Academic literature on the topic 'Ultra-Low-Field MRI'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ultra-Low-Field MRI.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Ultra-Low-Field MRI"

1

Espy, Michelle, Andrei Matlashov, and Petr Volegov. "SQUID-detected ultra-low field MRI." Journal of Magnetic Resonance 229 (April 2013): 127–41. http://dx.doi.org/10.1016/j.jmr.2013.02.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zevenhoven, Koos C. J., and Sarianna Alanko. "Ultra-low-noise amplifier for ultra-low-field MRI main field and gradients." Journal of Physics: Conference Series 507, no. 4 (May 12, 2014): 042050. http://dx.doi.org/10.1088/1742-6596/507/4/042050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shen, Sheng, Jiamin Wu, Pan Guo, Hongyi Wang, Fangge Chen, Fanqin Meng, and Zheng Xu. "Electromagnet design for ultra-low-field MRI." International Journal of Applied Electromagnetics and Mechanics 63, no. 2 (June 8, 2020): 267–78. http://dx.doi.org/10.3233/jae-190051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Espy, Michelle, Andrei Matlashov, and Petr Volegov. "WITHDRAWN: SQUID-detected ultra-low field MRI." Journal of Magnetic Resonance 272 (November 2016): 181. http://dx.doi.org/10.1016/j.jmr.2016.09.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Espy, Michelle, Andrei Matlashov, and Petr Volegov. "WITHDRAWN: SQUID-detected ultra-low field MRI." Journal of Magnetic Resonance 228 (March 2013): 1–15. http://dx.doi.org/10.1016/j.jmr.2012.11.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kawagoe, Satoshi, Hirotomo Toyota, Junichi Hatta, Seiichiro Ariyoshi, and Saburo Tanaka. "Ultra-low field MRI food inspection system prototype." Physica C: Superconductivity and its Applications 530 (November 2016): 104–8. http://dx.doi.org/10.1016/j.physc.2016.02.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dean, Kirsti I., and Markku Komu. "Breast tumor imaging with ultra low field MRI." Magnetic Resonance Imaging 12, no. 3 (January 1994): 395–401. http://dx.doi.org/10.1016/0730-725x(94)92532-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hsu, Yi-Cheng, Koos C. J. Zevenhoven, Ying-Hua Chu, Juhani Dabek, Risto J. Ilmoniemi, and Fa-Hsuan Lin. "Rotary scanning acquisition in ultra-low-field MRI." Magnetic Resonance in Medicine 75, no. 6 (June 30, 2015): 2255–64. http://dx.doi.org/10.1002/mrm.25676.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Demachi, Kazuma, Kanji Hayashi, Seiji Adachi, Keiichi Tanabe, and Saburo Tanaka. "T1-Weighted Image by Ultra-Low Field SQUID-MRI." IEEE Transactions on Applied Superconductivity 29, no. 5 (August 2019): 1–5. http://dx.doi.org/10.1109/tasc.2019.2902772.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Vesanen, Panu T., Jaakko O. Nieminen, Koos C. J. Zevenhoven, Yi-Cheng Hsu, and Risto J. Ilmoniemi. "Current-density imaging using ultra-low-field MRI with zero-field encoding." Magnetic Resonance Imaging 32, no. 6 (July 2014): 766–70. http://dx.doi.org/10.1016/j.mri.2014.01.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Ultra-Low-Field MRI"

1

Vigilante, Antonio. "Advances in Atomic Magnetometry for Ultra-Low-Field NMR and MRI." Doctoral thesis, Università di Siena, 2019. http://hdl.handle.net/11365/1087368.

Full text
Abstract:
In this thesis the candidate proposes some technical and fundamental advances for NMR and MRI measurements in the ultra-low field (ULF) regime executed with optical-atomic-magnetometers (OAMs). This regime corresponds to field intensities such to make the nuclei precess at frequencies as low as tens/hundreds Hz. A self-optimized compensation system reduces the magnetic disturbances so to make the magnetometer suited to detect those ULF signals in an unshielded environment. The magnetometer is exploited as a high-sensitivity non-inductive sensor for ULF-NMR signal detection. Besides application in ULF-NMR spectroscopy, the simultaneous analysis of nuclear and atomic precession is used in a novel hybrid setup, which enables the detection of diluted magnetic contaminants. As predominant result an inhomogeneous-magnetic-dressing based (IDEA) technique has been devised enabling the first in-situ ULF-MRI detection by OAMs with sub-millimetric resolution.
APA, Harvard, Vancouver, ISO, and other styles
2

Lai, Jui-Tse, and 賴瑞澤. "The study on T1 contrast enhancement of magnetic nanoparticle agent in Ultra low –field MRI." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/05241243402523057777.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Ultra-Low-Field MRI"

1

Robert, Kraus, Michelle Espy, Per Magnelind, and Petr Volegov. Ultra-Low Field Nuclear Magnetic Resonance: A New MRI Regime. Oxford University Press, Incorporated, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ultra-Low Field Nuclear Magnetic Resonance: A New MRI Regime. Oxford University Press, Incorporated, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Ultra-Low-Field MRI"

1

Parkkonen, Lauri, Risto J. Ilmoniemi, Fa-Hsuan Lin, and Michelle Espy. "Ultra-Low-Field MRI and Its Combination with MEG." In Magnetoencephalography, 1–33. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-62657-4_46-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Parkkonen, Lauri, Risto J. Ilmoniemi, Fa-Hsuan Lin, and Michelle Espy. "Ultra-Low-Field MRI and Its Combination with MEG." In Magnetoencephalography, 941–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-33045-2_46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Parkkonen, Lauri, Risto J. Ilmoniemi, Fa-Hsuan Lin, and Michelle Espy. "Ultra-Low-Field MRI and Its Combination with MEG." In Magnetoencephalography, 1261–93. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-00087-5_46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gerlach, Ruediger, Richard du Mesnil de Rochemont, Thomas Gasser, Gerhard Marquardt, Lioba Imoehl, and Volker Seifert. "Implementation of the Ultra Low Field Intraoperative MRI PoleStar N20 During Resection Control of Pituitary Adenomas." In Intraoperative Imaging, 73–79. Vienna: Springer Vienna, 2010. http://dx.doi.org/10.1007/978-3-211-99651-5_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dabek, Juhani, Fredrik Sannholm, Jaakko O. Nieminen, Panu T. Vesanen, and Risto J. Ilmoniemi. "Safety in Simultaneous Ultra-Low-Field MRI and MEG: Forces Exerted on Magnetizable Objects by Magnetic Fields." In IFMBE Proceedings, 74–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12197-5_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kraus, Robert H., Michelle A. Espy, Per E. Magnelind, and Petr L. Volegov. "Applications in ULF MRI." In Ultra-Low Field Nuclear Magnetic Resonance, 202–28. Oxford University Press, 2014. http://dx.doi.org/10.1093/med/9780199796434.003.0005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kraus, Robert H., Michelle A. Espy, Per E. Magnelind, and Petr L. Volegov. "Nuts and Bolts of ULF MRI." In Ultra-Low Field Nuclear Magnetic Resonance, 47–82. Oxford University Press, 2014. http://dx.doi.org/10.1093/med/9780199796434.003.0002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kraus, Robert H., Michelle A. Espy, Per E. Magnelind, and Petr L. Volegov. "Fundamental Principles of NMR and MRI at ULF." In Ultra-Low Field Nuclear Magnetic Resonance, 1–46. Oxford University Press, 2014. http://dx.doi.org/10.1093/med/9780199796434.003.0001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Robson, Matthew. "7 T cardiac imaging." In The EACVI Textbook of Cardiovascular Magnetic Resonance, edited by Massimo Lombardi, Sven Plein, Steffen Petersen, Chiara Bucciarelli-Ducci, Emanuela R. Valsangiacomo Buechel, Cristina Basso, and Victor Ferrari, 620–23. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198779735.003.0062.

Full text
Abstract:
By increasing the field strength of the magnet used for magnetic resonance imaging (MRI), the available signal from the patient is enhanced, and this basic physics principle has driven the clinical MRI market to ever higher field strengths. Seven Tesla (7 T) scanners yield 4-5 times more signal than 1.5 T scanners; this signal-to-noise ratio increase facilitates high-resolution imaging, faster imaging when using accelerated techniques such as SENSE and GRAPPA, and greater sensitivity to low-concentration metabolites. Magnetic resonance spectroscopy acquisitions also benefit, owing to the greater chemical shift dispersion at ultra-high field. A significant difficulty is due to the radiofrequency excitation required that oscillates at 300 MHz, which results in destructive interference of the excitation fields and heating of the patient, and hence requires expensive additional hardware. While 7 T presents a great opportunity to cardiovascular MRI research, it is not yet a routine clinical tool, owing to the compound challenges of high cost, limited availability, and the difficulties of radiofrequency excitation at 300 MHz.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Ultra-Low-Field MRI"

1

Wroblewski, Przemyslaw, Jan Szyszko, and Waldemar T. Smolik. "Mandhala magnet for ultra low-field MRI." In 2011 IEEE International Conference on Imaging Systems and Techniques (IST). IEEE, 2011. http://dx.doi.org/10.1109/ist.2011.5962203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kobayashi, Tetsuo. "Toward ultra-low field multimodal MRI with atomic magnetometer." In 2012 ICME International Conference on Complex Medical Engineering (CME). IEEE, 2012. http://dx.doi.org/10.1109/iccme.2012.6275594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Korber, Rainer, Oliver Kieler, Peter Hommen, Nora Hofner, and Jan-Hendrik Storm. "Ultra-sensitive SQUID systems for applications in biomagnetism and ultra-low field MRI." In 2019 IEEE International Superconductive Electronics Conference (ISEC). IEEE, 2019. http://dx.doi.org/10.1109/isec46533.2019.8990912.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Oyama, D., Y. Adachi, M. Higuchi, N. Tsuyuguchi, and G. Uehara. "Development of compact ultra-low-field MRI system using an induction coil." In 2017 IEEE International Magnetics Conference (INTERMAG). IEEE, 2017. http://dx.doi.org/10.1109/intmag.2017.8007965.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tanaka, S., S. Tsunaki, M. Yamamoto, Y. Hatsukade, and J. Hatta. "Magnetic contaminant imaging using High-TC SQUID ultra-low field MRI technologies." In 2013 International Workshop on Magnetic Particle Imaging (IWMPI). IEEE, 2013. http://dx.doi.org/10.1109/iwmpi.2013.6528386.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dabek, J., K. C. J. Zevenhoven, J. O. Nieminen, P. T. Vesanen, R. Sepponen, and R. J. Ilmoniemi. "Gradient-excitation encoding combined with frequency and phase encodings for three-dimensional ultra-low-field MRI." In 2012 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2012. http://dx.doi.org/10.1109/embc.2012.6346125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Oida, Takenori, and Tetsuo Kobayashi. "Free induction decay MR signal measurements toward ultra-low field MRI with an optically pumped atomic magnetometer." In 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2013. http://dx.doi.org/10.1109/embc.2013.6610076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Martínez, Juan Alberto Martínez, Jaime Fabian Vázquez de la Rosa, Rodrigo Alfonso Martín Salas, Sergio Enrique Solís Nájera, and Alfredo Odón Rodriguez Gonzalez. "Design and building of a phantom for the recording of internal temperature, in an ultra-low magnetic field MRI system." In PROCEEDINGS OF THE XVI MEXICAN SYMPOSIUM ON MEDICAL PHYSICS. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0051149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dou, Y., Y. Li, J. Xu, Q. Chen, L. Wang, X. Zhang, N. Li, C. Luo, and F. Du. "A Novel 1H/ 3He Dual-Tuned Transmit Coil at Ultra-low Field MRI Designed by Using Electromagnetic Field and Radio Frequency Circuit Co-Simulation Method." In 2018 IEEE International Magnetic Conference (INTERMAG). IEEE, 2018. http://dx.doi.org/10.1109/intmag.2018.8508152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography