Dissertations / Theses on the topic 'Ultracold gases'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Ultracold gases.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Bauer, Marianne Sigrid. "Ultracold gases in low dimensions." Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708055.
Full textSavikko, M. (Mikko). "Efimov states in ultracold gases." Master's thesis, University of Oulu, 2014. http://urn.fi/URN:NBN:fi:oulu-201403111157.
Full textTrefzger, Christian. "Ultracold dipolar gases in optical lattices." Doctoral thesis, Universitat Politècnica de Catalunya, 2010. http://hdl.handle.net/10803/6596.
Full textEn 1989, M. Fisher et. al. predecían que el modelo de Bose-Hubbard homogéneo (BH) presenta la transición de fase cuántica Superfluid-Mott insulator (SF-MI). En 2002, la transición entre éstas dos fases fue observada experimentalmente por primera vez en el grupo de T. Esslinger e I. Bloch. La realización experimental de un BEC dipolar de cromo en el grupo de T. Pfau, y los progresos recientes en las técnicas de enfriamiento y atrapamiento de moléculas dipolares en los grupos de D. Jin e J. Ye, han abierto el camino hacia los gases cuánticos ultra-fríos dominados por la interacción dipolar. La evolución natural, y el reto de hoy en día por parte experimental, es de cargar BEC dipolares en retículos ópticos y estudiar los gases dipolares fuertemente correlacionados.
Antes de éste trabajo de doctorado, estudios sobre modelos de BH con interacciones extendidas a los primeros vecinos mostraron la evidencia de nuevas fases cuánticas, como el supersólido (SS) y la fase checkerboard (CB). Debido al carácter de largo alcance de la interacción dipolo-dipolo, que decae con la potencia cúbica inversa de la distancia, es necesario incluir más de un primer vecino para obtener una descripción fiel y cuantitativa de los sistemas dipolares. De hecho, al incluir más vecinos se permiten y se estabilizan aún más nuevas fases.
En esta tesis estudiamos modelos de BH con interacciones dipolares, investigando más allá del estado fundamental. Estudiamos un retículo bidimensional (2D) donde los dipolos están polarizados en dirección perpendicular al plano 2D, dando lugar a una interacción dipolar repulsiva e isotrópica. Utilizamos aproximaciones de campo-medio y un ansatz Gutzwiller, que son suficientemente correctos y adecuados para describir este sistema. Encontramos que los gases dipolares en 2D presentan una multitud de estados metaestables de tipo MI, que compiten con el estado fundamental, de modo parecido a sistemas desordenados. Estudiamos en detalle el destino de estos estados metaestables: como pueden ser preparados de manera controlada, como pueden ser detectados, cual es su tiempo de vida debido al tunnelling, y cual es su rol en los procesos de enfriamiento. Además, encontramos que el estado fundamental está caracterizado por estados MI de tipo checkerboard con coeficiente de ocupación n fraccionario (numero medio de partículas por sitio) que depende del cut-off utilizado en el radio de alcance de la interacción. Confirmamos esta predicción estudiando el mismo sistema con métodos Quantum Monte Carlo (worm algorithm). En este caso no utilizamos ningún cut-off en el radio de alcance de la interacción, y encontramos pruebas de una "Devil's staircase" en el estado fundamental, i.e. donde las fases MI aparecen en todos los n racionales del retículo subyacente. Encontramos además, regiones de los parámetros donde el estado fundamental es supersólido, obtenido drogando los sólidos con partículas o con agujeros.
En este trabajo, investigamos también como cambia la estructura precedente en 3D. Nos focalizamos en el retículo 3D más sencillo compuesto de dos planos 2D, en el cual los dipolos están polarizados perpendicularmente a los planos; la interacción dipolar es entonces repulsiva por partículas del mismo plano, mientras es atractiva por partículas en el mismo sitio de dos planos diferentes. En cambio suprimimos el tunnelling entre los planos, lo cual hace el sistema equivalente a una mezcla bosónica en un retículo 2D. Nuestros cálculos muestran que las partículas se juntan en parejas, y demostramos la existencia de la nueva fase cuántica Pair Super Solid (PSS).
Actualmente estamos estudiando un retículo 2D donde los dipolos están libres de apuntar en ambas direcciones perpendicularmente al plano, lo cual resulta en una interacción a primeros vecinos repulsiva (atractiva) por dipolos alineados (anti-alineados). Encontramos regiones de parámetros donde el estado fundamental es ferromagnético u anti-ferromagnético, y encontramos pruebas de la existencia de la fase cuántica Counterflow Super Solid (CSS).
Las nuestras predicciones tienen directas consecuencias experimentales, y esperamos que vengan pronto controladas en experimentos con gases dipolares atómicos y moleculares ultra-fríos.
This thesis is a theoretical work, in which we study the physics of ultra-cold dipolar bosonic gases in optical lattices. Such gases consist of bosonic atoms or molecules, cooled below the quantum degeneracy temperature, typically in the nK range. In such conditions, in a three-dimensional (3D) harmonic trap, weakly interacting bosons condense and form a Bose-Einstein Condensate (BEC). When a BEC is loaded into an optical lattice produced by standing waves of laser light, new kinds of physical phenomena occur.
These systems realize then Hubbard-type models and can be brought to a strongly correlated regime. In 1989, M. Fisher et. al. predicted that the homogeneous Bose-Hubbard model (BH) exhibits the Superfluid-Mott insulator (SF-MI) quantum phase transition. In 2002 the transition between these two phases were observed experimentally for the first time in the group of T. Esslinger and I. Bloch. The experimental realisation of a dipolar BEC of Chromium by the group of T. Pfau, and the recent progresses in trapping and cooling of dipolar molecules by the groups of D. Jin and J. Ye, have opened the path towards ultra-cold quantum gases with dominant dipole interactions. A natural evolution and present challenge, on the experimental side is then to load dipolar BECs into optical lattices and study strongly correlated ultracold dipolar lattice gases.
Before this PhD work, studies of BH models with interactions extended to nearest neighbours had pointed out that novel quantum phases, like supersolid (SS) and checkerboard phases (CB) are expected. Due to the long-range character of the dipole-dipole interaction, which decays as the inverse cubic power of the distance, it is necessary to include more than one nearest neighbour to have a faithful quantitative description of dipolar systems. In fact, longer-range interactions tend to allow for and stabilize more novel phases.
In this thesis we study BH models with dipolar interactions, going beyond the ground state search. We consider a two-dimensional (2D) lattice where the dipoles are polarized perpendicularly to the 2D plane, resulting in an isotropic repulsive interaction. We use the mean-field approximations and a Gutzwiller ansatz which are quite accurate and suitable to describe this system. We find that dipolar bosonic gas in 2D exhibits a multitude of insulating metastable states, often competing with the ground state, similarly as in a disordered system. We study in detail the fate of these metastable states: how can they be prepared on demand, how they can be detected, what is their lifetime due to tunnelling, and what is their role in various cooling schemes. Moreover, we find that the ground state is characterized by insulating checkerboard-like states with fractional filling factors v(average number of particles per site) that depend on the cut-off used for the interaction range. We confirm this prediction by studying the same system with Quantum Monte Carlo methods (the worm algorithm). In this case no cut-off is used, and we find evidence for a Devil's staircase in the ground state, i.e. where insulating phases appear at all rational of the underlying lattice. We also find regions of parameters where the ground state is a supersolid, obtained by doping the solids either with particles or vacancies.
In this work, we also investigate how the previous scenario changes in 3D. We focus on the simplest 3D lattice composed of two 2D layers in which the dipoles are polarized perpendicularly to the planes; the dipolar interaction is then repulsive for particles laying on the same plane, while it is attractive for particles at the same lattice site on different layers. Instead we consider inter-layer tunnelling to be suppressed, which makes the system analogous to a bosonic mixture in a 2D lattice. Our calculations show that particles pair into composites, and demonstrate the existence of the novel Pair Super Solid (PSS) quantum phase.
Currently we are studying a 2D lattice where the dipoles are free to point in both directions perpendicularly to the plane, which results in a nearest neighbour repulsive (attractive) interaction for aligned (antialigned) dipoles. We find regions of parameters where the ground state is ferromagnetic or antiferromagnetic, and find evidences for the existence of a Counterflow Super Solid (CSS) quantum phase.
Our predictions have direct experimental consequences, and we hope that they will be soon checked in experiments with ultracold dipolar atomic and molecular gases.
Punk, Matthias. "Many-particle physics with ultracold gases." kostenfrei, 2010. https://mediatum2.ub.tum.de/node?id=956951.
Full textPedri, Paolo. "Dynamical behavior of ultracold atomic gases." [S.l. : s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=975830414.
Full textPrice, Hannah. "Topological phenomena in ultracold atomic gases." Thesis, University of Cambridge, 2013. https://www.repository.cam.ac.uk/handle/1810/245059.
Full textNunnenkamp, Andreas. "Strong correlations in ultracold atomic gases." Thesis, University of Oxford, 2008. http://ora.ox.ac.uk/objects/uuid:6e09e9d3-f5cd-4580-a667-6599203162e2.
Full textDouglas, James Stewart. "Light scattering from ultracold atomic gases." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:0aa4ede3-8b6e-45d4-a112-a2d18271307c.
Full textLan, Zhihao. "Quantum simulations with ultracold quantum gases." Thesis, Heriot-Watt University, 2012. http://hdl.handle.net/10399/2581.
