Academic literature on the topic 'Ultra-thin Epitaxial Films'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ultra-thin Epitaxial Films.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ultra-thin Epitaxial Films"
Badoz, P. A., A. Briggs, E. Rosencher, and F. Arnaud d'Avitaya. "Superconductivity in ultra-thin CoSi2 epitaxial films." Journal de Physique Lettres 46, no. 20 (1985): 979–83. http://dx.doi.org/10.1051/jphyslet:019850046020097900.
Full textOrna, Julia, Luis Morellón, Pedro Algarabel, José M. De Teresa, Amalio Fernández-Pacheco, Gala Simón, Cesar Magen, José A. Pardo, and M. Ricardo Ibarra. "Fe3O4 Epitaxial Thin Films and Heterostructures: Magnetotransport and Magnetic Properties." Advances in Science and Technology 67 (October 2010): 82–91. http://dx.doi.org/10.4028/www.scientific.net/ast.67.82.
Full textMeyers, D., E. J. Moon, M. Kareev, I. C. Tung, B. A. Gray, Jian Liu, M. J. Bedzyk, J. W. Freeland, and J. Chakhalian. "Epitaxial stabilization of ultra-thin films of EuNiO3." Journal of Physics D: Applied Physics 46, no. 38 (September 4, 2013): 385303. http://dx.doi.org/10.1088/0022-3727/46/38/385303.
Full textBoni, G. A., L. Hrib, S. B. Porter, G. Atcheson, I. Pintilie, K. Rode, and L. Pintilie. "Electrical properties of NiFe2O4 epitaxial ultra-thin films." Journal of Materials Science 52, no. 2 (September 15, 2016): 793–803. http://dx.doi.org/10.1007/s10853-016-0376-8.
Full textShen, H., M. Wraback, J. Pamulapati, S. Liang, C. Gorla, and Y. Lu. "Properties of Epitaxial Zno Thin Films for Gan and Related Applications." MRS Internet Journal of Nitride Semiconductor Research 4, S1 (1999): 339–43. http://dx.doi.org/10.1557/s1092578300002696.
Full textZheng, Xin Yu, Lauren J. Riddiford, Jacob J. Wisser, Satoru Emori, and Yuri Suzuki. "Ultra-low magnetic damping in epitaxial Li0.5Fe2.5O4 thin films." Applied Physics Letters 117, no. 9 (August 31, 2020): 092407. http://dx.doi.org/10.1063/5.0023077.
Full textDe Luca, G. M., D. Preziosi, F. Chiarella, R. Di Capua, S. Gariglio, S. Lettieri, and M. Salluzzo. "Ferromagnetism and ferroelectricity in epitaxial BiMnO3 ultra-thin films." Applied Physics Letters 103, no. 6 (August 5, 2013): 062902. http://dx.doi.org/10.1063/1.4818136.
Full textSegmüller, Armin. "Characterization of Epitaxial Films by X-Ray Diffraction." Advances in X-ray Analysis 29 (1985): 353–66. http://dx.doi.org/10.1154/s0376030800010454.
Full textZhang, Haimin, Dezhi Song, Fuyang Huang, Jun Zhang, and Ye-Ping Jiang. "Critical behavior in the epitaxial growth of two-dimensional tellurium films on SrTiO3 (001) substrates." Chinese Physics B 32, no. 6 (May 1, 2023): 066802. http://dx.doi.org/10.1088/1674-1056/acc80d9.
Full textLenshin, Aleksandr, Pavel Seredin, Dmitry Goloshchapov, Ali O. Radam, and Andrey Mizerov. "MicroRaman Study of Nanostructured Ultra-Thin AlGaN/GaN Thin Films Grown on Hybrid Compliant SiC/Por-Si Substrates." Coatings 12, no. 5 (May 3, 2022): 626. http://dx.doi.org/10.3390/coatings12050626.
Full textDissertations / Theses on the topic "Ultra-thin Epitaxial Films"
Marshall, Amanda. "Growth simulation in ultra-thin non-epitaxial films." Thesis, University of Reading, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317965.
Full textArnott, Michael. "Studies of ultra-thin epitaxial Fe/Cu(100) films." Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386336.
Full textHu, Xiao. "Ultra-thin oxide films." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:d7373376-84f1-459e-bffb-f16ce43f02b7.
Full textCao, Yuan. "Thin Cr2O3 (0001) Films and Co (0001) Films Fabrication for Spintronics." Thesis, University of North Texas, 2015. https://digital.library.unt.edu/ark:/67531/metadc822733/.
Full textAmiri-Hezaveh, A. "Photelectron spectroscopy of ultra-thin epitaxial f.c.c. magnetic films of iron and cobalt." Thesis, University of Cambridge, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.233668.
Full textConstantino, Jennifer Anne [Verfasser], and Laurens W. [Gutachter] Molenkamp. "Characterization of Novel Magnetic Materials: Ultra-Thin (Ga,Mn)As and Epitaxial-Growth MnSi Thin Films / Jennifer Anne Constantino. Gutachter: Laurens W. Molenkamp." Würzburg : Universität Würzburg, 2013. http://d-nb.info/1102822884/34.
Full textXing, Guoqiang. "Surface magnetic order of ultra thin epitaxial vanadium films on silver." Thesis, 1988. http://hdl.handle.net/1911/13331.
Full textConstantino, Jennifer Anne. "Characterization of Novel Magnetic Materials: Ultra-Thin (Ga,Mn)As and Epitaxial-Growth MnSi Thin Films." Doctoral thesis, 2013. https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-90578.
Full textUm einerseits ein fundamentales Verständnis magnetischer Wechselwirkungen zu erhalten und andererseits neue Effekte für zukünftige Anwendungen zu finden, ist es entscheidend, magnetische Phasen spintronischer Materialien zu untersuchen. In dieser Arbeit fokussieren wir uns auf grundlegende elektrische und magnetische Transporteigenschaften zweier Materialsysteme. Das sind zum Ersten ultradünne (Ga,Mn)As Filme mit parabolischen Dotierprofilen, und zum Zweiten epitaktisch gewachsene Dünnschichten aus MnSi, einem helimagnetischen Metal, dessen Entwicklung seit Kurzem in unserer Gruppe vorangetrieben wird
Hsieh, Hsun, and 謝旬. "Fabrication and Superconductivity of Epitaxial Ultra-thin δ-NbN Films on 3C-SiC/Si Substrate." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/3g7z2u.
Full text國立臺灣大學
天文物理研究所
106
Niobium nitride compounds have rich physical properties due to their complexities in stoichiometry and structures. Among these NbxNy compounds, some of them show superconductivity. The δ-NbN phase, with a cubic crystalline symmetry, has a high superconducting transition temperature (TC), up to 17 K. Ultra-thin superconducting δ-NbN film has been widely applied on ultrasensitive devices due to its prominent physical properties, such as having a high superconducting transition temperature, a short intrinsic electron-phonon interaction time, and a high superconducting critical current density. Especially, hot-electron-bolometer (HEB) mixers using -NbN ultra-thin film demonstrate excellent performance on terahertz detection and are used on several astronomical telescopes. In my thesis study, I focused on the fabrication of high quality ultra-thin superconducting -NbN films and characterize their physical properties with the help of Dr. Hsiao-Wen Chang and other members in Dr. Ming-Jye Wang’s research group. We have realized the epitaxial growth of ultra-thin δ-NbN films on (100)-oriented 3C-SiC/Si substrates at temperature around 760°C by DC reactive magnetron sputtering. The deposition rate is about 0.05 nm/s. The δ-NbN films show superconductivity even with a thickness of 2.14 ± 0.03 nm (∼ 5 unit cells). The high-resolution transmission electron microscope images of films confirm excellent epitaxy and are used for estimating films’ thickness and lattice constant. We have investigated the magnetotransport properties of ultra-thin NbN films with the thickness ranging from 2.14 ± 0.03 nm to 4.95 ± 0.03 nm under external magnetic field up to 9 Tesla. From the measured Hall resistances, the carrier concentration, n, of film can be calculated, for example n ~ (4.13 ± 0.04) × 1028 m-3 for 3.84 ± 0.02 nm film. Generally, the TC of film decreases as the film thickness is reduced. The degradation of TC can be explained by the scaling law which describes the competition between disorder and superconductivity. Surprisingly, some distinct oscillations of both TC and ρ20K as a function of film thickness are observed with a period near 0.5 nm, where ρ20K is the resistivity of film at 20 K. The transition temperature of NbN film is suppressed under external magnetic field. The upper critical field at zero temperature, μ0HC2(0), was estimated by using the empirical equation of μ0HC2(T) = μ0HC2(0)(1-t2)/(1+t2), where t = T/TC(μ0H = 0). For example, the μ0HC2(0) of 2.14 ± 0.03 nm film is 8.13 ± 0.16 Tesla. Similar to TC and ρ20K, the μ0HC2(0) of film is also oscillating in thickness. The oscillation of TC, ρ20K, and μ0HC2(0) might be explained by the quantum size effect which was used to explain the oscillation of TC in thickness in other superconducting ultra-thin films.
"Epitaxial growth of La-Ca-Mn-O thin films with ultra-sharp metal-insulator transition =: 外延生長金屬--絶緣轉變非常明顯的La-Ca-Mn-薄膜." 1999. http://library.cuhk.edu.hk/record=b5890066.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 1999.
Includes bibliographical references.
Text in English; abstracts in English and Chinese.
by Leung Chi Hung.
Acknowledgments --- p.i
Abstract --- p.ii-iii
Table of Contents --- p.iv-v
Figures Caption --- p.vi-xii
Tables Caption --- p.xiii
Chapter 1. --- Introduction
Chapter 1.1 --- "Magnetoresistance (MR),Giant Magnetoresistance (GMR),Colossal Magnetoresistance (CMR) and Their Applications" --- p.1-1
Chapter 1.2 --- Colossalmagnetoresistance Effect in LCMO --- p.1-5
Chapter 1.3 --- Significance of Ultra-Sharp Metal-Semiconductor Transition LCMO Thin Film --- p.1-12
Chapter 1.4 --- The Use of Silver in the YBCO --- p.1-14
Chapter 1.5 --- Previews --- p.1-15
Chapter 1.6 --- References --- p.1-17
Chapter 2. --- Epitixial Growth of Single-Crystal LCMO Thin Film by FTS method
Chapter 2.1 --- Facing-Target Sputtering Method --- p.2-1
Chapter 2.2 --- Fabrication of LCMO Targets --- p.2-4
Chapter 2.3 --- Deposition of the LCMO Thin Film
Chapter 2.3.1 --- Deposition Condition --- p.2-6
Chapter 2.3.2 --- Deposition Process --- p.2-9
Chapter 2.4 --- X-ray Diffraction Studies and Surface Morphology --- p.2-11
Chapter 2.5 --- M-S Transition of LCMO Thm Film --- p.2-15
Chapter 2.6 --- Discussions --- p.2-19
Chapter 3. --- The Role of Silver in LCMO
Chapter 3.1 --- Reaction between Ag and LCMO --- p.3-1
Chapter 3.2 --- Grain Size and Transition Temperature in Bulk LCMO --- p.3-9
Chapter 3.3 --- Improving the Sharpness of Metal - Semiconductor Transition and Crystallinity of LCMO Film --- p.3-15
Chapter 3.4 --- Stabilization of the LCMO Structure --- p.3-21
Chapter 3.5 --- Discussions --- p.3-25
Chapter 4 --- Epitaxial Growth of the Ultra-Sharp Metal-Semiconductor Transition LCMO Thin Film
Chapter 4.1 --- Synthesis Process of the Ultra-Sharp Metal-Semiconductor Transition LCMO Thin Films --- p.4-1
Chapter 4.2 --- Resistivity and Magnetoresistance --- p.4-6
Chapter 4.3 --- Thermal Annealing Effects
Chapter 4.3.1 --- Oxygen Annealing Effect --- p.4-15
Chapter 4.3.1 --- High Pressure Annealing Effect --- p.4-20
Chapter 4.3.2 --- Vacuum Annealing Effect --- p.4-23
Chapter 4.4 --- Surface Morphology and Characterization --- p.4-27
Chapter 4.5 --- Discussions --- p.4-37
Book chapters on the topic "Ultra-thin Epitaxial Films"
Schuster, Isabelle, Alain Marty, Bruno Gilles, and Gregory Abadias. "Structure and Ordering Process in Epitaxial Ultra-Thin Films of Metallic Alloys: In-Situ Temperature X-ray Diffraction of AuNi Layers." In Interface Controlled Materials, 1–10. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/352760622x.ch1.
Full textConference papers on the topic "Ultra-thin Epitaxial Films"
Clemens, B. M., J. A. Bain, B. M. Lairson, B. J. Daniels, A. P. Payne, N. M. Rensing, and S. Brennan. "In-Situ Structural Characterization of Ultra-Thin Epitaxial Metal Films and Multilayers Observed with Grazing Incidence X-Ray Scattering." In Physics of X-Ray Multilayer Structures. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/pxrayms.1994.wc.1.
Full textIshibashi, Tadashi, Shin'ichiro Tamura, Jun'etsu Seto, Masahiko Hara, Hiroyuki Sasabe, and Wolfgang Knoll. "In situ RHEED observation of MBE growth of organic thin films." In Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/otfa.1995.md.19.
Full textIgnatiev, A. "Proposed epitaxial thin film growth in the ultra-vacuum of space." In VACUUM MECHATRONICS, FIRST INTERNATIONAL WORKSHOP. AIP, 1989. http://dx.doi.org/10.1063/1.38715.
Full textSneh, Ofer, Michael L. Wise, and Steven M. George. "Atomic Layer Growth of SiO2 on Si(100) using SiCl4 and H2O in a Binary Reaction Sequence." In Microphysics of Surfaces: Nanoscale Processing. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/msnp.1995.mfb4.
Full textPrzybylski, M., M. Nyvlt, Y. Shi, L. Yan, J. Zukrowski, J. Barthel, and J. Kirschner. "Magnetism and magneto-optical response from ultra-thin Co films epitaxially grown on Pd substrates." In INTERMAG Asia 2005: Digest of the IEEE International Magnetics Conference. IEEE, 2005. http://dx.doi.org/10.1109/intmag.2005.1463461.
Full textReports on the topic "Ultra-thin Epitaxial Films"
Morton, S., J. Tobin, M. Spangenberg, J. Neal, T. Shen, G. Waddill, J. Matthew, et al. Magnetic properties of ultra thin epitaxial Fe films on GaAs(001). Office of Scientific and Technical Information (OSTI), October 2003. http://dx.doi.org/10.2172/15009722.
Full text