Academic literature on the topic 'Ultracold gases'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ultracold gases.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ultracold gases"
Yang, Huan, Jin Cao, Zhen Su, Jun Rui, Bo Zhao, and Jian-Wei Pan. "Creation of an ultracold gas of triatomic molecules from an atom–diatomic molecule mixture." Science 378, no. 6623 (December 2, 2022): 1009–13. http://dx.doi.org/10.1126/science.ade6307.
Full textCROWELL, LAWRENCE B. "ULTRACOLD QUANTUM GASES AS PROBES OF THE UNRUH EFFECT." International Journal of Modern Physics D 15, no. 12 (December 2006): 2191–96. http://dx.doi.org/10.1142/s0218271806009509.
Full textKanamoto, Rina, and Pierre Meystre. "Optomechanics of ultracold atomic gases." Physica Scripta 82, no. 3 (August 18, 2010): 038111. http://dx.doi.org/10.1088/0031-8949/82/03/038111.
Full textSchmaljohann, H., M. Erhard, J. Kronjägert, M. Kottke, S. Van Staa, J. J. Arlt, K. Bongs, and K. Sengstock. "Magnetism in ultracold quantum gases." Journal of Modern Optics 51, no. 12 (August 2004): 1829–41. http://dx.doi.org/10.1080/09500340408232494.
Full textChin, Cheng, Rudolf Grimm, Paul Julienne, and Eite Tiesinga. "Feshbach resonances in ultracold gases." Reviews of Modern Physics 82, no. 2 (April 29, 2010): 1225–86. http://dx.doi.org/10.1103/revmodphys.82.1225.
Full textBergeson, Scott, and Thomas Killian. "Ultracold plasmas and Rydberg gases." Physics World 16, no. 2 (February 2003): 37–41. http://dx.doi.org/10.1088/2058-7058/16/2/36.
Full textGasenzer, T. "Ultracold gases far from equilibrium." European Physical Journal Special Topics 168, no. 1 (February 2009): 89–148. http://dx.doi.org/10.1140/epjst/e2009-00960-5.
Full textChin, Cheng. "Ultracold atomic gases going strong." National Science Review 3, no. 2 (November 9, 2015): 168–70. http://dx.doi.org/10.1093/nsr/nwv073.
Full textHoward, Eric. "Physics on Ultracold quantum gases." Contemporary Physics 61, no. 1 (January 2, 2020): 63–64. http://dx.doi.org/10.1080/00107514.2020.1744731.
Full textYamashita, M. T., T. Frederico, and Lauro Tomio. "Triatomic states in ultracold gases." Nuclear Physics A 790, no. 1-4 (June 2007): 788c—791c. http://dx.doi.org/10.1016/j.nuclphysa.2007.03.027.
Full textDissertations / Theses on the topic "Ultracold gases"
Bauer, Marianne Sigrid. "Ultracold gases in low dimensions." Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708055.
Full textSavikko, M. (Mikko). "Efimov states in ultracold gases." Master's thesis, University of Oulu, 2014. http://urn.fi/URN:NBN:fi:oulu-201403111157.
Full textTrefzger, Christian. "Ultracold dipolar gases in optical lattices." Doctoral thesis, Universitat Politècnica de Catalunya, 2010. http://hdl.handle.net/10803/6596.
Full textEn 1989, M. Fisher et. al. predecían que el modelo de Bose-Hubbard homogéneo (BH) presenta la transición de fase cuántica Superfluid-Mott insulator (SF-MI). En 2002, la transición entre éstas dos fases fue observada experimentalmente por primera vez en el grupo de T. Esslinger e I. Bloch. La realización experimental de un BEC dipolar de cromo en el grupo de T. Pfau, y los progresos recientes en las técnicas de enfriamiento y atrapamiento de moléculas dipolares en los grupos de D. Jin e J. Ye, han abierto el camino hacia los gases cuánticos ultra-fríos dominados por la interacción dipolar. La evolución natural, y el reto de hoy en día por parte experimental, es de cargar BEC dipolares en retículos ópticos y estudiar los gases dipolares fuertemente correlacionados.
Antes de éste trabajo de doctorado, estudios sobre modelos de BH con interacciones extendidas a los primeros vecinos mostraron la evidencia de nuevas fases cuánticas, como el supersólido (SS) y la fase checkerboard (CB). Debido al carácter de largo alcance de la interacción dipolo-dipolo, que decae con la potencia cúbica inversa de la distancia, es necesario incluir más de un primer vecino para obtener una descripción fiel y cuantitativa de los sistemas dipolares. De hecho, al incluir más vecinos se permiten y se estabilizan aún más nuevas fases.
En esta tesis estudiamos modelos de BH con interacciones dipolares, investigando más allá del estado fundamental. Estudiamos un retículo bidimensional (2D) donde los dipolos están polarizados en dirección perpendicular al plano 2D, dando lugar a una interacción dipolar repulsiva e isotrópica. Utilizamos aproximaciones de campo-medio y un ansatz Gutzwiller, que son suficientemente correctos y adecuados para describir este sistema. Encontramos que los gases dipolares en 2D presentan una multitud de estados metaestables de tipo MI, que compiten con el estado fundamental, de modo parecido a sistemas desordenados. Estudiamos en detalle el destino de estos estados metaestables: como pueden ser preparados de manera controlada, como pueden ser detectados, cual es su tiempo de vida debido al tunnelling, y cual es su rol en los procesos de enfriamiento. Además, encontramos que el estado fundamental está caracterizado por estados MI de tipo checkerboard con coeficiente de ocupación n fraccionario (numero medio de partículas por sitio) que depende del cut-off utilizado en el radio de alcance de la interacción. Confirmamos esta predicción estudiando el mismo sistema con métodos Quantum Monte Carlo (worm algorithm). En este caso no utilizamos ningún cut-off en el radio de alcance de la interacción, y encontramos pruebas de una "Devil's staircase" en el estado fundamental, i.e. donde las fases MI aparecen en todos los n racionales del retículo subyacente. Encontramos además, regiones de los parámetros donde el estado fundamental es supersólido, obtenido drogando los sólidos con partículas o con agujeros.
En este trabajo, investigamos también como cambia la estructura precedente en 3D. Nos focalizamos en el retículo 3D más sencillo compuesto de dos planos 2D, en el cual los dipolos están polarizados perpendicularmente a los planos; la interacción dipolar es entonces repulsiva por partículas del mismo plano, mientras es atractiva por partículas en el mismo sitio de dos planos diferentes. En cambio suprimimos el tunnelling entre los planos, lo cual hace el sistema equivalente a una mezcla bosónica en un retículo 2D. Nuestros cálculos muestran que las partículas se juntan en parejas, y demostramos la existencia de la nueva fase cuántica Pair Super Solid (PSS).
Actualmente estamos estudiando un retículo 2D donde los dipolos están libres de apuntar en ambas direcciones perpendicularmente al plano, lo cual resulta en una interacción a primeros vecinos repulsiva (atractiva) por dipolos alineados (anti-alineados). Encontramos regiones de parámetros donde el estado fundamental es ferromagnético u anti-ferromagnético, y encontramos pruebas de la existencia de la fase cuántica Counterflow Super Solid (CSS).
Las nuestras predicciones tienen directas consecuencias experimentales, y esperamos que vengan pronto controladas en experimentos con gases dipolares atómicos y moleculares ultra-fríos.
This thesis is a theoretical work, in which we study the physics of ultra-cold dipolar bosonic gases in optical lattices. Such gases consist of bosonic atoms or molecules, cooled below the quantum degeneracy temperature, typically in the nK range. In such conditions, in a three-dimensional (3D) harmonic trap, weakly interacting bosons condense and form a Bose-Einstein Condensate (BEC). When a BEC is loaded into an optical lattice produced by standing waves of laser light, new kinds of physical phenomena occur.
These systems realize then Hubbard-type models and can be brought to a strongly correlated regime. In 1989, M. Fisher et. al. predicted that the homogeneous Bose-Hubbard model (BH) exhibits the Superfluid-Mott insulator (SF-MI) quantum phase transition. In 2002 the transition between these two phases were observed experimentally for the first time in the group of T. Esslinger and I. Bloch. The experimental realisation of a dipolar BEC of Chromium by the group of T. Pfau, and the recent progresses in trapping and cooling of dipolar molecules by the groups of D. Jin and J. Ye, have opened the path towards ultra-cold quantum gases with dominant dipole interactions. A natural evolution and present challenge, on the experimental side is then to load dipolar BECs into optical lattices and study strongly correlated ultracold dipolar lattice gases.
Before this PhD work, studies of BH models with interactions extended to nearest neighbours had pointed out that novel quantum phases, like supersolid (SS) and checkerboard phases (CB) are expected. Due to the long-range character of the dipole-dipole interaction, which decays as the inverse cubic power of the distance, it is necessary to include more than one nearest neighbour to have a faithful quantitative description of dipolar systems. In fact, longer-range interactions tend to allow for and stabilize more novel phases.
In this thesis we study BH models with dipolar interactions, going beyond the ground state search. We consider a two-dimensional (2D) lattice where the dipoles are polarized perpendicularly to the 2D plane, resulting in an isotropic repulsive interaction. We use the mean-field approximations and a Gutzwiller ansatz which are quite accurate and suitable to describe this system. We find that dipolar bosonic gas in 2D exhibits a multitude of insulating metastable states, often competing with the ground state, similarly as in a disordered system. We study in detail the fate of these metastable states: how can they be prepared on demand, how they can be detected, what is their lifetime due to tunnelling, and what is their role in various cooling schemes. Moreover, we find that the ground state is characterized by insulating checkerboard-like states with fractional filling factors v(average number of particles per site) that depend on the cut-off used for the interaction range. We confirm this prediction by studying the same system with Quantum Monte Carlo methods (the worm algorithm). In this case no cut-off is used, and we find evidence for a Devil's staircase in the ground state, i.e. where insulating phases appear at all rational of the underlying lattice. We also find regions of parameters where the ground state is a supersolid, obtained by doping the solids either with particles or vacancies.
In this work, we also investigate how the previous scenario changes in 3D. We focus on the simplest 3D lattice composed of two 2D layers in which the dipoles are polarized perpendicularly to the planes; the dipolar interaction is then repulsive for particles laying on the same plane, while it is attractive for particles at the same lattice site on different layers. Instead we consider inter-layer tunnelling to be suppressed, which makes the system analogous to a bosonic mixture in a 2D lattice. Our calculations show that particles pair into composites, and demonstrate the existence of the novel Pair Super Solid (PSS) quantum phase.
Currently we are studying a 2D lattice where the dipoles are free to point in both directions perpendicularly to the plane, which results in a nearest neighbour repulsive (attractive) interaction for aligned (antialigned) dipoles. We find regions of parameters where the ground state is ferromagnetic or antiferromagnetic, and find evidences for the existence of a Counterflow Super Solid (CSS) quantum phase.
Our predictions have direct experimental consequences, and we hope that they will be soon checked in experiments with ultracold dipolar atomic and molecular gases.
Punk, Matthias. "Many-particle physics with ultracold gases." kostenfrei, 2010. https://mediatum2.ub.tum.de/node?id=956951.
Full textPedri, Paolo. "Dynamical behavior of ultracold atomic gases." [S.l. : s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=975830414.
Full textPrice, Hannah. "Topological phenomena in ultracold atomic gases." Thesis, University of Cambridge, 2013. https://www.repository.cam.ac.uk/handle/1810/245059.
Full textNunnenkamp, Andreas. "Strong correlations in ultracold atomic gases." Thesis, University of Oxford, 2008. http://ora.ox.ac.uk/objects/uuid:6e09e9d3-f5cd-4580-a667-6599203162e2.
Full textDouglas, James Stewart. "Light scattering from ultracold atomic gases." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:0aa4ede3-8b6e-45d4-a112-a2d18271307c.
Full textLan, Zhihao. "Quantum simulations with ultracold quantum gases." Thesis, Heriot-Watt University, 2012. http://hdl.handle.net/10399/2581.
Full textEdge, Jonathan Martin. "Collective phenomena in ultracold Fermi gases." Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609264.
Full textBooks on the topic "Ultracold gases"
Flörchinger, Stefan. Functional Renormalization and Ultracold Quantum Gases. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14113-3.
Full textservice), SpringerLink (Online, ed. Functional Renormalization and Ultracold Quantum Gases. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2010.
Find full textEcole d'été de physique théorique (Les Houches, Haute-Savoie, France) (94th 2010). Many-body physics with ultracold gases. Oxford: Oxford University Press, 2013.
Find full textM, Dickerscheid Dennis B., Gubbels Koos B, and SpringerLink (Online service), eds. Ultracold Quantum Fields. Dordrecht: Springer Netherlands, 2008.
Find full textUlmanis, Juris. Heteronuclear Efimov Scenario in Ultracold Quantum Gases. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51862-6.
Full textMatthias, Weidemüller, and Zimmermann Claus 1958-, eds. Interactions in ultracold gases: From atoms to molecules. Weinheim: Wiley-VCH, 2003.
Find full textLam, Aden Zhen Hao. Ultracold dipolar gases of NaCs ground state molecules. [New York, N.Y.?]: [publisher not identified], 2022.
Find full textÉcole, d'été de physique théorique (Les Houches Haute-Savoie France) (91st 2009 Singapore). Ultracold gases and quantum information: École d'été de Physique des Houches in Singapore, Session XCI, 29 June-24 July 2009, École Thématique du CNRS. Oxford: Oxford University Press, 2011.
Find full textWeidemüller, Matthias, and Claus Zimmermann, eds. Interactions in Ultracold Gases. Wiley, 2003. http://dx.doi.org/10.1002/3527603417.
Full textBook chapters on the topic "Ultracold gases"
Pérez Ríos, Jesús. "Ultracold Gases." In An Introduction to Cold and Ultracold Chemistry, 37–53. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55936-6_3.
Full textStraten, Peter van der, and Harold Metcalf. "The Quest for BEC." In Interactions in Ultracold Gases, 2–63. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603417.ch1.
Full textClaussen, Neil R., Sarah T. Thompson, Elizabeth A. Donley, and Carl E. Wieman. "Atom-Molecule Coherence in 85Rb BEC." In Interactions in Ultracold Gases, 311–19. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603417.ch10.
Full textComparat, Daniel, Nicolas Vanhaecke, Christian Lisdat, and Pierre Pillet. "Formation and Trapping of Cold Molecules." In Interactions in Ultracold Gases, 320–36. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603417.ch11.
Full textMeijer, Gerard. "Deceleration and Trapping of Polar Molecules." In Interactions in Ultracold Gases, 337–47. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603417.ch12.
Full textZajfman, D., S. Krohn, M. Lange, H. Kreckel, L. Lammich, D. Strasser, D. Schwalm, X. Urbain, and A. Wolf. "Physics with Cold Molecular Ions." In Interactions in Ultracold Gases, 348–58. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603417.ch13.
Full textSauer, B. E., J. J. Hudson, M. R. Tarbutt, and E. A. Hinds. "Cold Molecules as a Laboratory for Particle Physics." In Interactions in Ultracold Gases, 359–69. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603417.ch14.
Full textMudrich, M., S. Kraft, K. Singer, A. Mosk, M. Weidemüller, Ch Binder, K. Rumpf, et al. "A. Interactions in Trapped Atomic Gases." In Interactions in Ultracold Gases, 377–406. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603417.ch15.
Full textGerbier, F., S. Richard, J. H. Thywissen, M. Hugbart, P. Bouyer, A. Aspect, I. Shvarchuck, et al. "B. Bose-Einstein Condensation and Fermi Degeneracy." In Interactions in Ultracold Gases, 407–43. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603417.ch16.
Full textDulieu, Olivier, Claude Amiot, Ricardo Gutterres, Françoise Masnou-Seeuws, N. Vanhaecke, C. Lisdat, D. Comparat, et al. "C. Cold Molecules." In Interactions in Ultracold Gases, 445–74. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603417.ch17.
Full textConference papers on the topic "Ultracold gases"
Ketterle, Wolfgang. "Superfluid ultracold fermi gases." In 2007 Quantum Electronics and Laser Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/qels.2007.4431788.
Full textErtmer, Wolfgang. "Ultracold Gases in Microgravity." In Quantum-Atom Optics Downunder. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/qao.2007.qmb1.
Full textPu, Han. "Impurities in Ultracold Fermi Gases." In Laser Science. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/ls.2013.lw1h.2.
Full textNascimbène, Sylvain, Nir Navon, Frédéric Chevy, and Christophe Salomon. "Thermodynamics of Ultracold Fermi Gases." In Latin America Optics and Photonics Conference. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/laop.2010.wb2.
Full textShlyapnikov, G. V. "Ultracold Fermi Gases: Towards BCS." In Proceedings of the XVIII International Conference on Atomic Physics. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705099_0012.
Full textKetterle, Wolfgang. "New frontiers with ultracold gases." In ATOMIC PHYSICS 19: XIX International Conference on Atomic Physics; ICAP 2004. AIP, 2005. http://dx.doi.org/10.1063/1.1928838.
Full textKohl, Michael, T. Donner, S. Ritter, T. Bourdel, A. Ottl, and T. Esslinger. "Correlations in ultracold atomic gases." In 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference. IEEE, 2007. http://dx.doi.org/10.1109/cleoe-iqec.2007.4386748.
Full textBALAKRISHNAN, N. "COLLISIONS AND REACTIONS IN ULTRACOLD GASES." In Contributions to Atomic, Molecular, and Optical Physics, Astrophysics, and Atmospheric Physics. PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO., 2009. http://dx.doi.org/10.1142/9781848164703_0024.
Full textWilkin, N. K., J. M. F. Gunn, M. I. Parke, A. Bourne, Beverly Karplus Hartline, Renee K. Horton, and Catherine M. Kaicher. "Rapidly Rotating Ultracold Bosonic Gases (abstract)." In WOMEN IN PHYSICS: Third IUPAP International Conference on Women in Physics. AIP, 2009. http://dx.doi.org/10.1063/1.3137893.
Full textVengalattore, Mukund. "Ultracold atomic gases for hybrid quantum systems." In Laser Science. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/ls.2012.ltu4i.1.
Full textReports on the topic "Ultracold gases"
Zwierlein, Martin W. Quantum Engineering of Strongly Correlated Matter with Ultracold Fermi Gases. Fort Belvoir, VA: Defense Technical Information Center, May 2013. http://dx.doi.org/10.21236/ada584527.
Full text