Full textEdge, Jonathan Martin. "Collective phenomena in ultracold Fermi gases." Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609264.
Full textSchneider, William. "Strong Correlations in Ultracold Fermi Gases." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1316447449.
Full textSchaff, Jean-François. "Shortcuts to adiabaticity for ultracold gases." Nice, 2011. http://www.theses.fr/2011NICE4108.
Full textIn this thesis I explore the possibility of accelerating adiabatic processes for quantum systems. Experiments are performed with a trapped ultracold gas of Rubidium-87 atoms in two distinct regimes: with a one-dimensional thermal gas that can be considered non-interacting, and with a three-dimensional Bose-Einstein condensate for which interactions are dominant. In the first chapter I recall some aspects of the theoretical description and important properties of such gases. The second chapter details the construction of a Bose-Einstein condensation apparatus, mainly composed of two magneto-optical traps and a magnetic trap. In the third chapter this set-up is used to demonstrate that adiabatic processes, in our case, the slow decompression and displacement of the gas, can be dramatically accelerated by using a proper design of the time-dependent parameters of the system. The theoretical treatment is detailed and is not restricted to trapped gases. It may be applied to other physical systems described by either a linear or nonlinear Schrödinger equation containing a time-dependent harmonic potential. The final chapter is theoretical and not directly related to the others. In it I investigate the effect of disorder correlations on one-dimensional Anderson localization. I show that a degenerate mixture of Rubidium-87 and Potassium-41 atoms is well suited to study the localization-delocalization transition predicted by existing models of correlated disorder
Fehrmann, Henning. "Strongly correlated systems in ultracold quantum gases." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=981637442.
Full textOsterloh, Klaus. "Ultracold atomic gases in artificial magnetic fields." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=983762422.
Full textKlawunn, Michael. "Ultracold dipolar gases in deep optical lattices." Hannover Technische Informationsbibliothek und Universitätsbibliothek Hannover, 2010. http://d-nb.info/1001029003/34.
Full textDare, Kahan McAffer. "Tools for trapping and detecting ultracold gases." Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/57889.
Full textScience, Faculty of
Physics and Astronomy, Department of
Graduate
Kwasigroch, Michał Patryk. "Novel phases of matter in ultracold gases." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708833.
Full textNavon, Nir. "Thermodynamics of ultracold Bose and Fermi gases." Paris 6, 2011. http://www.theses.fr/2011PA066669.
Full textCappellaro, Alberto. "Ultracold Quantum Gases: Beyond-Mean-Field Effects." Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3426696.
Full textIn this thesis we present a detailed investigation of the role played by quantum and thermal fluctuations in ultracold Bose gases. We begin with a review of several important concepts and analytical tools within a functional integration formalism. We first focus on the so-called zero-range approximation for the interaction potential, by recovering the Bogoliubov results and the Landau two-fluid model from a field-theory perspective. In deriving the beyond-mean-field equation of state, we are going to show that a crucial point concerns the proper regularization of the divergent zero-point energy. Among the alternative approaches to investigate finite-temperatures Bose gases, we apply the kinetic theory to explain some recent results on the sound propagation in two-dimensional Bose gases. We then move to consider the eventual corrections to the thermodynamics of Bose gases due to the finite-range character of the interaction potential. The coupling constants of the finite-range model are related to measurable scattering parameters through an effective-field-theory approach. The role of finite-range corrections is considered not only in three spatial dimensions but also in systems with lower dimensionalities. Our analytical predictions are in good agreement with available Monte Carlo simulations and consistent with other theoretical frames, as the Lieb-Lininger theory for one-dimensional systems. In the third chapter, the relevance of fluctuations is investigated from an alternative point of view. Indeed, for a single-component Bose gas we have actually considered their effect as deviations of thermodynamic quantities from the mean-field and zero-range picture. In the case of collapsing Bose mixtures, we are going to show that zero-temperature fluctuations play a crucial stabilizing role against the collapse instability. Because of this peculiar mechanism, ultracold mixtures can display finite-density configurations also in free space. Inspired by recent experiments, we characterize this novel self-bound state by comparison with bright solitons, following a variational scheme. We also consider the case of binary mixtures where a coherent internal coupling is turned on. In the last chapter, we move to deal with dipolar condensates. In particular, we are interested in beyond-mean-field effects leading to the formation of inhomogeneous ground states. In order to provide a reliable answer to the open issue of superfluid properties of these structures, we present our recent numerical investigation on the phase diagram of dipolar bosons.
Sánchez, Baena Juan. "Correlations in spin-orbit coupled ultracold quantum gases." Doctoral thesis, Universitat Politècnica de Catalunya, 2020. http://hdl.handle.net/10803/671234.
Full textL'objectiu principal d'aquesta Tesi és el càlcul de propietats de l'estat fonamental de sistemes quàntics de molts cossos amb interaccions d'espí-òrbita fora del règim ultra-diluït. Es presenten dues prescripcions per dur a terme aquest objectiu: l’elaboració i utilització de mètodes de Monte Carlo i la realització de càlculs més enllà de l'aproximació de camp mig amb la tècnica de Bogoliubov-de Gennes. Pel que fa a la primera opció, es mostra com adaptar el mètode de Monte Carlo de Difusió (DMC) estàndard per tal de samplejar adequadament interaccions espí-òrbita. Es desenvolupa el formalisme de propagadors per dos mètodes diferents capaços d'assolir aquest objectiu. Aquest dos mètodes són el Discrete Spin T-moves DMC (DTDMC) i el Spin-Integrated DMC (SIDMC). El primer, l'algorisme DTDMC, es correspon a una adaptació d'un mètode prèviament existent a variables d'espí discretes. Aquest mètode requereix de la definició d'un Hamiltonià efectiu per curar un problema de signe, la qual cosa redueix la qualitat de les seves estimacions. D'altra banda, el segon mètode (SIDMC) és un algorisme completament original desenvolupat en aquest treball. Aquest mètode és capaç d'ignorar la definició d'aquest Hamiltonià efectiu per mitjà de la propagació en temps imaginari de la funció d'ona integrada a l'espai d'espins. Com a conseqüència, la qualitat de les estimacions obtingudes amb el SIDMC és superior a aquelles obtingudes amb el DTDMC. No obstant, el SIDMC és incapaç de samplejar interaccions a dos cossos que depenguin de l'espí. Fent servir el mètode DTDMC, s’elabora el l'extensió del diagrama de fases d'un sistema amb espí-òrbita Raman al règim correlacionat. Els resultats mostren que les correlacions afavoreixen l'exòtica fase amb modulacions de densitat, la fase stripe, que abasta una extensió del diagrama més gran quant major són les correlacions. A més, es reporten resultats per la distribució de parelles, el factor d'estructura estàtic, la matriu densitat a un cos, i es caracteritza quantitativament la superfluïdesa d'aquesta fase, mostrant una fracció superfluida no nul·la a la direcció transversal respecte a les modulacions de densitat. Pel que fa a la segona prescripció esmentada prèviament, s'ha seguit el formalisme de Bogoliubov-de Gennes per realitzar càlculs analítico-numèrics que tinguin en compte les correlacions a primer ordre respecte a un càlcul de camp mig per un sistema amb espí-òrbita Raman. Això ha permès obtenir la correcció de Lee-Huang-Yang (LHY) a l'energia de camp mig per a la fase stripe d'aquest sistema per primer cop. Fent servir aquest resultat, s'ha pogut determinar el paper que juguen les fluctuacions quàntiques a un sistema a la fase stripe que és inestable a nivell de camp mig a causa de la presencia d'interaccions entre components d'espí suficientment atractives. Actualment, aquests sistemes es troben en desenvolupament experimental. Els resultats mostren que les fluctuacions quàntiques estabilitzen el sistema, i dónen lloc a una fase líquida o gas en funció del valor dels paràmetres de l'Hamiltonià. A més, el sistema finit suporta l'existència de gotes líquides auto-lligades com a estat fonamental. Aquestes gotes mostren modulacions de densitat induïdes per la interacció espí-òrbita. Per tant, representen un estat de la matèria novedós al camp dels gasos quàntics ultra-freds, ja que presenten una combinació de propietats de líquid, de sòlid i superfluïdesa. A fi de facilitar els càlculs de la correcció de LHY, es reporta un funcional fenomenològic que reprodueix amb precisió els resultats provinents de càlculs complerts. Finalment, també es reporta una breu anàlisi d'un sistema quàntic de molts cossos amb acoblament espí-òrbita de tipus angular. Es reporta un estudi amb DTDMC de l'impacte de les correlacions a un sistema d'aquest tipus.
Greschner, Sebastian [Verfasser]. "Novel scenarios of ultracold lattice gases / Sebastian Greschner." Hannover : Technische Informationsbibliothek (TIB), 2016. http://d-nb.info/1100287744/34.
Full textSchirotzek, Andre. "Radio-frequency spectroscopy of ultracold atomic Fermi gases." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/77482.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 143-154).
This thesis presents experiments investigating the phase diagram of ultracold atomic Fermi gases using radio-frequency spectroscopy. The tunability of many experimental parameters including the temperature, the interparticle interaction strength and the relative population of different Fermions allows to access very different physical regimes. Radio-frequency spectroscopy has been developed into an ideal tool to probe correlations between particles in these different phases. In particular, radio-frequency spectroscopy of highly population imbalanced atomic Fermi systems gives access to the impurity problem: A single Fermion, or Boson, immersed in a sea of Fermions constitutes a polaron, which can be described by Landau's Fermi liquid theory. A critical interaction strength can be identified separating the regime of a fermionic polaron and a bosonic polaron. Radio-frequency spectroscopy of the polarized superfluid phase allows an accurate measure of the superfluid gap [Delta] and allows to identify the importance of Hartree Mean-field energies. Furthermore, it is shown how these different physical regimes are connected.
by Andre Schirotzek.
Ph.D.
Hu, Jiazhong Ph D. Massachusetts Institute of Technology. "Light-induced many-body correlations in ultracold gases." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/115012.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 137-149).
In this thesis, we investigate several methods to generate and probe the quantum correlations in ultracold gases using light. A high-finesse optical cavity is used to enhance the atom-light interaction and we can produce a variety of entangled states which can overcome the standard quantum limit. The quantum correlations are generated by sending very weak light into the cavity which contains many neutral atoms. We control the properties of the incoming photon, such as the polarization and/or the frequency spectrum, to obtain the final atomic states as desired. The photon transmitted through the cavity interacts with the atomic ensemble and becomes entangled with the atomic state. The amount of entanglement strength is usually small but non-zero. Placing a detector after the cavity, the tiny amount of entanglement will be dramatically amplified once a photon is heralded in the detector. Using this method, we demonstrated the first observation of the negative Wigner function in the many-body system, and largely extended the record of the maximum number of atoms entangled. Other than engineering entangled many-body system, we have also worked on reaching the quantum degenerate regime for the atomic gas, in order to enhance quantum correlations in future experiments. Laser cooling all the way to Bose-Einstein condensation of an alkali atom is experimentally realized for the first time. We demonstrate a special technique suppressing the binary atomic loss at high atomic density. By transferring the atoms between two different optical traps, the atomic cloud is compressed and the density is increased. Combining these with the Raman sideband cooling method, we achieve the phase space density over 1, and observe the bimodal velocity distribution characteristic of a Bose-Einstein condensate.
by Jiazhong Hu.
Ph. D.
Sherlock, Benjamin Edward. "Ultracold quantum gases in time-averaged adiabatic potentials." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:3c0b680e-b752-4278-8033-787f8519f244.
Full textGreiner, Markus. "Ultracold quantum gases in three-dimensional optical lattice potentials." Diss., lmu, 2003. http://nbn-resolving.de/urn:nbn:de:bvb:19-9683.
Full textKlawunn, Michael [Verfasser]. "Ultracold dipolar gases in deep optical lattices / Michael Klawunn." Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover, 2010. http://d-nb.info/1001029003/34.
Full textMeineke, Jakob [Verfasser]. "Fluctuations and Correlations in Ultracold Fermi Gases / Jakob Meineke." München : Verlag Dr. Hut, 2012. http://d-nb.info/1028784201/34.
Full textHaendel, Sylvi. "Experiments on ultracold quantum gases of 85Rb and 87Rb." Thesis, Durham University, 2011. http://etheses.dur.ac.uk/3227/.
Full textParish, Meera Marjorie. "Magnetoresistance of inhomogeneous semiconductors, and, ultracold atomic Fermi gases." Thesis, University of Cambridge, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.614740.
Full textDutta, Omjyoti. "Ground State Properties and Applications of Dipolar Ultracold Gases." Diss., The University of Arizona, 2008. http://hdl.handle.net/10150/195700.
Full textLi, Junru Ph D. Massachusetts Institute of Technology. "Spin-orbit coupling and supersolidity in ultracold quantum gases." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/123348.
Full textThesis: Ph. D., Massachusetts Institute of Technology, Department of Physics, 2019
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 207-214).
Ultracold quantum gases provide a clean, isolated, and controllable platform for simulating and characterizing complex physical phenomena. In this thesis, I present several experiments on realizing one-dimensional spin-orbit coupling in ultracold 23Na gases and the creation of a new form of matter with supersolid properties using interacting spin-orbit coupled Bose-Einstein condensates. The first part describes the realization of spin-orbit coupling in optical superlattices which consist of stack of pancakes of imbalanced double-wells. The orbital levels, individual pancakes, in an superlattice potential are used as pseudospin states. Spinorbit coupling was induced by two-photon Raman transition between the pseudospin states, and was experimentally characterized by the spin-dependent momentum structure from this dressing. The realization suppresses heating due to spontaneous emission.
The system is highly miscible, allowing the study of novel phases in interacting spin-orbit coupled systems. Next, spin-orbit coupling was demonstrated by synchronizing a fast periodically modulating magnetic force with the Radio-Frequency (RF) pulses. The modulation effectively dressed the RF photons with tunable momentum. The consequent Doppler shifts for RF transitions were observed as velocity-selective spin flips. The scheme is equivalent to Floquet engineered one-dimensional spin-orbit coupling. Finally, I report experiments on creating a new form of matter, a supersolid, in ultracold quantum gases. An interacting spin-orbit coupled Bose-Einstein condensate in the stripe phase spontaneously breaks two continuous symmetries : the U(1) symmetry, observed as sharp interference peaks in momentum space, and the continuous translational symmetry, observed as a spontaneously formed density modulation. The density modulation is measured and characterized with Bragg scattering.
A system spontaneously breaking these two symmetries is a crystal and a superfluid simultaneously, and is considered as a supersolid.
by Junru Li.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Physics
Kozlowski, Wojciech. "Competition between weak quantum measurement and many-body dynamics in ultracold bosonic gases." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:8da45dd9-27f9-42b6-8bae-8001d0154966.
Full textHamadeh, Lama. "Ultracold gases of Rydberg-dressed atoms in multi-well traps." Thesis, University of Nottingham, 2015. http://eprints.nottingham.ac.uk/55953/.
Full textTammuz, Naaman. "Thermodynamics of ultracold ³⁹K atomic Bose gases with tuneable interactions." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610760.
Full textCole, William S. Jr. "Spin-orbit coupling and strong correlations in ultracold Bose gases." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1406217577.
Full textPeotta, Sebastiano. "Nonequilibrium dynamics of strongly correlated one-dimensional ultracold quantum gases." Doctoral thesis, Scuola Normale Superiore, 2013. http://hdl.handle.net/11384/85863.
Full textBombín, Escudero Raúl. "Ultracold Bose and Fermi dipolar gases : a quantum Monte Carlo study." Doctoral thesis, Universitat Politècnica de Catalunya, 2019. http://hdl.handle.net/10803/668241.
Full textEl objeto de estudio de esta tesis son los sistemas dipolares en el régimen cuántico degenardo. Usualmente, tratar con sistemas de muchos cuerpos y para evaluar sus propiedades requiere ser capaz de resolver la ecuación de Schrödinger. En el presente estudio, empleamos diferentes métodos de Monte Carlo, que permiten encontrar soluciones numéricas de forma estocásticas. La primera y más simple de estas técnicas es el método Variational Monte Carlo (VMC), que da una solución variacional. Una mejora sobre lo anterior consiste en emplear el método Diffusion Monte Carlo (DMC) que permite obtener soluciones exactas para el estado fundamental del sistema (cuando se estudian sistemas bosónicos). Continuamos presentando dos métodos que se basan en el formalismo Feynman de la mecánica cuántica: Path Integral Monte Carlo (PIMC) y Path Integral Ground State (PIGS), que proporcionan soluciones exactas para el problema bosónico a temperatura finita y en el límite de temperatura cero respectivamente. Para trabajar con sistemas fermionicos, como es el caso del capítulo 4 de esta tesis, el algoritmo DMC tiene que ser modificado según la prescripción Fixed-Node para evitar el problema del signo. Al hacerlo, los resultados obtenidos con DMC se corresponden a soluciones variacionales a la energía. En el capítulo 3 estudiamos las propiedades superfluidas de un sistema de bosones dipolares completamente polarizados y en el que el movimiento de los dipolos está restringido al plano. También consideramos que los momentos dipolares forman un cierto ángulo con el eje perpendicular al plano, lo que permite introducir anisotropía en el sistema. El diagrama de fases a temperatura cero de este sistema revela la existencia de tres fases diferentes: gas, stripe y sólido. Aquí nos centramos en la caracterización de las propiedades superfluidas en ese diagrama de fases. Nuestros cálculos permiten abordar la cuestión de si la fase stripe de este sistema podría ser un candidato para el supersólido: un sistema en el que dos simetrías U (1) se rompen simultáneamente, permitiendo al sistema exhibir orden espacial de largo alcance y a la vez ser superfluido. Mediante el empleo de DMC y PIGS, evaluamos la fracción superfluída y el condensado, tanto en las fases de gas como en el stripe. Este estudio se completa con la extensión a temperatura finita, donde el uso de PIMC permite caracterizar la transición superfluida y obtener la temperatura crítica a la que ésta ocurre en las fases gas y stripe. Finalmente, por comparación directa con las predicciones Líquido de Luttinger, mostramos explícitamente que la fase de stripe no puede describirse como un conjunto de sistemas 1D aislados. En el capítulo 4, estudiamos el sistema dipolar fermiónico en dos dimensiones, enfocándonos en el caso en que todos los dipolos están polarizados a lo largo de la dirección que es perpendicular al plano que contiene su movimiento. Calculamos la ecuación de estado del sistema en un amplio rango de parámetros de interacción: a baja densidad, la comparación de nuestro modelo dipolar con uno de discos duros permite determinar el régimen de universalidad, mientras que a densidades más altas (antes de la cristalización), discutimos la posibilidad de una fase polarizada como el estado fundamental del sistema (ferromagnetismo itinerante). El polaron fermiónico dipolar, correspondiente al límite de impurezas ultradiluídas en un baño fermiónico también es estudiado, determinando el régimen de universalidad y los límites de validez de la aproximación de quasi-partícula. En la última parte de la tesis, la formación de gotas dipolares ultradiluídas es estudiada. Nuestros resultados están en acuerdo con medidas experimentales con átomos de disprosio. Por otro lado, la evaluación de las diferencias entre éstos y la predicción dada por la ecuación de Gross-Pitaevskii extendida, permite evaluar los límites de la aproximación
Taie, Shintaro. "Ultracold Fermi Gases with High Spin Symmetry in an Optical Lattice." 京都大学 (Kyoto University), 2013. http://hdl.handle.net/2433/175106.
Full textSeeßelberg, Frauke [Verfasser], and Immanuel [Akademischer Betreuer] Bloch. "Interacting gases of ultracold polar molecules / Frauke Seeßelberg ; Betreuer: Immanuel Bloch." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2019. http://d-nb.info/1189585022/34.
Full textMa, Ruichao. "Engineered potentials and dynamics of ultracold quantum gases under the microscope." Thesis, Harvard University, 2014. http://dissertations.umi.com/gsas.harvard:11368.
Full textPhysics
Benjamin, David Isaiah. "Impurity Physics in Resonant X-Ray Scattering and Ultracold Atomic Gases." Thesis, Harvard University, 2014. http://nrs.harvard.edu/urn-3:HUL.InstRepos:13067679.
Full textPhysics
Li, Weiran. "Topics in Ultracold Atomic Gases: Strong Interactions and Quantum Hall Physics." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1375706577.
Full textNandi, Gerrit. "Dynamics of Ultracold Quantum Gases and Interferometry with Coherent Matter Waves." [S.l. : s.n.], 2007. http://nbn-resolving.de/urn:nbn:de:bsz:289-vts-59483.
Full textCardarelli, Lorenzo [Verfasser]. "Quantum simulation of Abelian gauge fields with ultracold gases / Lorenzo Cardarelli." Hannover : Gottfried Wilhelm Leibniz Universität Hannover, 2019. http://d-nb.info/1204458987/34.
Full textGrankin, Andrey. "Theoretical studies of optical non-linear effects in ultracold Rydberg gases." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLO006/document.
Full textPhotons appear as reliable information messengers since they interact very weakly with their environment. Unfortunately, they interact so weakly with each other that the direct implementation of optical two-qubit gates is impossible. The propagation through atomic nonlinear media however allows one to achieve effective photon-photon interactions. The technique of electromagnetically induced transparency (EIT) allows one to induce a strong resonant non-linearity -- not strong enough to be noticeable in the quantum domain though, on one of the transitions of a three-level ladder system. To enhance the nonlinear effects and reach the quantum regime, it was recently proposed to combine the EIT approach with the excitation blockade induced by the strong dipole-dipole interactions between Rydberg atoms. By putting the medium in a cavity, one imposes multiple passes to the light therefore increasing the optical nonlinearity. This kind of setup was studied both theoretically and experimentally in the dispersive regime and for a relatively weak nonlinearity, for which a classical treatment of the field is still valid. In this dissertation, we investigate the optical nonlinear effects induced by a Rydberg medium in the quantum regime.In chapter 1, we present our system, its dynamical equations and recall the definition and basic properties of the intensity correlation function g^{left(2right)}that we use to characterize the action of nonlinearity on the photonic field. In chapter 2, we consider the so-called dispersive regime, i.e. when the intermediate state is far detuned and can be adiabatically eliminated. We employ the Rydberg bubble approximation in which the system effectively consists in an ensemble of two-level superatoms coupled to the cavity mode, described by the driven Tavis-Cummings model. We compute analytically and numerically the g^{left(2right)}function of the transmitted light, which, depending on the cavity parameters, is shown to be either bunched or antibunched. In chapter 3, we present an alternative treatment of the system, which allows us to investigate the resonant regime. In the low-feeding limit, we analytically derive the correlation function g^{left(2right)}left(tauright)for the transmitted and reflected lights, based on the factorization of the lowest perturbative order of operator product averages. We then propose an effective non-linear three-boson model for the coupled atom-cavity system. Finally, we investigate the resonant regime and observe novel features of the correlation function g^{left(2right)}showing the interplay of impedance matching conditions and dipole-dipole interactions. In chapter 4, we analyze the system in the Schwinger-Keldysh formalism. Applying Wick's theorem, we perturbatively expand correlation functions with respect to both, feeding and dipole-dipole interactions Hamiltonians and perform a complete resummation with respect to the latter. By this method we recover the results of Chap. 3 in an analytic form. We also go beyond and derive analytic expressions for the elastic and inelastic components of the cavity transmission spectrum. We identify a polaritonic resonance structure in this spectrum, to our knowledge unreported so far, that we physically interpret. In chapter 5, we describe a novel scheme for high fidelity photonic controlled-phase gates using Rydberg blockade in an ensemble of atoms in an optical cavity. This protocol can be implemented with cavities of moderate finesse allowing for highly efficient processing of quantum information encoded in photons
Weinberg, Malte [Verfasser]. "Band Structure Engineering of Ultracold Quantum Gases in Optical Lattices / Malte Weinberg." München : Verlag Dr. Hut, 2015. http://d-nb.info/1067708383/34.
Full textLi, Zhiying. "New mechanisms for external field control of microscopic interactions in ultracold gases." Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/15755.
Full textHerrera, Felipe Andres. "Quantum control of binary and many-body interactions in ultracold molecular gases." Thesis, University of British Columbia, 2012. http://hdl.handle.net/2429/42542.
Full textJo, Gyu-Boong. "Quantum coherence and magnetism in bosonic and fermionic gases of ultracold atoms." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/63010.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 168-185).
In this thesis, two sets of experimental studies in bosonic and fermionic gases are described. In the first part of the thesis, itinerant ferromagnetism was studied in a strongly interacting Fermi gas of ultracold atoms. The observation of nonmonotonic behavior of lifetime, kinetic energy, and size for increasing repulsive interactions provides strong evidence for a phase transition to a ferromagnetic state. Our observations imply that itinerant ferromagnetism of delocalized fermions is possible without lattice and band structure, and our data validate the most basic model for ferromagnetism introduced by Stoner. In the second part of the thesis, the coherence properties of a Bose-Einstein condensate (BEC) was studied in a radio frequency induced double-well potential implemented on a microfabricated atom chip. We observed phase coherence between the separated condensates for times up to 200 ms after splitting, a factor of 10 longer than the phase diffusion time expected for a coherent state for our experimental conditions. The enhanced coherence time is attributed to number squeezing of the initial state by a factor of 10. Furthermore, the effect of phase fluctuations on an atom interferometer was studied in an elongated BEC. We demonstrated that the atom interferometer using the condensates is robust against phase fluctuations; i.e., the relative phase of the split condensates is reproducible despite axial phase fluctuations. Finally, phase-sensitive recombination of two BECs was demonstrated on an atom chip. The recombination was shown to result in heating, caused by the dissipation of dark solitons, which depends on the relative phase of the two condensates. This heating reduces the number of condensate atoms and provides a robust way to read out the phase.
by Gyu-Boong Jo.
Ph.D.
Reimann, Thomas. "Resonant spin dynamics and 3D-1D dimensional crossovers in ultracold Fermi gases." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEE029/document.
Full textThe exploration of strongly correlated quantum many-body systems represents one of the most challenging fields of research of contemporary physics. Over the past thirty years, dilute vapors of neutral atoms suspended in vacuum and controlled with laser light have become a versatile and powerful platform for the study of such systems. At the very heart lies the ability to arbitrarily tune the interaction strength by means of magnetically induced Feshbach resonances as well as the possibility to create a wide range of potential landscapes via precisely tailored optical fields. This thesis reports on the recent results of the FerMix experiment, which is dedicated to the study of fermionic quantum many-body-systems at ultralow temperatures using the Alkali atoms 40K and 6Li. The main results presented in this text are twofold. First, we report on the experimental characterization of a novel (s,d)-wave Feshbach resonance in 6Li, the results of which are compared to the corresponding theoretical predictions. In particular, the spectrum of the inelastic loss rate is determined for different temperatures and trap depths, which enables us to identify the losses as two-body processes. Moreover, the dominant entrance channel is confirmed to be s-wave in nature. Using rate equation models we analyze the observed heating of the atomic ensemble and find the behavior to be consistent with the predicted L = 2 bound state present in the exit channel. Finally, we investigate experimentally the dynamics of the spin populations driven by resonantly enhanced inelastic collisions in dwave, observing good agreement with our numerical models. Second, we summarize our progress towards the study of dimensional crossovers between the Tomonaga-Luttinger liquid in 1D and the Landau-Fermi liquid in 3D using Fermi gases of 40K confined in a large spacing optical lattice. This includes both the fundamental design considerations as well as the implementation of the required experimental hardware