Academic literature on the topic 'Ultracold gases'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ultracold gases.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Ultracold gases"

1

Yang, Huan, Jin Cao, Zhen Su, Jun Rui, Bo Zhao, and Jian-Wei Pan. "Creation of an ultracold gas of triatomic molecules from an atom–diatomic molecule mixture." Science 378, no. 6623 (December 2, 2022): 1009–13. http://dx.doi.org/10.1126/science.ade6307.

Full text
Abstract:
In recent years, there has been notable progress in the preparation and control of ultracold gases of diatomic molecules. The next experimental challenge is the production of ultracold polyatomic molecular gases. Here, we report the creation of an ultracold gas of 23 Na 40 K 2 triatomic molecules from a mixture of ground-state sodium-23–potassium-40 ( 23 Na 40 K) molecules and potassium-40 ( 40 K) atoms. The triatomic molecules were created by adiabatic magneto-association through an atom–diatomic molecule Feshbach resonance. We obtained clear evidence for the creation of triatomic molecules by directly detecting them using radio-frequency dissociation. Approximately 4000 triatomic molecules with a high-peak phase-space density of 0.05 could be created. The ultracold triatomic molecules can serve as a launchpad to probe the three-body potential energy surface and may be used to prepare quantum degenerate triatomic molecular gases.
APA, Harvard, Vancouver, ISO, and other styles
2

CROWELL, LAWRENCE B. "ULTRACOLD QUANTUM GASES AS PROBES OF THE UNRUH EFFECT." International Journal of Modern Physics D 15, no. 12 (December 2006): 2191–96. http://dx.doi.org/10.1142/s0218271806009509.

Full text
Abstract:
A high accelerated ultracold quantum gas should be heated by the thermal vacuum of the Unruh effect. This essay discusses possible experimental designs for detecting the Unruh effect with ultracold quantum bosonic gases.
APA, Harvard, Vancouver, ISO, and other styles
3

Kanamoto, Rina, and Pierre Meystre. "Optomechanics of ultracold atomic gases." Physica Scripta 82, no. 3 (August 18, 2010): 038111. http://dx.doi.org/10.1088/0031-8949/82/03/038111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Schmaljohann, H., M. Erhard, J. Kronjägert, M. Kottke, S. Van Staa, J. J. Arlt, K. Bongs, and K. Sengstock. "Magnetism in ultracold quantum gases." Journal of Modern Optics 51, no. 12 (August 2004): 1829–41. http://dx.doi.org/10.1080/09500340408232494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chin, Cheng, Rudolf Grimm, Paul Julienne, and Eite Tiesinga. "Feshbach resonances in ultracold gases." Reviews of Modern Physics 82, no. 2 (April 29, 2010): 1225–86. http://dx.doi.org/10.1103/revmodphys.82.1225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bergeson, Scott, and Thomas Killian. "Ultracold plasmas and Rydberg gases." Physics World 16, no. 2 (February 2003): 37–41. http://dx.doi.org/10.1088/2058-7058/16/2/36.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gasenzer, T. "Ultracold gases far from equilibrium." European Physical Journal Special Topics 168, no. 1 (February 2009): 89–148. http://dx.doi.org/10.1140/epjst/e2009-00960-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chin, Cheng. "Ultracold atomic gases going strong." National Science Review 3, no. 2 (November 9, 2015): 168–70. http://dx.doi.org/10.1093/nsr/nwv073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Howard, Eric. "Physics on Ultracold quantum gases." Contemporary Physics 61, no. 1 (January 2, 2020): 63–64. http://dx.doi.org/10.1080/00107514.2020.1744731.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yamashita, M. T., T. Frederico, and Lauro Tomio. "Triatomic states in ultracold gases." Nuclear Physics A 790, no. 1-4 (June 2007): 788c—791c. http://dx.doi.org/10.1016/j.nuclphysa.2007.03.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Ultracold gases"

1

Bauer, Marianne Sigrid. "Ultracold gases in low dimensions." Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Savikko, M. (Mikko). "Efimov states in ultracold gases." Master's thesis, University of Oulu, 2014. http://urn.fi/URN:NBN:fi:oulu-201403111157.

Full text
Abstract:
This work will introduce the Efimov effect and the resonant and scaling limits and derive the formula for the binding energies of the Efimov states. We use the hyperspherical coordinates for the stationary wave function of three particles and solve the low-energy Faddeev equation with the hyperspherical expansion and use the expansion for solving the channel eigenvalues. The channel eigenvalues are defined by a constant, which is the solution of the resulting transcendental equation. We also solve the scaling-violation parameter and finally compile all the results to derive the Efimov states. In the unitary limit we find infinitely many Efimov states, with an accumulation point at zero energy and an asymptotic discrete scaling symmetry with the discrete scaling factor of about 22.7. In this work, we will also delve into effective field theories, which can be used to numerically analyze and solve Efimov states in different cases. We will first go through the two-body problem which is used as a simpler example on how to solve the three-body problem and to solve the two-body coupling constant, which will also appear in the three-body problem. By using the diatom field trick introduced by Bedaque, Hammer and van Kolck, we derive the Skorniakov-Ter-Martirosian equation for the three-body problem. Finally this work will take a quick look at the first experimental evidences for Efimov states that were found since 2006. In the experiment, proper Efimov resonances in measurements of three-body recombination have been observed.
APA, Harvard, Vancouver, ISO, and other styles
3

Trefzger, Christian. "Ultracold dipolar gases in optical lattices." Doctoral thesis, Universitat Politècnica de Catalunya, 2010. http://hdl.handle.net/10803/6596.

Full text
Abstract:
Esta tesis es un trabajo teórico, en el que estudiamos la física de los átomos dipolares bosónicos ultrafríos en retículos ópticos. Éstos gases consisten de átomos o moléculas bosónicas, enfriados bajo la temperatura de degeneración cuántica, típicamente del orden de nK. En éstas condiciones, en una trampa armónica tridimensional (3D), los bosones que interaccionan débilmente condensan y forman un Condensado de Bose Einstein (BEC). Cuando se carga un BEC en un retículo óptico producido por ondas estacionarias de luz láser, se producen nuevos fenómenos físicos. Estos sistemas entonces realizan modelos de tipo Hubbard y pueden ser llevados a regimenes fuertemente correlacionados.

En 1989, M. Fisher et. al. predecían que el modelo de Bose-Hubbard homogéneo (BH) presenta la transición de fase cuántica Superfluid-Mott insulator (SF-MI). En 2002, la transición entre éstas dos fases fue observada experimentalmente por primera vez en el grupo de T. Esslinger e I. Bloch. La realización experimental de un BEC dipolar de cromo en el grupo de T. Pfau, y los progresos recientes en las técnicas de enfriamiento y atrapamiento de moléculas dipolares en los grupos de D. Jin e J. Ye, han abierto el camino hacia los gases cuánticos ultra-fríos dominados por la interacción dipolar. La evolución natural, y el reto de hoy en día por parte experimental, es de cargar BEC dipolares en retículos ópticos y estudiar los gases dipolares fuertemente correlacionados.

Antes de éste trabajo de doctorado, estudios sobre modelos de BH con interacciones extendidas a los primeros vecinos mostraron la evidencia de nuevas fases cuánticas, como el supersólido (SS) y la fase checkerboard (CB). Debido al carácter de largo alcance de la interacción dipolo-dipolo, que decae con la potencia cúbica inversa de la distancia, es necesario incluir más de un primer vecino para obtener una descripción fiel y cuantitativa de los sistemas dipolares. De hecho, al incluir más vecinos se permiten y se estabilizan aún más nuevas fases.

En esta tesis estudiamos modelos de BH con interacciones dipolares, investigando más allá del estado fundamental. Estudiamos un retículo bidimensional (2D) donde los dipolos están polarizados en dirección perpendicular al plano 2D, dando lugar a una interacción dipolar repulsiva e isotrópica. Utilizamos aproximaciones de campo-medio y un ansatz Gutzwiller, que son suficientemente correctos y adecuados para describir este sistema. Encontramos que los gases dipolares en 2D presentan una multitud de estados metaestables de tipo MI, que compiten con el estado fundamental, de modo parecido a sistemas desordenados. Estudiamos en detalle el destino de estos estados metaestables: como pueden ser preparados de manera controlada, como pueden ser detectados, cual es su tiempo de vida debido al tunnelling, y cual es su rol en los procesos de enfriamiento. Además, encontramos que el estado fundamental está caracterizado por estados MI de tipo checkerboard con coeficiente de ocupación n fraccionario (numero medio de partículas por sitio) que depende del cut-off utilizado en el radio de alcance de la interacción. Confirmamos esta predicción estudiando el mismo sistema con métodos Quantum Monte Carlo (worm algorithm). En este caso no utilizamos ningún cut-off en el radio de alcance de la interacción, y encontramos pruebas de una "Devil's staircase" en el estado fundamental, i.e. donde las fases MI aparecen en todos los n racionales del retículo subyacente. Encontramos además, regiones de los parámetros donde el estado fundamental es supersólido, obtenido drogando los sólidos con partículas o con agujeros.

En este trabajo, investigamos también como cambia la estructura precedente en 3D. Nos focalizamos en el retículo 3D más sencillo compuesto de dos planos 2D, en el cual los dipolos están polarizados perpendicularmente a los planos; la interacción dipolar es entonces repulsiva por partículas del mismo plano, mientras es atractiva por partículas en el mismo sitio de dos planos diferentes. En cambio suprimimos el tunnelling entre los planos, lo cual hace el sistema equivalente a una mezcla bosónica en un retículo 2D. Nuestros cálculos muestran que las partículas se juntan en parejas, y demostramos la existencia de la nueva fase cuántica Pair Super Solid (PSS).

Actualmente estamos estudiando un retículo 2D donde los dipolos están libres de apuntar en ambas direcciones perpendicularmente al plano, lo cual resulta en una interacción a primeros vecinos repulsiva (atractiva) por dipolos alineados (anti-alineados). Encontramos regiones de parámetros donde el estado fundamental es ferromagnético u anti-ferromagnético, y encontramos pruebas de la existencia de la fase cuántica Counterflow Super Solid (CSS).
Las nuestras predicciones tienen directas consecuencias experimentales, y esperamos que vengan pronto controladas en experimentos con gases dipolares atómicos y moleculares ultra-fríos.
This thesis is a theoretical work, in which we study the physics of ultra-cold dipolar bosonic gases in optical lattices. Such gases consist of bosonic atoms or molecules, cooled below the quantum degeneracy temperature, typically in the nK range. In such conditions, in a three-dimensional (3D) harmonic trap, weakly interacting bosons condense and form a Bose-Einstein Condensate (BEC). When a BEC is loaded into an optical lattice produced by standing waves of laser light, new kinds of physical phenomena occur.

These systems realize then Hubbard-type models and can be brought to a strongly correlated regime. In 1989, M. Fisher et. al. predicted that the homogeneous Bose-Hubbard model (BH) exhibits the Superfluid-Mott insulator (SF-MI) quantum phase transition. In 2002 the transition between these two phases were observed experimentally for the first time in the group of T. Esslinger and I. Bloch. The experimental realisation of a dipolar BEC of Chromium by the group of T. Pfau, and the recent progresses in trapping and cooling of dipolar molecules by the groups of D. Jin and J. Ye, have opened the path towards ultra-cold quantum gases with dominant dipole interactions. A natural evolution and present challenge, on the experimental side is then to load dipolar BECs into optical lattices and study strongly correlated ultracold dipolar lattice gases.

Before this PhD work, studies of BH models with interactions extended to nearest neighbours had pointed out that novel quantum phases, like supersolid (SS) and checkerboard phases (CB) are expected. Due to the long-range character of the dipole-dipole interaction, which decays as the inverse cubic power of the distance, it is necessary to include more than one nearest neighbour to have a faithful quantitative description of dipolar systems. In fact, longer-range interactions tend to allow for and stabilize more novel phases.

In this thesis we study BH models with dipolar interactions, going beyond the ground state search. We consider a two-dimensional (2D) lattice where the dipoles are polarized perpendicularly to the 2D plane, resulting in an isotropic repulsive interaction. We use the mean-field approximations and a Gutzwiller ansatz which are quite accurate and suitable to describe this system. We find that dipolar bosonic gas in 2D exhibits a multitude of insulating metastable states, often competing with the ground state, similarly as in a disordered system. We study in detail the fate of these metastable states: how can they be prepared on demand, how they can be detected, what is their lifetime due to tunnelling, and what is their role in various cooling schemes. Moreover, we find that the ground state is characterized by insulating checkerboard-like states with fractional filling factors v(average number of particles per site) that depend on the cut-off used for the interaction range. We confirm this prediction by studying the same system with Quantum Monte Carlo methods (the worm algorithm). In this case no cut-off is used, and we find evidence for a Devil's staircase in the ground state, i.e. where insulating phases appear at all rational of the underlying lattice. We also find regions of parameters where the ground state is a supersolid, obtained by doping the solids either with particles or vacancies.

In this work, we also investigate how the previous scenario changes in 3D. We focus on the simplest 3D lattice composed of two 2D layers in which the dipoles are polarized perpendicularly to the planes; the dipolar interaction is then repulsive for particles laying on the same plane, while it is attractive for particles at the same lattice site on different layers. Instead we consider inter-layer tunnelling to be suppressed, which makes the system analogous to a bosonic mixture in a 2D lattice. Our calculations show that particles pair into composites, and demonstrate the existence of the novel Pair Super Solid (PSS) quantum phase.
Currently we are studying a 2D lattice where the dipoles are free to point in both directions perpendicularly to the plane, which results in a nearest neighbour repulsive (attractive) interaction for aligned (antialigned) dipoles. We find regions of parameters where the ground state is ferromagnetic or antiferromagnetic, and find evidences for the existence of a Counterflow Super Solid (CSS) quantum phase.
Our predictions have direct experimental consequences, and we hope that they will be soon checked in experiments with ultracold dipolar atomic and molecular gases.
APA, Harvard, Vancouver, ISO, and other styles
4

Punk, Matthias. "Many-particle physics with ultracold gases." kostenfrei, 2010. https://mediatum2.ub.tum.de/node?id=956951.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pedri, Paolo. "Dynamical behavior of ultracold atomic gases." [S.l. : s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=975830414.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Price, Hannah. "Topological phenomena in ultracold atomic gases." Thesis, University of Cambridge, 2013. https://www.repository.cam.ac.uk/handle/1810/245059.

Full text
Abstract:
Topological phenomena arise in a wide range of systems, with fascinating physical consequences. There is great interest in finding new ways to measure such consequences in ultracold atomic gas experiments. These experiments have significant advantages over the solid-state as ultracold atoms are controllable, tuneable and clean. They can also be used to investigate properties which are inaccessible in other quantum systems. We explore some of the novel features of topological energy bands and topological solitons in ultracold gases. Topological energy bands have important geometrical properties described by the Berry curvature. Bands with nonzero Berry curvature arise in key areas of current research, such as optical lattices with more than one band; strong artificial magnetic fields and 2D spin-orbit coupling. Topological solitons are also relevant to cutting-edge experiments as they can be created and studied with high temporal and spatial resolution. In this thesis, we investigate the consequences of Berry curvature for the semiclassical dynamics of a wavepacket and the collective modes of an ultracold gas. We also study theoretically the dynamics of skyrmion-antiskyrmion pairs in a Bose Einstein condensate. Firstly, we propose a general method by which experiments can map the Berry curvature across the Brillouin zone, and thereby determine the topological properties of the energy bands of optical lattices. The Berry curvature modifies the semiclassical dynamics and hence the trajectory of a wavepacket undergoing Bloch oscillations. Our general protocol allows a clean measurement from the semiclassical dynamics of the Berry curvature over the Brillouin zone. We discuss how this protocol may be implemented and explore the semiclassical dynamics for three relevant systems. We discuss general experimental considerations for observing Berry curvature effects before reviewing some of the progress in the field since the publication of our work. Secondly, we show that the Berry curvature changes the hydrodynamic equations of motion for a trapped Bose-Einstein condensate, and causes significant modifications to the collective mode frequencies. We illustrate our results for the case of two-dimensional Rashba spin-orbit coupling in a Zeeman field, where we also apply both a sum rule and an operator approach to the dipole mode. Extending the operator method, we derive the effects of Berry curvature on the dipole mode in very general settings. We show that the sizes of these effects can be large and readily detected in experiment. Collective modes therefore provide a sensitive way to measure geometrical properties of topological energy bands. Lastly, we study theoretically the dynamics of two-component Bose-Einstein condensates in two dimensions, which admit topological excitations related to the skyrmions of nuclear physics. We explore a branch of uniformly propagating solitary waves, which, at high momentum, can be viewed as skyrmion-antiskyrmion pairs. We study these solitary waves for a range of interaction regimes and show that, for experimentally relevant cases, there is a transition to spatially extended spin-wave states at low momentum. We explain how this can be understood by analogy to the two-dimensional ferromagnet and discuss how such solitary waves can be generated and studied in experiment.
APA, Harvard, Vancouver, ISO, and other styles
7

Nunnenkamp, Andreas. "Strong correlations in ultracold atomic gases." Thesis, University of Oxford, 2008. http://ora.ox.ac.uk/objects/uuid:6e09e9d3-f5cd-4580-a667-6599203162e2.

Full text
Abstract:
In this thesis we investigate strongly-correlated states of ultracold bosonic atoms in rotating ring lattices and arrays of double-well potentials. In the first part of the thesis, we study the tunneling dynamics of ultracold bosons in double-well potentials. In the non-interacting limit single-particle transitions dominate, while in the interaction-dominated regime correlated tunneling of all particles prevails. At intermediate times of the many-particle flopping process correlated states occur, but the timescales of these processes increase dramatically with the number of particles. Using an array of double-well potentials, a large number of such few-particle superposition states can be produced in parallel. In the second part of the thesis, we study the effects of rotation on ultracold bosons confined to one-dimensional ring lattices. We find that at commensurate filling there exists a critical rotation frequency, at which the ground state of the weakly-interacting gas is fragmented into a macroscopic superposition of different quasi-momentum states. We demonstrate that the generation of such superposition states using slightly non-uniform ring lattices has several practical advantages. Moreover, we show that different quasi-momentum states can be distinguished in time-of-flight absorption imaging and propose to probe correlations via the many-body oscillations induced by a sudden change in the rotation frequency. Finally, we compare these macroscopic superposition states to those occurring in superconducting quantum interference devices. In the third part of the thesis, we demonstrate the creation of entangled states with ultracold bosonic atoms by dynamical manipulation of the shape of the lattice potential. To this end, we consider an optical superlattice that allows both the splitting of each site into a double-well potential and the variation of the height of the potential barrier between the sites. We show how to use this array of double-well potentials to perform entangling operations between neighboring qubits encoded on the Zeeman levels of the atoms. As one possible application, we present a method of realizing a resource state for measurement-based quantum computation via Bell-pair measurements. In the final part of the thesis, we study ultracold bosons on a two-dimensional square lattice in the presence of an effective magnetic field and point out a couple of features this system has in common with ultracold bosons in one-dimensional rotating ring lattices.
APA, Harvard, Vancouver, ISO, and other styles
8

Douglas, James Stewart. "Light scattering from ultracold atomic gases." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:0aa4ede3-8b6e-45d4-a112-a2d18271307c.

Full text
Abstract:
Systems of ultracold atoms in optical potentials have taken a place at the forefront of research into many-body atomic systems because of the clean experimental environment they exist in and the tunability of the system parameters. In this thesis we study how light scattered from these ultracold atomic gases reveals information about the state of the atomic gas and also leads to changes in that state. We begin by investigating the angular dependence of light scattered from atoms in optical lattices at finite temperature. We demonstrate how correlations in the superfluid and Mott insulator states affect the scattering pattern, and we show that temperature affects the number of photons scattered. This effect could be used to measure the temperature of the gas, however, we show that when the lattice band structure is taken into account the efficiency of this temperature measurement is reduced. We then investigate light scattering from small optical lattices where the Bose-Hubbard Hamiltonian can be solved exactly. For small lattices, scattering a photon from the atomic system significantly perturbs the atomic system. We develop a model of the evolution of the many-body state that results from the consecutive scattering and detection of photons. This model shows that light scattering pushes the system towards eigenstates of the light scattering measurement process, in some cases leading to a superposition of atomic states. In the second half of this thesis we study light scattering that depends on the internal hyperfine spin state of the atoms, in which case the scattered light can form images of the spatial atomic spin distribution. We demonstrate how scattering spatially correlated light from the atoms can result in spin state images with enhanced spatial resolution. We also show how using spatially correlated light can lead to direct measurement of the spatial correlations of the atomic spin distribution. We then apply this theory of spin-dependent light scattering to the detection of different spin states of ultracold gases in synthetic magnetic fields. We show that it is possible to distinguish between ground states in the quantum Hall regime using light scattering. Moreover, we show how noise correlation analysis of the spin state images can be used to identify the correlations between atoms and how a variant on phase-contrast imaging can reveal the relationship between the atomic spins.
APA, Harvard, Vancouver, ISO, and other styles
9

Lan, Zhihao. "Quantum simulations with ultracold quantum gases." Thesis, Heriot-Watt University, 2012. http://hdl.handle.net/10399/2581.

Full text
Abstract:
This thesis explores Feynman’s idea of quantum simulations by using ultracold quantum gases. In the first part of the thesis we develop a general method applicable to atoms or molecules or even nanoparticles, to decelerate a hot fast gas beam to zero velocity by using an optical cavity. This deceleration method is based on a novel phase stability mechanism in the bad cavity regime, which is very different from the traditional cavity cooling studies where a good cavity is needed. We propose several schemes to decelerate the gas beam based on this new phase stability mechanism. Practical issues for realizing the proposals are also discussed in detail which show that the deceleration schemes are feasible using present experimental techniques. In the second part of this thesis, we show how the concept of quantum simulations is applied to multiple-layered Dirac cones and related phenomena by using multi-component ultracold fermionic atoms in optical lattices where the spin-dependent hopping and on-site spin flipping are both controlled by Raman lasers. By tuning the spin-dependent hopping according to the representations of su(2) algebra, we show that we can simulate the Dirac-Weyl fermions with any arbitrary spin beyond the spin ½ cases found in graphene and topological insulators. These high spin Dirac-Weyl fermions show rich anomalous quantum Hall effects and a remarkable Klein multi-refringent tunnelling. Moreover, when getting rid of the limitations of su(2) algebra and allowing for on-site spin flipping, we further investigate Modified Dispersion Relations (MDRs) and Neutrino Oscillations (NOs) as in Standard Model Extensions (SMEs) by virtue of an analogue between the three-family fermions in particle physics and a three-layered Dirac cones scheme. This thesis shows the important role ultracold quantum gases play in quantum simulations to address some of the most challenging topics in modern physics.
APA, Harvard, Vancouver, ISO, and other styles
10

Edge, Jonathan Martin. "Collective phenomena in ultracold Fermi gases." Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609264.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Ultracold gases"

1

Flörchinger, Stefan. Functional Renormalization and Ultracold Quantum Gases. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14113-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

service), SpringerLink (Online, ed. Functional Renormalization and Ultracold Quantum Gases. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ecole d'été de physique théorique (Les Houches, Haute-Savoie, France) (94th 2010). Many-body physics with ultracold gases. Oxford: Oxford University Press, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

M, Dickerscheid Dennis B., Gubbels Koos B, and SpringerLink (Online service), eds. Ultracold Quantum Fields. Dordrecht: Springer Netherlands, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ulmanis, Juris. Heteronuclear Efimov Scenario in Ultracold Quantum Gases. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51862-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Matthias, Weidemüller, and Zimmermann Claus 1958-, eds. Interactions in ultracold gases: From atoms to molecules. Weinheim: Wiley-VCH, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lam, Aden Zhen Hao. Ultracold dipolar gases of NaCs ground state molecules. [New York, N.Y.?]: [publisher not identified], 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

École, d'été de physique théorique (Les Houches Haute-Savoie France) (91st 2009 Singapore). Ultracold gases and quantum information: École d'été de Physique des Houches in Singapore, Session XCI, 29 June-24 July 2009, École Thématique du CNRS. Oxford: Oxford University Press, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Weidemüller, Matthias, and Claus Zimmermann, eds. Interactions in Ultracold Gases. Wiley, 2003. http://dx.doi.org/10.1002/3527603417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ultracold Bosonic And Fermionic Gases. Elsevier, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Ultracold gases"

1

Pérez Ríos, Jesús. "Ultracold Gases." In An Introduction to Cold and Ultracold Chemistry, 37–53. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55936-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Straten, Peter van der, and Harold Metcalf. "The Quest for BEC." In Interactions in Ultracold Gases, 2–63. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603417.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Claussen, Neil R., Sarah T. Thompson, Elizabeth A. Donley, and Carl E. Wieman. "Atom-Molecule Coherence in 85Rb BEC." In Interactions in Ultracold Gases, 311–19. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603417.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Comparat, Daniel, Nicolas Vanhaecke, Christian Lisdat, and Pierre Pillet. "Formation and Trapping of Cold Molecules." In Interactions in Ultracold Gases, 320–36. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603417.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Meijer, Gerard. "Deceleration and Trapping of Polar Molecules." In Interactions in Ultracold Gases, 337–47. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603417.ch12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zajfman, D., S. Krohn, M. Lange, H. Kreckel, L. Lammich, D. Strasser, D. Schwalm, X. Urbain, and A. Wolf. "Physics with Cold Molecular Ions." In Interactions in Ultracold Gases, 348–58. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603417.ch13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sauer, B. E., J. J. Hudson, M. R. Tarbutt, and E. A. Hinds. "Cold Molecules as a Laboratory for Particle Physics." In Interactions in Ultracold Gases, 359–69. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603417.ch14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mudrich, M., S. Kraft, K. Singer, A. Mosk, M. Weidemüller, Ch Binder, K. Rumpf, et al. "A. Interactions in Trapped Atomic Gases." In Interactions in Ultracold Gases, 377–406. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603417.ch15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gerbier, F., S. Richard, J. H. Thywissen, M. Hugbart, P. Bouyer, A. Aspect, I. Shvarchuck, et al. "B. Bose-Einstein Condensation and Fermi Degeneracy." In Interactions in Ultracold Gases, 407–43. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603417.ch16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dulieu, Olivier, Claude Amiot, Ricardo Gutterres, Françoise Masnou-Seeuws, N. Vanhaecke, C. Lisdat, D. Comparat, et al. "C. Cold Molecules." In Interactions in Ultracold Gases, 445–74. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603417.ch17.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Ultracold gases"

1

Ketterle, Wolfgang. "Superfluid ultracold fermi gases." In 2007 Quantum Electronics and Laser Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/qels.2007.4431788.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ertmer, Wolfgang. "Ultracold Gases in Microgravity." In Quantum-Atom Optics Downunder. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/qao.2007.qmb1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pu, Han. "Impurities in Ultracold Fermi Gases." In Laser Science. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/ls.2013.lw1h.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nascimbène, Sylvain, Nir Navon, Frédéric Chevy, and Christophe Salomon. "Thermodynamics of Ultracold Fermi Gases." In Latin America Optics and Photonics Conference. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/laop.2010.wb2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shlyapnikov, G. V. "Ultracold Fermi Gases: Towards BCS." In Proceedings of the XVIII International Conference on Atomic Physics. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705099_0012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ketterle, Wolfgang. "New frontiers with ultracold gases." In ATOMIC PHYSICS 19: XIX International Conference on Atomic Physics; ICAP 2004. AIP, 2005. http://dx.doi.org/10.1063/1.1928838.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kohl, Michael, T. Donner, S. Ritter, T. Bourdel, A. Ottl, and T. Esslinger. "Correlations in ultracold atomic gases." In 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference. IEEE, 2007. http://dx.doi.org/10.1109/cleoe-iqec.2007.4386748.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

BALAKRISHNAN, N. "COLLISIONS AND REACTIONS IN ULTRACOLD GASES." In Contributions to Atomic, Molecular, and Optical Physics, Astrophysics, and Atmospheric Physics. PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO., 2009. http://dx.doi.org/10.1142/9781848164703_0024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wilkin, N. K., J. M. F. Gunn, M. I. Parke, A. Bourne, Beverly Karplus Hartline, Renee K. Horton, and Catherine M. Kaicher. "Rapidly Rotating Ultracold Bosonic Gases (abstract)." In WOMEN IN PHYSICS: Third IUPAP International Conference on Women in Physics. AIP, 2009. http://dx.doi.org/10.1063/1.3137893.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Vengalattore, Mukund. "Ultracold atomic gases for hybrid quantum systems." In Laser Science. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/ls.2012.ltu4i.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Ultracold gases"

1

Zwierlein, Martin W. Quantum Engineering of Strongly Correlated Matter with Ultracold Fermi Gases. Fort Belvoir, VA: Defense Technical Information Center, May 2013. http://dx.doi.org/10.21236/ada584527.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography