Journal articles on the topic 'Ultra-reliable'

To see the other types of publications on this topic, follow the link: Ultra-reliable.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Ultra-reliable.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Jones, Harry. "Ultra Reliable Space Life Support Systems." SAE International Journal of Aerospace 1, no. 1 (June 29, 2008): 482–98. http://dx.doi.org/10.4271/2008-01-2160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Husain, Syed S., Andreas Kunz, Athul Prasad, Emmanouil Pateromichelakis, and Konstantinos Samdanis. "Ultra-High Reliable 5G V2X Communications." IEEE Communications Standards Magazine 3, no. 2 (June 2019): 46–52. http://dx.doi.org/10.1109/mcomstd.2019.1900008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Daniel Sheu, D. "An ultra-reliable board identification system." Journal of Manufacturing Systems 15, no. 2 (January 1996): 84–94. http://dx.doi.org/10.1016/0278-6125(96)82334-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Park, Jihong, Sumudu Samarakoon, Hamid Shiri, Mohamed K. Abdel-Aziz, Takayuki Nishio, Anis Elgabli, and Mehdi Bennis. "Extreme ultra-reliable and low-latency communication." Nature Electronics 5, no. 3 (March 2022): 133–41. http://dx.doi.org/10.1038/s41928-022-00728-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Soldani, David, Y. Jay Guo, Bernard Barani, Preben Mogensen, Chih-Lin I, and Sajal K. Das. "5G for Ultra-Reliable Low-Latency Communications." IEEE Network 32, no. 2 (March 2018): 6–7. http://dx.doi.org/10.1109/mnet.2018.8329617.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zemen, Thomas. "Wireless 5G ultra reliable low latency communications." e & i Elektrotechnik und Informationstechnik 135, no. 7 (October 2, 2018): 445–48. http://dx.doi.org/10.1007/s00502-018-0645-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lezzar, Mohamed Yacine, and Mustafa Mehmet-Ali. "Optimization of ultra-reliable low-latency communication systems." Computer Networks 197 (October 2021): 108332. http://dx.doi.org/10.1016/j.comnet.2021.108332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Eggers, Patrick C. F., Marko Angjelichinoski, and Petar Popovski. "Wireless Channel Modeling Perspectives for Ultra-Reliable Communications." IEEE Transactions on Wireless Communications 18, no. 4 (April 2019): 2229–43. http://dx.doi.org/10.1109/twc.2019.2901788.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Elbamby, Mohammed S., Cristina Perfecto, Mehdi Bennis, and Klaus Doppler. "Toward Low-Latency and Ultra-Reliable Virtual Reality." IEEE Network 32, no. 2 (March 2018): 78–84. http://dx.doi.org/10.1109/mnet.2018.1700268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nielsen, Jimmy Jessen, Rongkuan Liu, and Petar Popovski. "Ultra-Reliable Low Latency Communication Using Interface Diversity." IEEE Transactions on Communications 66, no. 3 (March 2018): 1322–34. http://dx.doi.org/10.1109/tcomm.2017.2771478.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Wang, Hanqing, Wan-Ting Shih, Chao-Kai Wen, and Shi Jin. "Reliable OFDM Receiver With Ultra-Low Resolution ADC." IEEE Transactions on Communications 67, no. 5 (May 2019): 3566–79. http://dx.doi.org/10.1109/tcomm.2019.2894629.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Hagge, J. K. "Ultra-reliable packaging for silicon-on-silicon WSI." IEEE Transactions on Components, Hybrids, and Manufacturing Technology 12, no. 2 (June 1989): 170–79. http://dx.doi.org/10.1109/33.31421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Bottosso, Claudia, Wenjun Tao, Xiuxiang Wang, Li Ma, and Marco Galiazzo. "Reliable Metallization Process for Ultra Fine Line Printing." Energy Procedia 43 (2013): 80–85. http://dx.doi.org/10.1016/j.egypro.2013.11.091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Hammett, R. C. "Ultra-reliable real-time control systems-future trends." IEEE Aerospace and Electronic Systems Magazine 14, no. 8 (1999): 31–36. http://dx.doi.org/10.1109/62.784047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Wang, Dan, Aravindkumar Rajendiran, Sundaram Ananthanarayanan, Hiren Patel, Mahesh V. Tripunitara, and Siddharth Garg. "Reliable Computing with Ultra-Reduced Instruction Set Coprocessors." IEEE Micro 34, no. 6 (November 2014): 86–94. http://dx.doi.org/10.1109/mm.2013.130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Rayapati, Venkatapathi Naidu, and Dinkar Mukedkhar. "Ultra high reliable spacecraft computer system design considerations." Microelectronics Reliability 32, no. 1-2 (January 1992): 133–42. http://dx.doi.org/10.1016/0026-2714(92)90093-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Shariatmadari, Hamidreza, Ruifeng Duan, Sassan Iraji, Zexian Li, Mikko A. Uusitalo, and Riku Jäntti. "Resource Allocations for Ultra-Reliable Low-Latency Communications." International Journal of Wireless Information Networks 24, no. 3 (May 29, 2017): 317–27. http://dx.doi.org/10.1007/s10776-017-0360-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Boyd, Christopher, Roope Vehkalahti, and Olav Tirkkonen. "Interference Cancelling Codes for Ultra-Reliable Random Access." International Journal of Wireless Information Networks 25, no. 4 (July 18, 2018): 422–33. http://dx.doi.org/10.1007/s10776-018-0411-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Jha, Mayuri, Rahul Gogna, Gurjot Singh Gaba, and Rajan Miglani. "An Ultra Wideband, Novel and Reliable RF MEMS Switch." Transactions on Electrical and Electronic Materials 17, no. 4 (August 25, 2016): 183–88. http://dx.doi.org/10.4313/teem.2016.17.4.183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Hu, Yulin, M. Cenk Gursoy, and Anke Schmeink. "Relaying-Enabled Ultra-Reliable Low-Latency Communications in 5G." IEEE Network 32, no. 2 (March 2018): 62–68. http://dx.doi.org/10.1109/mnet.2018.1700252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Azari, Mohammad Mahdi, Fernando Rosas, Kwang-Cheng Chen, and Sofie Pollin. "Ultra Reliable UAV Communication Using Altitude and Cooperation Diversity." IEEE Transactions on Communications 66, no. 1 (January 2018): 330–44. http://dx.doi.org/10.1109/tcomm.2017.2746105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Popovski, Petar, Cedomir Stefanovic, Jimmy J. Nielsen, Elisabeth de Carvalho, Marko Angjelichinoski, Kasper F. Trillingsgaard, and Alexandru-Sabin Bana. "Wireless Access in Ultra-Reliable Low-Latency Communication (URLLC)." IEEE Transactions on Communications 67, no. 8 (August 2019): 5783–801. http://dx.doi.org/10.1109/tcomm.2019.2914652.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Ge, Xiaohu. "Ultra-Reliable Low-Latency Communications in Autonomous Vehicular Networks." IEEE Transactions on Vehicular Technology 68, no. 5 (May 2019): 5005–16. http://dx.doi.org/10.1109/tvt.2019.2903793.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Xiao, Chiyang, Jie Zeng, Wei Ni, Xin Su, Ren Ping Liu, Tiejun Lv, and Jing Wang. "Downlink MIMO-NOMA for Ultra-Reliable Low-Latency Communications." IEEE Journal on Selected Areas in Communications 37, no. 4 (April 2019): 780–94. http://dx.doi.org/10.1109/jsac.2019.2898785.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Ohmi, Kazuyuki, Toshiyuki Iwamoto, Tatuhiro Yabune, Toshiki Miyake, and Tadahiro Ohmi. "Formation Process of Highly Reliable Ultra-Thin Gate Oxide." Japanese Journal of Applied Physics 35, Part 1, No. 2B (February 28, 1996): 1531–34. http://dx.doi.org/10.1143/jjap.35.1531.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Lyubinetsky, IV, PV Mel'nik, NG Nakhodkin, and AE Anisimov. "A reliable compact ultra-high vacuum scanning tunneling microscope." Vacuum 46, no. 3 (March 1995): 219–22. http://dx.doi.org/10.1016/0042-207x(94)00047-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Gomes, André, Jacek Kibiłda, Nicola Marchetti, and Luiz A. DaSilva. "Dimensioning Spectrum to Support Ultra-Reliable Low-Latency Communication." IEEE Communications Standards Magazine 7, no. 1 (March 2023): 88–93. http://dx.doi.org/10.1109/mcomstd.0004.2100107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Osama, Mohamed, Abdelhamied A. Ateya, Shaimaa Ahmed Elsaid, and Ammar Muthanna. "Ultra-Reliable Low-Latency Communications: Unmanned Aerial Vehicles Assisted Systems." Information 13, no. 9 (September 12, 2022): 430. http://dx.doi.org/10.3390/info13090430.

Full text
Abstract:
Ultra-reliable low-latency communication (uRLLC) is a group of fifth-generation and sixth-generation (5G/6G) cellular applications with special requirements regarding latency, reliability, and availability. Most of the announced 5G/6G applications are uRLLC that require an end-to-end latency of milliseconds and ultra-high reliability of communicated data. Such systems face many challenges since traditional networks cannot meet such requirements. Thus, novel network structures and technologies have been introduced to enable such systems. Since uRLLC is a promising paradigm that covers many applications, this work considers reviewing the current state of the art of the uRLLC. This includes the main applications, specifications, and main requirements of ultra-reliable low-latency (uRLL) applications. The design challenges of uRLLC systems are discussed, and promising solutions are introduced. The virtual and augmented realities (VR/AR) are considered the main use case of uRLLC, and the current proposals for VR and AR are discussed. Moreover, unmanned aerial vehicles (UAVs) are introduced as enablers of uRLLC. The current research directions and the existing proposals are discussed.
APA, Harvard, Vancouver, ISO, and other styles
29

Wu, Weihua, Runzi Liu, Qinghai Yang, Hangguan Shan, and Tony Q. S. Quek. "Learning-Based Robust Resource Allocation for Ultra-Reliable V2X Communications." IEEE Transactions on Wireless Communications 20, no. 8 (August 2021): 5199–211. http://dx.doi.org/10.1109/twc.2021.3065996.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Adhikari, Mainak, and Abhishek Hazra. "6G-Enabled Ultra-Reliable Low-Latency Communication in Edge Networks." IEEE Communications Standards Magazine 6, no. 1 (March 2022): 67–74. http://dx.doi.org/10.1109/mcomstd.0001.2100098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Adhikari, Mainak, and Abhishek Hazra. "6G-Enabled Ultra-Reliable Low-Latency Communication in Edge Networks." IEEE Communications Standards Magazine 6, no. 1 (March 2022): 67–74. http://dx.doi.org/10.1109/mcomstd.0001.2100098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Uusitalo, Mikko A., Harish Viswanathan, Heli Kokkoniemi-Tarkkanen, Artjom Grudnitsky, Martti Moisio, Teemu Harkonen, Pekka Yli-Paunu, Seppo Horsmanheimo, and Dragan Samardzija. "Ultra-Reliable and Low-Latency 5G Systems for Port Automation." IEEE Communications Magazine 59, no. 8 (August 2021): 114–20. http://dx.doi.org/10.1109/mcom.011.2001060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Sun, Zhen, Zhao Chen, Liuguo Yin, and Jianhua Lu. "Design of LDBCH Codes for Ultra Reliable Low Latency Communications." IEEE Communications Letters 25, no. 9 (September 2021): 2800–2804. http://dx.doi.org/10.1109/lcomm.2021.3092629.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Ji, Hyoungju, Sunho Park, and Byonghyo Shim. "Sparse Vector Coding for Ultra Reliable and Low Latency Communications." IEEE Transactions on Wireless Communications 17, no. 10 (October 2018): 6693–706. http://dx.doi.org/10.1109/twc.2018.2863286.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Sachs, Joachim, Gustav Wikstrom, Torsten Dudda, Robert Baldemair, and Kittipong Kittichokechai. "5G Radio Network Design for Ultra-Reliable Low-Latency Communication." IEEE Network 32, no. 2 (March 2018): 24–31. http://dx.doi.org/10.1109/mnet.2018.1700232.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Park, Hyun-Seo, Yuro Lee, Tae-Joong Kim, Byung-Chul Kim, and Jae-Yong Lee. "Handover Mechanism in NR for Ultra-Reliable Low-Latency Communications." IEEE Network 32, no. 2 (March 2018): 41–47. http://dx.doi.org/10.1109/mnet.2018.1700235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Sutton, Gordon J., Jie Zeng, Ren Ping Liu, Wei Ni, Diep N. Nguyen, Beeshanga A. Jayawickrama, Xiaojing Huang, Mehran Abolhasan, and Zhang Zhang. "Enabling Ultra-Reliable and Low-Latency Communications through Unlicensed Spectrum." IEEE Network 32, no. 2 (March 2018): 70–77. http://dx.doi.org/10.1109/mnet.2018.1700253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

She, Changyang, Chenyang Yang, and Tony Q. S. Quek. "Radio Resource Management for Ultra-Reliable and Low-Latency Communications." IEEE Communications Magazine 55, no. 6 (2017): 72–78. http://dx.doi.org/10.1109/mcom.2017.1601092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Angjelichinoski, Marko, Kasper Floe Trillingsgaard, and Petar Popovski. "A Statistical Learning Approach to Ultra-Reliable Low Latency Communication." IEEE Transactions on Communications 67, no. 7 (July 2019): 5153–66. http://dx.doi.org/10.1109/tcomm.2019.2907241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Samarakoon, Sumudu, Mehdi Bennis, Walid Saad, and Merouane Debbah. "Distributed Federated Learning for Ultra-Reliable Low-Latency Vehicular Communications." IEEE Transactions on Communications 68, no. 2 (February 2020): 1146–59. http://dx.doi.org/10.1109/tcomm.2019.2956472.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Yuan, Zhenhui, Jie Jin, Lingling Sun, Kwan-Wu Chin, and Gabriel-Miro Muntean. "Ultra-Reliable IoT Communications with UAVs: A Swarm Use Case." IEEE Communications Magazine 56, no. 12 (December 2018): 90–96. http://dx.doi.org/10.1109/mcom.2018.1800161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Shirvanimoghaddam, Mahyar, Mohammad Sadegh Mohammadi, Rana Abbas, Aleksandar Minja, Chentao Yue, Balazs Matuz, Guojun Han, et al. "Short Block-Length Codes for Ultra-Reliable Low Latency Communications." IEEE Communications Magazine 57, no. 2 (February 2019): 130–37. http://dx.doi.org/10.1109/mcom.2018.1800181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Chen, Riqing, Chunhui Li, Shihao Yan, Robert Malaney, and Jinhong Yuan. "Physical Layer Security for Ultra-Reliable and Low-Latency Communications." IEEE Wireless Communications 26, no. 5 (October 2019): 6–11. http://dx.doi.org/10.1109/mwc.001.1900051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Zhang, Meilin, Vladimir M. Stojanovic, and Paul Ampadu. "Reliable Ultra-Low-Voltage Cache Design for Many-Core Systems." IEEE Transactions on Circuits and Systems II: Express Briefs 59, no. 12 (December 2012): 858–62. http://dx.doi.org/10.1109/tcsii.2012.2231013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Alcaraz Lopez, Onel L., Evelio Martin Garcia Fernandez, Richard Demo Souza, and Hirley Alves. "Ultra-Reliable Cooperative Short-Packet Communications With Wireless Energy Transfer." IEEE Sensors Journal 18, no. 5 (March 1, 2018): 2161–77. http://dx.doi.org/10.1109/jsen.2018.2789480.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Zhang, Yu, Bin Li, Feifei Gao, and Zhu Han. "A Robust Design for Ultra Reliable Ambient Backscatter Communication Systems." IEEE Internet of Things Journal 6, no. 5 (October 2019): 8989–99. http://dx.doi.org/10.1109/jiot.2019.2925843.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Singh, Bikramjit, Olav Tirkkonen, Zexian Li, and Mikko A. Uusitalo. "Contention-Based Access for Ultra-Reliable Low Latency Uplink Transmissions." IEEE Wireless Communications Letters 7, no. 2 (April 2018): 182–85. http://dx.doi.org/10.1109/lwc.2017.2763594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Kountouris, Marios, Petar Popovski, I.-Hong Hou, Stefano Buzzi, Andreas Muller, Stefania Sesia, and Robert W. Heath. "Guest Editorial Ultra-Reliable Low-Latency Communications in Wireless Networks." IEEE Journal on Selected Areas in Communications 37, no. 4 (April 2019): 701–4. http://dx.doi.org/10.1109/jsac.2019.2902262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Kallehauge, Tobias, Anders E. Kalør, Pablo Ramírez-Espinosa, Maxime Guillaud, and Petar Popovski. "Delivering Ultra-Reliable Low-Latency Communications via Statistical Radio Maps." IEEE Wireless Communications 30, no. 2 (April 2023): 14–20. http://dx.doi.org/10.1109/mwc.002.2200372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Varga, József, Attila Hilt, József Bíró, Csaba Rotter, and Gábor Járó. "Reducing operational costs of ultra-reliable low latency services in 5G." Infocommunications journal, no. 4 (2018): 37–45. http://dx.doi.org/10.36244/icj.2018.4.6.

Full text
Abstract:
Ultra-reliable low latency (uRLL) communication in 5G dictates the deployment of distributed infrastructure with numerous datacenters for low latency, while hosting ultra-reliable services mandates attended datacenters. This would boost the operational costs of 5G network operators planning country-wide coverage for uRLL services. This paper examines how these operational expenses dominated by administrative costs can be reduced without impacting the quality of the provided uRLL service. Our results indicate that hosting uRLL services in unattended datacenters with increased hardware redundancy schemes can produce significant cost savings.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography