Journal articles on the topic 'Ultracold atoms'

To see the other types of publications on this topic, follow the link: Ultracold atoms.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Ultracold atoms.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Tran, Tien Duy, Yibo Wang, Alex Glaetzle, Shannon Whitlock, Andrei Sidorov, and Peter Hannaford. "Magnetic Lattices for Ultracold Atoms." Communications in Physics 29, no. 2 (May 14, 2019): 97. http://dx.doi.org/10.15625/0868-3166/29/2/13678.

Full text
Abstract:
This article reviews the development in our laboratory of magnetic lattices comprising periodic arrays of magnetic microtraps created by patterned magnetic films to trap periodic arrays of ultracold atoms. Recent achievements include the realisation of multiple Bose-Einstein condensates in a 10 \(\mu\)m-period one-dimensional magnetic lattice; the fabrication of sub-micron-period square and triangular magnetic lattice structures suitable for quantum tunnelling experiments; the trapping of ultracold atoms in a sub-micron-period triangular magnetic lattice; and a proposal to use long-range interacting Rydberg atoms to achieve spin-spin interactions between sites in a large-spacing magnetic lattice.
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Weiping. "Vector Quantum Field Theory of Atoms: Nonlinear Atom Optics and Bose - Einstein Condensate." Australian Journal of Physics 49, no. 4 (1996): 819. http://dx.doi.org/10.1071/ph960819.

Full text
Abstract:
The recent experimental progress in laser cooling and trapping of neutral atoms brings the atomic samples into the ultracold regime where the bosonic atoms and fermionic atoms are expected to have different dynamic behaviours in the laser fields. In this paper we systematically introduce the theoretical study of interaction of an ultracold atomic ensemble with a light wave in the frame of a vector quantum field theory. The many-body quantum correlation in the ultracold regime of atom optics is studied in terms of vector quantum field theory. A general formalism of nonlinear atom optics for a coherent atomic beam is developed.
APA, Harvard, Vancouver, ISO, and other styles
3

Xie, Rui-Hua, and Paul Brumer. "Quantum Reflection of Ultracold Atoms in Magnetic Traps." Zeitschrift für Naturforschung A 54, no. 3-4 (April 1, 1999): 167–70. http://dx.doi.org/10.1515/zna-1999-3-401.

Full text
Abstract:
Ultracold neutral atoms can be trapped in spatially inhomogeneous magnetic fields. In this paper, we present a theoretical model and demonstrate by using Landau-Zener tool that if the magnetic resonant transition region is very narrow, "potential barriers" appear and quantum reflection of such ultracold atoms can be observed in this region.
APA, Harvard, Vancouver, ISO, and other styles
4

Balykin, Viktor I. "Ultracold atoms and atomic optics." Physics-Uspekhi 54, no. 8 (August 31, 2011): 844–52. http://dx.doi.org/10.3367/ufne.0181.201108g.0875.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fortágh, József, and Claus Zimmermann. "Magnetic microtraps for ultracold atoms." Reviews of Modern Physics 79, no. 1 (February 1, 2007): 235–89. http://dx.doi.org/10.1103/revmodphys.79.235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chien, Chih-Chun, Sebastiano Peotta, and Massimiliano Di Ventra. "Quantum transport in ultracold atoms." Nature Physics 11, no. 12 (December 2015): 998–1004. http://dx.doi.org/10.1038/nphys3531.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Langen, Tim, Remi Geiger, and Jörg Schmiedmayer. "Ultracold Atoms Out of Equilibrium." Annual Review of Condensed Matter Physics 6, no. 1 (March 2015): 201–17. http://dx.doi.org/10.1146/annurev-conmatphys-031214-014548.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hensinger, W. K., H. Häffner, A. Browaeys, N. R. Heckenberg, K. Helmerson, C. McKenzie, G. J. Milburn, et al. "Dynamical tunnelling of ultracold atoms." Nature 412, no. 6842 (July 2001): 52–55. http://dx.doi.org/10.1038/35083510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Balykin, V. I. "Ultracold atoms and atomic optics." Uspekhi Fizicheskih Nauk 181, no. 8 (2011): 875. http://dx.doi.org/10.3367/ufnr.0181.201108g.0875.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Friedrich, Harald. "Quantum reflection shields ultracold atoms." Physics World 17, no. 8 (August 2004): 20–21. http://dx.doi.org/10.1088/2058-7058/17/8/30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Ball, Philip. "Tunnelling measured with ultracold atoms." Physics World 33, no. 9 (October 2020): 5. http://dx.doi.org/10.1088/2058-7058/33/9/05.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Aspect, Alain, and Massimo Inguscio. "Anderson localization of ultracold atoms." Physics Today 62, no. 8 (August 2009): 30–35. http://dx.doi.org/10.1063/1.3206092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Hannaford, P., and R. J. McLean. "Atomic absorption with ultracold atoms." Spectrochimica Acta Part B: Atomic Spectroscopy 54, no. 14 (December 1999): 2183–94. http://dx.doi.org/10.1016/s0584-8547(99)00146-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Won, Rachel. "Total control of ultracold atoms." Nature Photonics 7, no. 5 (April 29, 2013): 350. http://dx.doi.org/10.1038/nphoton.2013.106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Zwerger, W. "Itinerant Ferromagnetism with Ultracold Atoms." Science 325, no. 5947 (September 17, 2009): 1507–9. http://dx.doi.org/10.1126/science.1179767.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Amelink, A., and P. van der Straten. "Photoassociation of Ultracold Sodium Atoms." Physica Scripta 68, no. 3 (January 1, 2003): C82—C89. http://dx.doi.org/10.1238/physica.regular.068ac0082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Braaten, Eric, Masaoki Kusunoki, and Dongqing Zhang. "Scattering models for ultracold atoms." Annals of Physics 323, no. 7 (July 2008): 1770–815. http://dx.doi.org/10.1016/j.aop.2007.12.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Weiss, Peter. "Ultracold atoms: New gravity yardstick?" Science News 154, no. 6 (July 1, 2009): 87. http://dx.doi.org/10.1002/scin.5591540611.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Benini, Leonardo. "Ultracold atoms visit curved universes." Nature Physics 19, no. 1 (January 2023): 12. http://dx.doi.org/10.1038/s41567-022-01926-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Pérez-Ríos, Jesús. "A single ion immersed in an ultracold gas: from cold chemistry to impurity physics." Europhysics News 54, no. 3 (2023): 28–31. http://dx.doi.org/10.1051/epn/2023304.

Full text
Abstract:
A single ion in an ultracold gas is a versatile experimental platform to study interactions between charged and neutral particles in a controllable manner. When the gas density is large enough, a single ion can be viewed as an impurity in a sea of ultracold atoms or molecules. On the other hand, that single ion can also undergo a chemical reaction with atoms or molecules in the gas. This article discusses the dynamics of a charged impurity in an ultracold bath and the interplay between cold chemistry and impurity physics.
APA, Harvard, Vancouver, ISO, and other styles
21

Dufour, G., D. B. Cassidy, P. Crivelli, P. Debu, A. Lambrecht, V. V. Nesvizhevsky, S. Reynaud, A. Yu Voronin, and T. E. Wall. "Prospects for Studies of the Free Fall and Gravitational Quantum States of Antimatter." Advances in High Energy Physics 2015 (2015): 1–16. http://dx.doi.org/10.1155/2015/379642.

Full text
Abstract:
Different experiments are ongoing to measure the effect of gravity on cold neutral antimatter atoms such as positronium, muonium, and antihydrogen. Among those, the project GBAR at CERN aims to measure precisely the gravitational fall of ultracold antihydrogen atoms. In the ultracold regime, the interaction of antihydrogen atoms with a surface is governed by the phenomenon of quantum reflection which results in bouncing of antihydrogen atoms on matter surfaces. This allows the application of a filtering scheme to increase the precision of the free fall measurement. In the ultimate limit of smallest vertical velocities, antihydrogen atoms are settled in gravitational quantum states in close analogy to ultracold neutrons (UCNs). Positronium is another neutral system involving antimatter for which free fall under gravity is currently being investigated at UCL. Building on the experimental techniques under development for the free fall measurement, gravitational quantum states could also be observed in positronium. In this contribution, we report on the status of the ongoing experiments and discuss the prospects of observing gravitational quantum states of antimatter and their implications.
APA, Harvard, Vancouver, ISO, and other styles
22

Yang, Fan, and Hui Zhai. "Quantized Nonlinear Transport with Ultracold Atoms." Quantum 6 (November 10, 2022): 857. http://dx.doi.org/10.22331/q-2022-11-10-857.

Full text
Abstract:
In this letter, we propose how to measure the quantized nonlinear transport using two-dimensional ultracold atomic Fermi gases in a harmonic trap. This scheme requires successively applying two optical pulses in the left and lower half-planes and then measuring the number of extra atoms in the first quadrant. In ideal situations, this nonlinear density response to two successive pulses is quantized, and the quantization value probes the Euler characteristic of the local Fermi sea at the trap center. We investigate the practical effects in experiments, including finite pulse duration, finite edge width of pulses, and finite temperature, which can lead to deviation from quantization. We propose a method to reduce the deviation by averaging measurements performed at the first and third quadrants, inspired by symmetry considerations. With this method, the quantized nonlinear response can be observed reasonably well with experimental conditions readily achieved with ultracold atoms.
APA, Harvard, Vancouver, ISO, and other styles
23

Ming, H., and W. A. van Wijngaarden. "Transfer of ultracold 87Rb from a QUIC magnetic trap into a far off resonance optical trap." Canadian Journal of Physics 85, no. 3 (March 1, 2007): 247–58. http://dx.doi.org/10.1139/p07-046.

Full text
Abstract:
Ultracold 87Rb atoms were transferred from a QUIC (quadrupole and Ioffe configuration) magnetic trap into a far off resonance optical trap (FORT). FORTs were created by focusing a 150 mW laser beam having a wavelength of 852 nm to a spot having a radius of 20 and 30 µm. A probe laser then passed through the ultracold atom cloud after the magnetic trap was turned off to study the temporal evolution of the optically trapped atoms. Nearly 106 atoms could be transferred into the FORT at temperatures as low as 1 µK with an efficiency as high as 50%. PACS No.: 32.80.Pj
APA, Harvard, Vancouver, ISO, and other styles
24

Meng, Q. T. "The photoassociation reaction of ultracold atoms." Journal of Atomic and Molecular Sciences 6, no. 4 (June 2015): 234–42. http://dx.doi.org/10.4208/jams.091215.101815a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Du, Jianying, Tong Fu, Jingyi Chen, Shanhe Su, and Jincan Chen. "Self-reliant cooling of ultracold atoms." Physica A: Statistical Mechanics and its Applications 586 (January 2022): 126475. http://dx.doi.org/10.1016/j.physa.2021.126475.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Du, Jianying, Tong Fu, Jingyi Chen, Shanhe Su, and Jincan Chen. "Self-reliant cooling of ultracold atoms." Physica A: Statistical Mechanics and its Applications 586 (January 2022): 126475. http://dx.doi.org/10.1016/j.physa.2021.126475.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Saßmannshausen, Heiner, Johannes Deiglmayr, and Frédéric Merkt. "Exotic Chemistry with Ultracold Rydberg Atoms." CHIMIA International Journal for Chemistry 70, no. 4 (April 27, 2016): 263–67. http://dx.doi.org/10.2533/chimia.2016.263.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Franke-Arnold, S., J. Leach, M. J. Padgett, V. E. Lembessis, D. Ellinas, A. J. Wright, J. M. Girkin, P. Öhberg, and A. S. Arnold. "Optical ferris wheel for ultracold atoms." Optics Express 15, no. 14 (June 26, 2007): 8619. http://dx.doi.org/10.1364/oe.15.008619.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Pershin, D. A., V. V. Tsyganok, V. V. Yaroshenko, V. A. Khlebnikov, E. T. Davletov, E. L. Svechnikov, V. N. Sorokin, P. V. Kapitanova, and A. V. Akimov. "Microwave Spectroscopy of Ultracold Thulium Atoms." Bulletin of the Lebedev Physics Institute 45, no. 12 (December 2018): 377–80. http://dx.doi.org/10.3103/s1068335618120023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

McGuirk, J. M., G. T. Foster, J. B. Fixler, and M. A. Kasevich. "Low-noise detection of ultracold atoms." Optics Letters 26, no. 6 (March 15, 2001): 364. http://dx.doi.org/10.1364/ol.26.000364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Bharucha, C. F., J. C. Robinson, F. L. Moore, Bala Sundaram, Qian Niu, and M. G. Raizen. "Dynamical localization of ultracold sodium atoms." Physical Review E 60, no. 4 (October 1, 1999): 3881–95. http://dx.doi.org/10.1103/physreve.60.3881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Galitski, Victor, Gediminas Juzeliūnas, and Ian B. Spielman. "Artificial gauge fields with ultracold atoms." Physics Today 72, no. 1 (January 2019): 38–44. http://dx.doi.org/10.1063/pt.3.4111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Campbell, Gretchen K., and William D. Phillips. "Ultracold atoms and precise time standards." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, no. 1953 (October 28, 2011): 4078–89. http://dx.doi.org/10.1098/rsta.2011.0229.

Full text
Abstract:
Experimental techniques of laser cooling and trapping, along with other cooling techniques, have produced gaseous samples of atoms so cold that they are, for many practical purposes, in the quantum ground state of their centre-of-mass motion. Such low velocities have virtually eliminated effects such as Doppler shifts, relativistic time dilation and observation-time broadening that previously limited the performance of atomic frequency standards. Today, the best laser-cooled, caesium atomic fountain, microwave frequency standards realize the International System of Units (SI) definition of the second to a relative accuracy of ≈3×10 −16 . Optical frequency standards, which do not realize the SI second, have even better performance: cold neutral atoms trapped in optical lattices now yield relative systematic uncertainties of ≈1×10 −16 , whereas cold-trapped ions have systematic uncertainties of 9×10 −18 . We will discuss the current limitations in the performance of neutral atom atomic frequency standards and prospects for the future.
APA, Harvard, Vancouver, ISO, and other styles
34

Rey, Ana Maria. "Synthetic gauge fields for ultracold atoms." National Science Review 3, no. 2 (September 30, 2015): 166–67. http://dx.doi.org/10.1093/nsr/nwv053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Weld, David M., and Wolfgang Ketterle. "Towards quantum magnetism with ultracold atoms." Journal of Physics: Conference Series 264 (January 10, 2011): 012017. http://dx.doi.org/10.1088/1742-6596/264/1/012017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Miller, J. D., R. A. Cline, and D. J. Heinzen. "Photoassociation spectrum of ultracold Rb atoms." Physical Review Letters 71, no. 14 (October 4, 1993): 2204–7. http://dx.doi.org/10.1103/physrevlett.71.2204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Benatti, F., and R. Floreanini. "Ultracold Atoms and Quantum Measurement Processes." Advanced Science Letters 2, no. 4 (December 1, 2009): 506–10. http://dx.doi.org/10.1166/asl.2009.1056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Tsyganok, V. V., D. A. Pershin, V. A. Khlebnikov, E. T. Davletov, and A. V. Akimov. "Zeeman Spectroscopy of Ultracold Thulium Atoms." Journal of Experimental and Theoretical Physics 128, no. 2 (February 2019): 199–206. http://dx.doi.org/10.1134/s1063776119010059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Woestenenk, G., H. C. Mastwijk, J. W. Thomsen, P. van der Straten, M. Pieksma, M. van Rijnbach, and A. Niehaus. "Collisions between ultracold metastable He atoms." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 154, no. 1-4 (June 1999): 194–203. http://dx.doi.org/10.1016/s0168-583x(99)00190-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Cohen-Tannoudji, Claude. "Ultracold atoms — Methods, problems and perspectives." Physica A: Statistical Mechanics and its Applications 263, no. 1-4 (February 1999): 3. http://dx.doi.org/10.1016/s0378-4371(98)00492-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Diehl, S., and C. Wetterich. "Functional integral for ultracold fermionic atoms." Nuclear Physics B 770, no. 3 (May 2007): 206–72. http://dx.doi.org/10.1016/j.nuclphysb.2007.02.026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Hunger, D., S. Camerer, M. Korppi, A. Jöckel, T. W. Hänsch, and P. Treutlein. "Coupling ultracold atoms to mechanical oscillators." Comptes Rendus Physique 12, no. 9-10 (December 2011): 871–87. http://dx.doi.org/10.1016/j.crhy.2011.04.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Salasnich, Luca, and Flavio Toigo. "Zero-point energy of ultracold atoms." Physics Reports 640 (June 2016): 1–29. http://dx.doi.org/10.1016/j.physrep.2016.06.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Stehle, Christian, Helmar Bender, Claus Zimmermann, Dieter Kern, Monika Fleischer, and Sebastian Slama. "Plasmonically tailored micropotentials for ultracold atoms." Nature Photonics 5, no. 8 (July 24, 2011): 494–98. http://dx.doi.org/10.1038/nphoton.2011.159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Wang, Kaige, and Shiyao Zhu. "Storage states in ultracold collective atoms." European Physical Journal D 20, no. 2 (August 2002): 281–92. http://dx.doi.org/10.1140/epjd/e2002-00131-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Seidel, D., and J. G. Muga. "Ramsey interferometry with guided ultracold atoms." European Physical Journal D 41, no. 1 (September 13, 2006): 71–75. http://dx.doi.org/10.1140/epjd/e2006-00205-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Jian, Bin, and William Arie van Wijngaarden. "Double-loop microtrap for ultracold atoms." Journal of the Optical Society of America B 30, no. 2 (January 3, 2013): 238. http://dx.doi.org/10.1364/josab.30.000238.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Rakonjac, A., A. B. Deb, S. Hoinka, D. Hudson, B. J. Sawyer, and N. Kjærgaard. "Laser based accelerator for ultracold atoms." Optics Letters 37, no. 6 (March 14, 2012): 1085. http://dx.doi.org/10.1364/ol.37.001085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Kasper, V., F. Hebenstreit, M. K. Oberthaler, and J. Berges. "Schwinger pair production with ultracold atoms." Physics Letters B 760 (September 2016): 742–46. http://dx.doi.org/10.1016/j.physletb.2016.07.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Xie, T., A. Orbán, X. Xing, E. Luc-Koenig, R. Vexiau, O. Dulieu, and N. Bouloufa-Maafa. "Engineering long-range interactions between ultracold atoms with light." Journal of Physics B: Atomic, Molecular and Optical Physics 55, no. 3 (February 2, 2022): 034001. http://dx.doi.org/10.1088/1361-6455/ac4b40.

Full text
Abstract:
Abstract Ultracold temperatures in dilute quantum gases opened the way to an exquisite control of matter at the quantum level. Here we focus on the control of ultracold atomic collisions using a laser to engineer their interactions at large interatomic distances. We show that the entrance channel of two colliding ultracold atoms can be coupled to a repulsive collisional channel by the laser light so that the overall interaction between the two atoms becomes repulsive: this prevents them to come close together and to undergo inelastic processes, thus protecting the atomic gases from unwanted losses. We illustrate such an optical shielding (OS) mechanism with 39K and 133Cs atoms colliding at ultracold temperature (<1 μK). The process is described in the framework of the dressed-state picture and we then solve the resulting stationary coupled Schrödinger equations. The role of spontaneous emission and photoinduced inelastic scattering is also investigated as possible limitations of the shielding efficiency. We predict an almost complete suppression of inelastic collisions over a broad range of Rabi frequencies and detunings from the 39K D2 line of the OS laser, both within the [0, 200 MHz] interval. We found that the polarization of the shielding laser has a minor influence on this efficiency. This proposal could easily be formulated for other bialkali-metal pairs as their long-range interaction are all very similar to each other.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography