for performance. As a result, understanding and controlling nanoscale thermal transport in thin films and across interfaces is a critical issue requiring new experimental tools. In this thesis, the development of an ultrafast thermoreflectance microscope for high resolution thermal property imaging is described. It can function as a time domain thermoreflectance (TDTR) or frequency domain thermoreflectance (FDTR) system. Design and implementation of the optical system will be introduced in detail. A thermal model derived from heat transfer theory is used to analyze the experimental data and obtain quantitative property maps for bulk and thin-film samples. The system is used to obtain temperature dependent thermal properties of single crystal diamond and thin film VO2, as well as thermal property maps of several thin film samples.
APA, Harvard, Vancouver, ISO, and other styles
2

Block, Alexander. "Quantifying nanoscale carrier diffusion with ultrafast optical and photocurrent microscopy." Doctoral thesis, Universitat Politècnica de Catalunya, 2019. http://hdl.handle.net/10803/668392.

Full text
Abstract:
Heat transport in solids is one of the oldest problems in physics, dating back to the earliest formulations of thermodynamics. The classical laws of heat conduction are valid as long as the observed time and length scales are larger than the relaxation time and mean free path of the underlying microscopic heat carriers, such as electrons and phonons. With the advent of ultrafast lasers and nanoscale systems these regimes can now be surpassed and new refined models of heat transport are needed. In particular, the interaction of ultrashort light pulses with matter can excite electrons to high temperatures, leading to a local non-equilibrium of electrons and phonons. Under these conditions, also the transport properties of the carriers are altered. So far, these effects have typically been studied in the time domain. The cooling of photo-excited hot electrons has been studied both in metals as well as novel 2D materials, such as graphene. However, due to a lack of spatio-temporal resolution, it has not been possible to distinguish the effects of hot-electron diffusion from other cooling mechanisms, such as electron-phonon coupling. In this thesis, I directly track such ultrafast heat and carrier diffusion in space and time with ultrafast microscopy. By using the recently developed technique of probe-beam-scanning transient-absorption microscopy on thin gold films I directly resolve, for the first time, a transition from hot-electron diffusion to phonon-limited diffusion on the picosecond timescale. I support the understanding of these complex dynamics by theoretical modeling of the thermo-optical response based on a two-temperature model. I apply the same technique to study hot carrier diffusion in atomically thin monolayer graphene. By comparing differently prepared samples, I study the strong influence of external parameters, such as production type, substrate, and environment on carrier diffusion. Finally, I study hot carrier diffusion in exfoliated and encapsulated graphene devices with a novel technique of ultrafast spatio-temporal photocurrent microscopy based on the photothermoelectric effect. I extract diffusion dynamics for electrically characterized samples with the help of theoretical spatio-temporal modeling, thereby testing the fundamental relationship between electrical and thermal carrier transport. The precise quantification of ultrafast and nanoscale carrier transport with these state-of-the-art techniques leads to a broader understanding of non-equilibrium dynamics and could ultimately help the design, optimization, and heat management of the next generation of ultra-compact (opto-) electronic devices, such as solar cells, photodetectors, or integrated circuits.
El transporte de calor en sólidos es uno de los problemas más antiguos de la física, que se remonta a las primeras formulaciones de la termodinámica. Las leyes clásicas de la conducción de calor son válidas cuando las escalas de tiempo y longitud observadas sean mayores que el tiempo de relajación y la trayectoria libre media de los portadores de calor microscópicos subyacentes, como los electrones y los fonones. Con la llegada de los láseres ultrarrápidos y los sistemas a nanoescala, estos regímenes ahora pueden superarse por lo cual se necesitan nuevos modelos refinados de transporte de calor. En particular, la interacción de pulsos de luz ultracortos con la materia puede excitar electrones a altas temperaturas, lo que lleva a un desequilibrio local de electrones y fonones. En estas condiciones, también se modifican las propiedades de transporte de los portadores de calor. Hasta ahora, estos efectos han sido típicamente estudiados en el dominio del tiempo. El enfriamiento de electrones calientes fotoexcitados se ha estudiado tanto en metales como en nuevos materiales bidimensionales, como el grafeno. Sin embargo, debido a la falta de resolución espacio-temporal, no ha sido posible distinguir los efectos de la difusión de electrones calientes de otros mecanismos de enfriamiento, como el acoplamiento de electrones y fonones. En esta tesis, hago un seguimiento directo de la difusión del calor y sus portadores en el espacio y el tiempo con microscopía ultrarrápida. Al utilizar la técnica recientemente desarrollada de microscopía de absorción transitoria con escaneo de sonda en películas de oro delgadas, resuelvo directamente, por primera vez, una transición de la difusión de electrones calientes a la difusión limitada por fonones en la escala de tiempo de picosegundos. Apoyo la comprensión de estas dinámicas complejas mediante el modelado teórico de la respuesta termo-óptica basada en un modelo de dos temperaturas. Aplico la misma técnica para estudiar la difusión de portadores calientes en una capa de grafeno atómicamente delgado. Al comparar muestras preparadas de manera diferente, estudio la fuerte influencia de los parámetros externos, como el tipo de producción, el sustrato y el entorno sobre la difusión del portador. Finalmente, estudio la difusión de portadores en dispositivos de grafeno exfoliados y encapsulados con una técnica novedosa de microscopía de fotocorriente espacio-temporal ultrarrápida basada en el efecto fototermoeléctrico. Extraigo dinámicas de difusión para muestras caracterizadas eléctricamente con la ayuda del modelado espacio-temporal teórico, probando así la relación fundamental entre el transporte eléctrico y térmico. La cuantificación precisa del transporte de los portadores ultrarrápido y a nanoescala con estas técnicas de vanguardia lleva a una comprensión más amplia de la dinámica del no equilibrio y podría, en última instancia, ayudar al diseño, la optimización y la gestión del calor de la próxima generación de dispositivos (opto-)electrónicos ultracompactos, como células solares, fotodetectores o circuitos integrados.
APA, Harvard, Vancouver, ISO, and other styles
3

Wong, Tsz-wai Terence, and 黃子維. "Optical time-stretch microscopy: a new tool for ultrafast and high-throughput cell imaging." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hub.hku.hk/bib/B5066234X.

Full text
Abstract:
The exponential expansion in the field of biophotonics over the past half-century has been leading to ubiquitous basic science investigations, ranging from single cell to brain networking analysis. There is also one biophotonics technology used in clinic, which is optical coherence tomography, mostly for high-speed and high-resolution endoscopy. To keep up such momentum, new biophotonics technologies should be aiming at improving either the spatial resolution or temporal resolution of optical imaging. To this end, this thesis will address a new imaging technique which has an ultra-high temporal resolution. The applications and its cost-effective implementations will also be encompassed. In the first part, I will introduce an entirely new optical imaging modality coined as optical time-stretch microscopy. This technology allows ultra-fast real-time imaging capability with an unprecedented line-scan rate (~10 million frames per second). This ultrafast microscope is renowned as the world’s fastest camera. However, this imaging system is previously not specially designed for biophotonics applications. Through the endeavors of our group, we are able to demonstrate this optical time-stretch microscopy for biomedical applications with less biomolecules absorption and higher diffraction limited resolution (<2 μm). This ultrafast imaging technique is particularly useful for high-throughput and high-accuracy cells/drugs screening applications, such as imaging flow cytometry and emulsion encapsulated drugs imaging. In the second part, two cost-effective approaches for implementing optical time-stretch confocal microscopy are discussed in details. We experimentally demonstrate that even if we employ the two cost-effective approaches simultaneously, the images share comparable image quality to that of captured by costly specialty 1μm fiber and high-speed ( >16 GHz bandwidth) digitizer. In other words, the cost is drastically reduced while we can preserve similar image quality. At the end, I will be wrapping up my thesis by concluding all my work done and forecasting the future challenges concerning the development of optical time-stretch microscopy. In particular, three different research directions are discussed.
published_or_final_version
Electrical and Electronic Engineering
Master
Master of Philosophy
APA, Harvard, Vancouver, ISO, and other styles
4

Bücker, Kerstin. "Characterization of pico- and nanosecond electron pulses in ultrafast transmission electron microscopy." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAE014/document.

Full text
Abstract:
Cette thèse présente une étude des impulsions électroniques ultra-brèves en utilisant le nouveau microscope électronique en transmission ultrarapide (UTEM) à Strasbourg. La première partie porte sur le mode d’opération stroboscopique, basé sur l’utilisation d’un train d’impulsions d’électrons de l’ordre de la picoseconde pour l’étude des phénomènes réversibles ultrarapides. L’étude paramétrique effectuée a permis de révéler les dynamiques fondamentales des impulsions électroniques. Des mécanismes inconnus jusqu’alors et décisifs dans les caractéristiques des impulsions ont été dévoilés. Il s’agit des effets de trajectoire, qui limitent la résolution temporelle, et du filtrage chromatique, qui impacte la distribution en énergie et l’intensité du signal. Ces connaissances permettent aujourd’hui un paramétrage affiné de l’UTEM de manière à satisfaire les divers besoins expérimentaux. La deuxième partie concerne l’installation du mode d’opération complémentaire : le mode « singel-shot ». Ce mode fait appel à une impulsion unique d’intensité élevé et d’une durée de l’ordre de la nanoseconde pour l’étude des phénomènes irréversibles. L’UTEM de Strasbourg étant le premier instrument single-shot équipé d’un spectromètre de perte d’énergie des électrons (EELS), l’influence de l’aberration chromatique a pu été étudiée en détail. Elle s’est dévoilée être une limitation majeure pour la résolution en imagerie, nécessitant d’ajuster le bon compromis avec l’aberration sphérique d’une part et l’intensité du signal d’autre part. Enfin, la faisabilité de mener des études en EELS ultrarapide avec une seule impulsion nanoseconde a pu être démontrée, ceci constituant une première mondiale. Ce résultat très prometteur ouvre un tout nouveau domaine d’expériences résolu en temps
This thesis presents a study of ultrashort electron pulses by using the new ultrafast transmission electron microscope (UTEM) in Strasbourg. The first part focuses on the stroboscopic operation mode which works with trains of picosecond multi-electron pulses in order to study ultrafast, reversible processes. A detailed parametric study was carried out, revealing fundamental principles of electron pulse dynamics. New mechanisms were unveiled which define the pulse characteristics. These are trajectory effects, limiting the temporal resolution, and chromatic filtering, which acts on the energy distribution and signal intensity. Guidelines can be given for optimum operation conditions adapted to different experimental requirements. The second part starts with the setup of the single-shot operation mode, based on intense nanosecond electron pulses for the investigation of irreversible processes. Having the first ns-UTEM equipped with an electron energy loss spectrometer, the influence of chromatic aberration was studied and found to be a major limitation in imaging. It has to be traded off with spherical aberration and signal intensity. For the first time, the feasibility of core-loss EELS with one unique ns-electron pulse is demonstrated. This opens a new field of time-resolved experiments
APA, Harvard, Vancouver, ISO, and other styles
5

Danz, Thomas Christian [Verfasser]. "Ultrafast transmission electron microscopy of a structural phase transition / Thomas Christian Danz." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2021. http://d-nb.info/1239061234/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ge, Xiaowei. "Nonlinear Microscopy Based on Femtosecond Fiber Laser." University of Dayton / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1556914609069399.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Barlow, Aaron M. "Spectral Distortions & Enhancements In Coherent Anti-Stokes Raman Scattering Hyperspectroscopy." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32388.

Full text
Abstract:
Coherent anti-Stokes Raman scattering microscopy is a versatile technique for label-free imaging and spectroscopy of systems of biophysical interest. Due to the coherent nature of the generated signals, CARS images and spectra can often be difficult to interpret. In this thesis, we document how distortions and enhancements can be produced in CARS hyperspectroscopy as a result of the instrument, geometrical optical effects, or unique molecular states, and discuss how these effects may be suppressed or exploited in various CARS applications.
APA, Harvard, Vancouver, ISO, and other styles
8

Ganz, Thomas. "Supercontinuum generation by chirped pulse compression for ultrafast spectroscopy and broadband near-field microscopy." Diss., lmu, 2011. http://nbn-resolving.de/urn:nbn:de:bvb:19-148551.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ciesielski, Richard [Verfasser], and Achim [Akademischer Betreuer] Hartschuh. "Ultrafast dynamics in single nanostructures investigated by pulse shaping microscopy / Richard Ciesielski. Betreuer: Achim Hartschuh." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2016. http://d-nb.info/1111505330/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chung, Hsiang-Yu [Verfasser], and Franz X. [Akademischer Betreuer] Kärtner. "Advanced fiber-optic ultrafast laser sources for multiphoton microscopy / Hsiang-Yu Chung ; Betreuer: Franz X. Kärtner." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2020. http://d-nb.info/1213901227/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Ultrafast microscopy"

1

Calif.) Ultrafast Imaging and Spectroscopy (Conference) (2013 San Diego. Ultrafast Imaging and Spectroscopy: 25-26 August 2013, San Diego, California, United States. Edited by Liu, Zhiwen (Professor of Electrical engineering) and SPIE (Society). Bellingham, Washington, USA: SPIE, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mauro, Nisoli, Hill III Wendell T, and SpringerLink (Online service), eds. Progress in Ultrafast Intense Laser Science VIII. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zurch, Michael Werner. High-Resolution Extreme Ultraviolet Microscopy: Imaging of Artificial and Biological Specimens with Laser-Driven Ultrafast Xuv Sources. Springer International Publishing AG, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zürch, Michael Werner. High-Resolution Extreme Ultraviolet Microscopy: Imaging of Artificial and Biological Specimens with Laser-Driven Ultrafast XUV Sources. Springer, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zürch, Michael Werner. High-Resolution Extreme Ultraviolet Microscopy: Imaging of Artificial and Biological Specimens with Laser-Driven Ultrafast XUV Sources. Springer, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nisoli, Mauro, Kaoru Yamanouchi, and Hill III Wendell T. Progress in Ultrafast Intense Laser Science VIII. Springer, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Goswami, Debabrata Dr. Ultrafast Laser Induced Spatiotemporal Measure and Control at Microscopic Dimensions. IOP Publishing Ltd, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Harding, Sian E. The Exquisite Machine. The MIT Press, 2022. http://dx.doi.org/10.7551/mitpress/12836.001.0001.

Full text
Abstract:
How science is opening up the mysteries of the heart, revealing the poetry in motion within the machine. Your heart is a miracle in motion, a marvel of construction unsurpassed by any human-made creation. It beats 100,000 times every day—if you were to live to 100, that would be more than 3 billion beats across your lifespan. Despite decades of effort in labs all over the world, we have not yet been able to replicate the heart's perfect engineering. But, as Sian Harding shows us in The Exquisite Machine, new scientific developments are opening up the mysteries of the heart. And this explosion of new science—ultrafast imaging, gene editing, stem cells, artificial intelligence, and advanced sub-light microscopy—has crucial, real-world consequences for health and well-being. Harding—a world leader in cardiac research—explores the relation between the emotions and heart function, reporting that the heart not only responds to our emotions, but it also creates them. The condition known as Broken Heart Syndrome, for example, is a real disorder that can follow bereavement or stress. The Exquisite Machine describes the evolutionary forces that have shaped the heart's response to damage, the astonishing rejuvenating power of stem cells, how we can avoid heart disease, and why it can be so hard to repair a damaged heart. It tells the stories of patients who have had the devastating experiences of a heart attack, chaotic heart rhythms, or stress-induced acute heart failure. And it describes how cutting-edge technologies are enabling experiments and clinical trials that will lead us to new solutions to the worldwide scourge of heart disease.
APA, Harvard, Vancouver, ISO, and other styles
9

Glazov, M. M. Interaction of Spins with Light. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198807308.003.0006.

Full text
Abstract:
This chapter presents the details of the optical manipulation of electron spin states. It also addresses manifestations of the electron and nuclear spin dynamics in optical response of semiconductor nanostructures via spin-Faraday and -Kerr effects. Coupling of spins with light provides the most efficient method of nonmagnetic spin manipulation. The main aim of this chapter is to provide the theoretical grounds for optical spin injection, ultrafast spin control, and readout of spin states by means of circularly and linearly polarized light pulses. The Faraday and Kerr effects induced by the electron and nuclear spin polarization are analyzed both by means of a macroscopic, semi-phenomenological approach and by using the microscopic quantum mechanical model. Theoretical analysis is supported by experimental data.
APA, Harvard, Vancouver, ISO, and other styles
10

Eriksson, Olle, Anders Bergman, Lars Bergqvist, and Johan Hellsvik. Outlook on Magnetization Dynamics. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198788669.003.0012.

Full text
Abstract:
Since its original formulation in the mid-1990's, atomistic spin-dynamics has become an important tool for modelling of dynamic processes in magnetic materials. So far this book has described current methodological methods and functionalities of atomistic spin-dynamics simulations. Applications of DFT and ASD techniques to selected topics have been presented in this book, for instance methods for calculation of the microscopic Heisenberg and Gilbert parameter from first principles (Chapters 2 and 6), multiscale modelling of magnon spectra in bulk and thin film magnets (Chapter 9), and theoretical investigations of ultrafast switching dynamics in ferromagnets and ferrimagnets (Chapter 10), and of exotic dynamics of topologically protected spin textures (Chapter 11). In this closing chapter we give an outlook on recent and anticipated developments of the methodology.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Ultrafast microscopy"

1

Aguirre, Aaron, and James Fujimoto. "Optical Coherence Microscopy and Cellular Imaging." In Ultrafast Phenomena XV, 816–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-68781-8_260.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dlott, D. D. "Ultrafast Microscopy of Exploding Solids." In Springer Series in Chemical Physics, 110–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84269-6_34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gundlach, Lars, and Piotr Piotrowiak. "Ultrafast Wide-Field Fluorescence Microscopy." In Springer Series in Chemical Physics, 720–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-95946-5_234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ogilvie, J. P., D. Débarre, M. Cui, J. Skodack, X. Solinas, J. L. Martin, A. Alexandrou, E. Beaurepaire, and M. Joffre. "Novel applicatipns of broadband excitation to multiphoton microscopy." In Ultrafast Phenomena XV, 819–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-68781-8_261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Potma, Eric O., Wim P. de Boeij, and Douwe A. Wiersma. "Intracellular water diffusion probed by femtosecond nonlinear CARS microscopy." In Ultrafast Phenomena XII, 251–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56546-5_74.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bigot, J. Y., A. Laraoui, J. Vénuat, M. Vomir, M. Albrecht, and E. Beaurepaire. "Time resolved magneto-optical microscopy of individual ferromagnetic dots." In Ultrafast Phenomena XV, 662–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-68781-8_212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, K., N. Ji, Y. R. Shen, and H. Yang. "Optically Active Sum Frequency Generation Microscopy for Cellular Imaging." In Ultrafast Phenomena XV, 825–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-68781-8_263.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mahjoubfar, Ata, Claire Lifan Chen, and Bahram Jalali. "Three-Dimensional Ultrafast Laser Scanner." In Artificial Intelligence in Label-free Microscopy, 21–29. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51448-2_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kawashima, H., M. Furuki, S. Tatsuura, M. Tian, Y. Sato, L. S. Pu, and T. Tani. "Femtosecond Near-field Scanning Optical Microscopy of Molecular Thin Films ." In Ultrafast Phenomena XII, 259–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56546-5_76.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kubo, Atsushi, Niko Pontius, and Hrvoje Petek. "Femtosecond Microscopy of Surface Plasmon Propagation in a Silver Film." In Ultrafast Phenomena XV, 636–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-68781-8_204.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Ultrafast microscopy"

1

Weiss, S., D. Botkin, and D. S. Chemla. "Ultrafast Scanning Microscopy." In Ultrafast Electronics and Optoelectronics. Washington, D.C.: OSA, 1993. http://dx.doi.org/10.1364/ueo.1993.e3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Botkin, David, Shimon Weiss, D. F. Ogletree, Miguel Salmeron, and Daniel S. Chemla. "Ultrafast scanning probe microscopy." In OE/LASE '94, edited by Rick P. Trebino and Ian A. Walmsley. SPIE, 1994. http://dx.doi.org/10.1117/12.175874.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sidorenko, Pavel, Edouard Pauwels, Shoham Sabach, Yonina C. Eldar, Mordechai Segev, and Oren Cohen. "Towards ultrafast subwavelength microscopy." In Computational Optical Sensing and Imaging. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cosi.2016.ct2d.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ma, Boyang, Adi Goldner, and Michael Krüger. "Ultrafast Scanning Tunneling Microscopy." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/up.2022.th4a.30.

Full text
Abstract:
We integrate a conventional scanning tunneling microscope (STM) with an ultrafast carrier-envelope-phase stable laser. Simulations show that the observed laser-driven tunneling current consists of single attosecond bursts. This innovation promises simultaneous ångström and attosecond observations.
APA, Harvard, Vancouver, ISO, and other styles
5

Liebel, Matz, Franco V. A. Camargo, Giulio Cerullo, and Niek F. van Hulst. "Ultrafast Transient Holographic Microscopy." In Applied Industrial Spectroscopy. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/ais.2021.jw1a.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Klein, Julien, and Philip G. Smith. "Ultrafast Lasers for Multiphoton Microscopy." In Novel Techniques in Microscopy. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/ntm.2015.nm3c.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Squier, Jeff A., J. J. Field, E. Hoover, E. Chandler, M. Young, and D. Vitek. "Differential Multiphoton Microscopy." In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/up.2010.wc6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tordera Mora, Jorge, Xiaohua Feng, and Liang Gao. "Ultrafast light field tomography." In Biomedical Spectroscopy, Microscopy, and Imaging II, edited by Jürgen Popp and Csilla Gergely. SPIE, 2022. http://dx.doi.org/10.1117/12.2621387.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Silberberg, Yaron. "Nonlinear Temporal Focusing Microscopy." In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2006. http://dx.doi.org/10.1364/up.2006.thc4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Prasankumar, R. P., Z. Ku, A. Gin, P. C. Upadhya, S. R. J. Brueck, and A. J. Taylor. "Ultrafast Optical Wide Field Microscopy." In Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/cleo.2009.cme2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Ultrafast microscopy"

1

Botkin, D. A. Ultrafast scanning tunneling microscopy. Office of Scientific and Technical Information (OSTI), September 1995. http://dx.doi.org/10.2172/270266.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Durr, Hermann. Ultrafast Science Opportunities with Electron Microscopy. Office of Scientific and Technical Information (OSTI), April 2016. http://dx.doi.org/10.2172/1249382.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nakakura, Craig Y., and Kimberlee Chiyoko Celio. Novel Applications of Scanning Ultrafast Electron Microscopy (SUEM). Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1564040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Talin, Albert, Scott Ellis, Norman Bartelt, Francois Leonard, Christopher Perez, Km Celio, Elliot Fuller, et al. Thermal Infrared Detectors: expanding performance limits using ultrafast electron microscopy. Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1821971.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ellis, Scott, David Chandler, Joseph Michael, and Craig Nakakura. Ultrafast Electron Microscopy for Spatial-Temporal Mapping of Charge Carriers. Office of Scientific and Technical Information (OSTI), October 2021. http://dx.doi.org/10.2172/1828105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yuan, Long. Tracking Charge and Energy Flow at the Nanoscale by Ultrafast Microscopy. Office of Scientific and Technical Information (OSTI), November 2021. http://dx.doi.org/10.2172/1832336.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nurmikko, Arto, and Maris Humphrey. Optoacoustic Microscopy for Investigation of Material Nanostructures-Embracing the Ultrasmall, Ultrafast, and the Invisible. Office of Scientific and Technical Information (OSTI), July 2014. http://dx.doi.org/10.2172/1136523.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kabius, Bernd C., Nigel D. Browning, Suntharampillai Thevuthasan, Barbara L. Diehl, and Eric A. Stach. Dynamic Processes in Biology, Chemistry, and Materials Science: Opportunities for UltraFast Transmission Electron Microscopy - Workshop Summary Report. Office of Scientific and Technical Information (OSTI), July 2012. http://dx.doi.org/10.2172/1069215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Barbara, Paul F. Ultrafast Near-Field Scanning Optical Microscopy (NSOM) of Emerging Display Technology Media: Solid State Electronic Structure and Dynamics,. Fort Belvoir, VA: Defense Technical Information Center, May 1995. http://dx.doi.org/10.21236/ada294879.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Collins, Kimberlee Chiyoko, Albert Alec Talin, David W. Chandler, and Joseph R. Michael. Development of Scanning Ultrafast Electron Microscope Capability. Office of Scientific and Technical Information (OSTI), November 2016. http://dx.doi.org/10.2172/1331925.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography