Academic literature on the topic 'Ultra-reliable'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ultra-reliable.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ultra-reliable"
Jones, Harry. "Ultra Reliable Space Life Support Systems." SAE International Journal of Aerospace 1, no. 1 (June 29, 2008): 482–98. http://dx.doi.org/10.4271/2008-01-2160.
Full textHusain, Syed S., Andreas Kunz, Athul Prasad, Emmanouil Pateromichelakis, and Konstantinos Samdanis. "Ultra-High Reliable 5G V2X Communications." IEEE Communications Standards Magazine 3, no. 2 (June 2019): 46–52. http://dx.doi.org/10.1109/mcomstd.2019.1900008.
Full textDaniel Sheu, D. "An ultra-reliable board identification system." Journal of Manufacturing Systems 15, no. 2 (January 1996): 84–94. http://dx.doi.org/10.1016/0278-6125(96)82334-x.
Full textPark, Jihong, Sumudu Samarakoon, Hamid Shiri, Mohamed K. Abdel-Aziz, Takayuki Nishio, Anis Elgabli, and Mehdi Bennis. "Extreme ultra-reliable and low-latency communication." Nature Electronics 5, no. 3 (March 2022): 133–41. http://dx.doi.org/10.1038/s41928-022-00728-8.
Full textSoldani, David, Y. Jay Guo, Bernard Barani, Preben Mogensen, Chih-Lin I, and Sajal K. Das. "5G for Ultra-Reliable Low-Latency Communications." IEEE Network 32, no. 2 (March 2018): 6–7. http://dx.doi.org/10.1109/mnet.2018.8329617.
Full textZemen, Thomas. "Wireless 5G ultra reliable low latency communications." e & i Elektrotechnik und Informationstechnik 135, no. 7 (October 2, 2018): 445–48. http://dx.doi.org/10.1007/s00502-018-0645-0.
Full textLezzar, Mohamed Yacine, and Mustafa Mehmet-Ali. "Optimization of ultra-reliable low-latency communication systems." Computer Networks 197 (October 2021): 108332. http://dx.doi.org/10.1016/j.comnet.2021.108332.
Full textEggers, Patrick C. F., Marko Angjelichinoski, and Petar Popovski. "Wireless Channel Modeling Perspectives for Ultra-Reliable Communications." IEEE Transactions on Wireless Communications 18, no. 4 (April 2019): 2229–43. http://dx.doi.org/10.1109/twc.2019.2901788.
Full textElbamby, Mohammed S., Cristina Perfecto, Mehdi Bennis, and Klaus Doppler. "Toward Low-Latency and Ultra-Reliable Virtual Reality." IEEE Network 32, no. 2 (March 2018): 78–84. http://dx.doi.org/10.1109/mnet.2018.1700268.
Full textNielsen, Jimmy Jessen, Rongkuan Liu, and Petar Popovski. "Ultra-Reliable Low Latency Communication Using Interface Diversity." IEEE Transactions on Communications 66, no. 3 (March 2018): 1322–34. http://dx.doi.org/10.1109/tcomm.2017.2771478.
Full textDissertations / Theses on the topic "Ultra-reliable"
Harper, Rick. "Critical issues in ultra-reliable parallel processing." Thesis, Massachusetts Institute of Technology, 1987. http://hdl.handle.net/1721.1/14802.
Full textKharel, B. (Binod). "Ultra reliable low latency communication in MTC network." Master's thesis, University of Oulu, 2018. http://jultika.oulu.fi/Record/nbnfioulu-201809212822.
Full textÖzenir, Onur. "Redundancy techniques for 5G Ultra Reliable Low Latency Communications." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25082/.
Full textFaxén, Linnea. "A Study on Segmentation for Ultra-Reliable Low-Latency Communications." Thesis, Linköpings universitet, Kommunikationssystem, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-138568.
Full textFör att möjliggöra trådlös kontroll av fabriker, till exempel trådlös sändning av data uppmätt av en sensor till ett ställdon som agerar på den emottagna signalen, så måste sannolikheten att ta emot datan korrekt vara väldigt hög och tiden det tar att leverera data från sensorn till ställdonet vara mycket kort. Tidigare har endast kablar klarat av dessa krav men i den femte generationens mobila nätverk är trådlös kontroll av fabriker ett av användningsområdena och arbete pågår för att skapa ett system som klarar av det. Ett av problemen i detta användningsområde är när all data i ett paket inte kan skickas i en sändning och klara av den väldigt höga sannolikheten för mottagning. Denna uppsats studerar detta problem i detalj och föreslår metoder för att hantera problemet samt utvärderar dessa metoder i en simulator. Uppsatsen visar att delning av ett paket i flera segment och sändning av varje segment med en ännu högre sannolikhet för mottagning är en bra kandidat, speciellt när det finns tid för en omsändning. När det endast finns tid för en sändning verkar det bättre att skicka samma paket två gånger. Även om det första paketet inte kan uppnå den höga sannolikheten för mottagning så kan kanske kombinationen av det första och andra paketet göra det.
Maric, Bojan. "Cache designs for reliable hybrid high and ultra-low voltage operation." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/144563.
Full textLe, Trung Kien. "Physical layer design for ultra-reliable low-latency communications in 5G." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS198.
Full textThe advent of new use cases and new applications such as augmented/virtual reality, industrial automation, autonomous vehicles, etc. in 5G has made the Third Generation Partnership Project (3GPP) specify Ultra-reliable low-latency communications (URLLC) as one of the service categories. To support URLLC with the strict requirements of reliability and latency, 3GPP Release 15 and Release 16 have specified the URLLC features in licensed spectrum. The ongoing 3GPP Release 17 extends the URLLC features to unlicensed spectrum to target the new use cases in the industrial scenario. In the first part of the thesis from Chapter 2 to Chapter 4, we focus on the URLLC in licensed spectrum. The first study deals with the problem of ensuring the configured number of uplink (UL) configured-grant (CG) repetitions of a transport block. Secondly, we study the collisions of an eMBB UL transmission of a user equipment (UE) and an URLLC UL transmission of another UE on the CG resources. Thirdly, the focus of this study is the downlink (DL) transmission where the feedback of the DL semi-persistent scheduling transmission is dropped due to the conflict of the DL/UL symbols. In the second part from Chapter 5 to Chapter 8, we focus on URLLC operation in unlicensed spectrum. In unlicensed spectrum, a 5G device is required to access to a channel by using load based equipment (LBE) or frame based equipment (FBE). The uncertainty of obtaining channel access through LBE or FBE can impede the achievement of the URLLC latency requirements. Therefore, the study of impact of LBE and FBE on URLLC transmission and the enhancements of LBE and FBE are needed
Sulieman, Nabeel Ibrahim. "Diversity and Network Coded 5G Wireless Network Infrastructure for Ultra-Reliable Communications." Scholar Commons, 2019. https://scholarcommons.usf.edu/etd/7961.
Full textGujarati, Arpan [Verfasser], and Björn [Akademischer Betreuer] Brandenburg. "Towards “Ultra-Reliable” CPS: Reliability Analysis of Distributed Real-Time Systems / Arpan Gujarati ; Betreuer: Björn Brandenburg." Kaiserslautern : Technische Universität Kaiserslautern, 2020. http://d-nb.info/1221599763/34.
Full textDosti, E. (Endrit). "Ultra reliable communication via optimum power allocation for repetition and parallel coding in finite block-length." Master's thesis, University of Oulu, 2017. http://jultika.oulu.fi/Record/nbnfioulu-201706082640.
Full textLeroi, Lisa. "Quantitative MRI : towards fast and reliable T₁, T₂ and proton density mapping at ultra-high field." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS429/document.
Full textQuantitative MRI refers to methods able to measure different physical parameters accessible in Nuclear Magnetic Resonance. It offers benefits compared to weighting imaging commonly used, for the detection, the pathophysiological characterization but also for the therapeutic follow-up of pathologies for example. Despite this long-established potential, these methods remain little used in clinical routine. The main reason is the long acquisition time compared to the classical approach. The physical parameters that we will study more particularly are the longitudinal (T₁), transverse (T₂) relaxation time, the apparent diffusion coefficient (ADC), and the proton density (DP). Despite the possibility to achieve a better image quality, these in vivo mappings are virtually non-existent in the literature beyond 3T because their implementation requires overcom-ing a number of specific ultra-high-field (UHF) MRI limits. Through this thesis project, a Quantitative Imaging method using Configuration States (QuICS) was implemented under strong UHF constraints, to determine these parameters simultaneously. The technique has been optimized to obtain fast and reliable maps. The potential of the method was first demon-strated in vitro on a nucleus such as sodium, exhibiting complex properties. As a second step, acquisitions were performed in proton, in vivo, in an clinically-relevant acquisition time, compatible with a routine use at 7T for population imaging. The application of such a method of quantitative MRI to UHF will open new research possibilities for the future
Books on the topic "Ultra-reliable"
Ultra-Reliable Seasonal Trades. Windsor Books, 1999.
Find full textSteyaert, Michiel, and Wim Vereecken. Ultra-Wideband Pulse-Based Radio: Reliable Communication over a Wideband Channel. Springer, 2009.
Find full textSteyaert, Michiel, and Wim Vereecken. Ultra-Wideband Pulse-based Radio: Reliable Communication over a Wideband Channel. Springer, 2010.
Find full textKhosravirad, Saeed R., Changyang She, Mehdi Bennis, Trung Q. Duong, and Petar Popovski. Ultra-Reliable and Low-Latency Communications Theory and Practice: Advances in 5G and Beyond. Wiley & Sons, Incorporated, John, 2023.
Find full textKhosravirad, Saeed R., Changyang She, Mehdi Bennis, Trung Q. Duong, and Petar Popovski. Ultra-Reliable and Low-Latency Communications Theory and Practice: Advances in 5G and Beyond. Wiley & Sons, Limited, John, 2023.
Find full textSpurlock, Virgil K. Design and simulation of an ultra reliable fault tolerant computing system voter and interstage. 1986.
Find full textKhosravirad, Saeed R., Changyang She, Mehdi Bennis, Trung Q. Duong, and Petar Popovski. Ultra-Reliable and Low-Latency Communications Theory and Practice: Advances in 5G and Beyond. Wiley & Sons, Incorporated, John, 2023.
Find full textKhosravirad, Saeed R., Changyang She, Mehdi Bennis, Trung Q. Duong, and Petar Popovski. Ultra-Reliable and Low-Latency Communications Theory and Practice: Advances in 5G and Beyond. Wiley & Sons, Incorporated, John, 2023.
Find full textNelson, Ronald J. The Synergistically Integrated Reliability architecture: A reliability analysis of an ultra-reliable fault tolerant computer design. 1986.
Find full textSudhamasapa, Nophadol. A development and simulation of Synergistically Integrated Reliability (SIR) for an ultra-reliable fault tolerance computer under communication software protocol for the growth algorithm. 1986.
Find full textBook chapters on the topic "Ultra-reliable"
Xiao, Qiqi, Jiantao Yuan, Rui Yin, Wei Qi, Celimuge Wu, and Xianfu Chen. "Unlicensed Assisted Ultra-Reliable and Low-Latency Transmission." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 138–51. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94763-7_11.
Full textPocovi, Guillermo, Klaus I. Pedersen, and Beatriz Soret. "On the Impact of Precoding Errors on Ultra-Reliable Communications." In Multiple Access Communications, 45–54. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-51376-8_4.
Full textErol-Kantarci, Melike, and Antonio Caruso. "Ultra-reliable and Low-Latency Communications for the Smart Grid." In Encyclopedia of Wireless Networks, 1427–31. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-78262-1_245.
Full textErol-Kantarci, Melike, and Antonio Caruso. "Ultra-Reliable~and~Low-Latency Communications for the Smart Grid." In Encyclopedia of Wireless Networks, 1–5. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-32903-1_245-1.
Full textBishop, Peter. "Does Software Have to Be Ultra Reliable in Safety Critical Systems?" In Lecture Notes in Computer Science, 118–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40793-2_11.
Full textYe, Sigen. "Support of Ultra-reliable and Low-Latency Communications (URLLC) in NR." In 5G and Beyond, 373–400. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58197-8_13.
Full textVan den Bergh, Bertold, Alessandro Chiumento, and Sofie Pollin. "Ultra-Reliable IEEE 802.11 for UAV Video Streaming: From Network to Application." In Lecture Notes in Electrical Engineering, 637–47. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1627-1_50.
Full textAnzai, Daisuke, Ilangko Balasingham, Georg Fischer, and Jainqing Wang. "Reliable and High-Speed Implant Ultra-Wideband Communications with Transmit–Receive Diversity." In 13th EAI International Conference on Body Area Networks, 27–32. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-29897-5_3.
Full textYuan, Mingju, Dongxiang Song, and Bing Li. "A Comparative Study on Key Technologies of Ultra-Reliable Low Latency Communication." In Machine Learning for Cyber Security, 112–24. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62460-6_11.
Full textZaki-Hindi, Ayat, Salah-Eddine Elayoubi, and Tijani Chahed. "Unlicensed Spectrum for Ultra-Reliable Low-Latency Communication in Multi-tenant Environment." In Network Games, Control and Optimization, 110–24. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-87473-5_11.
Full textConference papers on the topic "Ultra-reliable"
Jones, Harry. "Ultra Reliable Space Life Support." In AIAA SPACE 2012 Conference & Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-5121.
Full textWang, Wei, Dongyang Kang, Wangzhi Dai, and Yu-Chong Tai. "Reliable deposition of ultra-thin parylene." In 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2016. http://dx.doi.org/10.1109/memsys.2016.7421661.
Full textNamazi, A., M. Nourani, and M. Saquib. "Reliable Interconnect Grid for Ultra Deep Submicron." In 2006 IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software. IEEE, 2006. http://dx.doi.org/10.1109/dcas.2006.321045.
Full textShariatmadari, Hamidreza, Zexian Li, Mikko A. Uusitalo, Sassan Iraji, and Riku Jantti. "Link adaptation design for ultra-reliable communications." In ICC 2016 - 2016 IEEE International Conference on Communications. IEEE, 2016. http://dx.doi.org/10.1109/icc.2016.7511429.
Full textPopovski, Petar. "Ultra-Reliable Communication in 5G Wireless Systems." In 1st International Conference on 5G for Ubiquitous Connectivity. ICST, 2014. http://dx.doi.org/10.4108/icst.5gu.2014.258154.
Full textArumugam, Puvan, Davide Barater, Tahar Hamiti, and Chris Gerada. "Winding concepts for ultra reliable electrical machines." In IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2014. http://dx.doi.org/10.1109/iecon.2014.7048617.
Full textGangopadhyay, Bodhisattwa, João Pedro, and Nuno Borges. "Designing Ultra-Reliable 5G-Ready Transport Networks." In Photonic Networks and Devices. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/networks.2019.net2d.4.
Full textAbraham, Jens, and Torbjorn Ekman. "Local Diversity and Ultra-Reliable Antenna Arrays." In 2021 55th Asilomar Conference on Signals, Systems, and Computers. IEEE, 2021. http://dx.doi.org/10.1109/ieeeconf53345.2021.9723123.
Full textChung, Shine, Wen-Kuan Fang, YC Hsu, JY Hsiao, Lupin Lin, and Wen-Hua Yu. "Ultra-small and ultra-reliable innovative fuses scalable from 0.35um to 28nm." In 2016 International Conference on Microelectronic Test Structures (ICMTS). IEEE, 2016. http://dx.doi.org/10.1109/icmts.2016.7476195.
Full textChih-Ping Li, Jing Jiang, Wanshi Chen, Tingfang Ji, and John Smee. "5G ultra-reliable and low-latency systems design." In 2017 European Conference on Networks and Communications (EuCNC). IEEE, 2017. http://dx.doi.org/10.1109/eucnc.2017.7980747.
Full text