Academic literature on the topic 'Ultra High Intensity Laser'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ultra High Intensity Laser.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Ultra High Intensity Laser"

1

DAIDO, Hiroyuki. "Ultra-Short Ultra-High Intensity Laser-Matter Interaction." Review of Laser Engineering 31, no. 11 (2003): 698–706. http://dx.doi.org/10.2184/lsj.31.698.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

ABDULRAHMAN, Hayder J., and Suzan B. MOHAMMED. "DEVELOPMENT OF ULTRA-SHORT HIGH INTENSITY LASERS FOR THE VISIBLE SPECTRA RANGE." Periódico Tchê Química 17, no. 35 (July 20, 2020): 739–52. http://dx.doi.org/10.52571/ptq.v17.n35.2020.63_abdulrahman_pgs_739_752.pdf.

Full text
Abstract:
Ultra-short laser pulses are particularly suitable for processing micro tools made of ultra-hard and dielectric materials. Ultra-short laser pulses provide a contact-free and precise fabrication of heat-sensitive materials such as visible spectra range. Visible spectra range has unique properties, which makes it an essential material in the tool, jewelry, and semiconductor industries. The processing of visible spectra range by ultra-short laser pulses is complex, as visible and near-infrared light is generally not absorbed. However, the intensity of ultra-short laser pulses is extremely high, so that the absorption scales nonlinearly with the intensity and, thus, visible or near-infrared light can be absorbed. The complexity also results from many partially interdependent process variables, such as the repetition rate, pulse overlap, track overlap, and scan speed. Excellent knowledge of the process is, therefore, essential for the production of micro tools. To make the laser processing accessible to a broader user field, the operator can be supported by a computer-aided design (CAD). The aim of this research was to the modeling of an ultra-short high-intensity laser for the visible spectra range in different environments of the angle of incidence, scanning speed, pulse, and track overlap. The experimental process included ultra-short pulsed laser processing of visible spectra range and surface analysis concerning modifications and ablation of the ultra-short laser. Ablation volumes were analyzed for single pulses, multi-pulses, and pockets. Pump-probe experiments reveal transient optical properties such as transmission or reflectivity. It was concluded that ultraviolet laser pulses are best suited to induce damage or modifications to visible spectra range surfaces. Additionally, shorter wavelengths have further advantages such as potentially longer Rayleigh lengths and smaller spot sizes.
APA, Harvard, Vancouver, ISO, and other styles
3

Najmudin, Z., M. Tatarakis, K. Krushelnick, E. L. Clark, V. Malka, J. Faure, and A. E. Dangor. "Ultra-high-intensity laser propagation through underdense plasma." IEEE Transactions on Plasma Science 30, no. 1 (February 2002): 44–45. http://dx.doi.org/10.1109/tps.2002.1003915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Borne, F., D. Delacroix, J. M. Gel, D. Mass , and F. Amiranoff. "Radiation Protection for an Ultra-high Intensity Laser." Radiation Protection Dosimetry 102, no. 1 (September 1, 2002): 61–70. http://dx.doi.org/10.1093/oxfordjournals.rpd.a006074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Zerui. "Analysis of the Principles and Applications of Ultra-intensity and Ultrashort Laser." Highlights in Science, Engineering and Technology 76 (December 31, 2023): 441–49. http://dx.doi.org/10.54097/9s9fm882.

Full text
Abstract:
With the development of laser technology, how to improve the output performance and peak power of lasers has become one of the hot directions of current research. This study analyzes the principles and applications of ultra-intensity and ultrashort pulse laser. It firstly outlines the development history of laser technology and the basic definition of ultra-intensity and ultrashort pulse laser. It also mentions the realization methods for generating ultra-intensity and ultrashort pulse lasers, such as mode-locked femtosecond oscillators and CPA-based femtosecond amplifiers. The paper describes the principles of CPA technique and emphasizes its importance in realizing high power ultrashort pulses. The paper discusses various applications of ultra-intensity and ultrashort pulsed laser and summarizes and discusses the major bottlenecks facing current and future ultra-intensity and ultrashort pulsed lasers and their possible solutions. The technical review in this paper aims to enhance the understanding of ultra-intensity and ultrashort pulsed laser and provide insights into the next phase of research exploration in ultra-intensity and ultrashort pulsed lasers.
APA, Harvard, Vancouver, ISO, and other styles
6

Trtica, M., B. Gaković, D. Maravić, D. Batani, T. Desai, and R. Redaelli. "Surface Modification of Titanium by High Intensity Ultra-Short Nd:YAG Laser." Materials Science Forum 518 (July 2006): 167–72. http://dx.doi.org/10.4028/www.scientific.net/msf.518.167.

Full text
Abstract:
The effects of an Nd:YAG laser interaction with titanium target using laser radiation at wavelengths 1.064 or 0.532 μm (40 picoseconds pulse duration) were studied. Modification of target surfaces at laser energy densities of 2.4 and 10.3 J/cm2 (λ1 laser= 1.064 μm) and 1.1 J/cm2 (λ2 laser= 0.532 μm) are reported in this article. Qualitatively, the titanium surface modification can be summarized as follows: (i) ablation of the titanium surface in the central zone of the irradiated area for both laser wavelengths; (ii) appearance of a hydrodynamic feature like resolidified droplets of the material (λ1 laser= 1.064 μm), as well as formation of the wave-like microstructures (λ2 laser= 0.532 μm); and (iii) appearance of plasma, in front of the target, with both laser wavelengths.
APA, Harvard, Vancouver, ISO, and other styles
7

Kiriyama, Hiromitsu, Alexander S. Pirozhkov, Mamiko Nishiuchi, Yuji Fukuda, Akito Sagisaka, Akira Kon, Yasuhiro Miyasaka, et al. "Petawatt Femtosecond Laser Pulses from Titanium-Doped Sapphire Crystal." Crystals 10, no. 9 (September 3, 2020): 783. http://dx.doi.org/10.3390/cryst10090783.

Full text
Abstract:
Ultra-high intensity femtosecond lasers have now become excellent scientific tools for the study of extreme material states in small-scale laboratory settings. The invention of chirped-pulse amplification (CPA) combined with titanium-doped sapphire (Ti:sapphire) crystals have enabled realization of such lasers. The pursuit of ultra-high intensity science and applications is driving worldwide development of new capabilities. A petawatt (PW = 1015 W), femtosecond (fs = 10−15 s), repetitive (0.1 Hz), high beam quality J-KAREN-P (Japan Kansai Advanced Relativistic ENgineering Petawatt) Ti:sapphire CPA laser has been recently constructed and used for accelerating charged particles (ions and electrons) and generating coherent and incoherent ultra-short-pulse, high-energy photon (X-ray) radiation. Ultra-high intensities of 1022 W/cm2 with high temporal contrast of 10−12 and a minimal number of pre-pulses on target has been demonstrated with the J-KAREN-P laser. Here, worldwide ultra-high intensity laser development is summarized, the output performance and spatiotemporal quality improvement of the J-KAREN-P laser are described, and some experimental results are briefly introduced.
APA, Harvard, Vancouver, ISO, and other styles
8

BOURDIER, A., D. PATIN, and E. LEFEBVRE. "Stochastic heating in ultra high intensity laser-plasma interaction." Laser and Particle Beams 25, no. 1 (February 28, 2007): 169–80. http://dx.doi.org/10.1017/s026303460707022x.

Full text
Abstract:
Stochastic instabilities are studied considering the motion of one particle in a very high intensity wave propagating along a constant homogeneous magnetic field, and in a high intensity wave propagating in a nonmagnetized medium perturbed by one or two low intensity traveling waves. Resonances are identified and conditions for resonance overlap are studied. The part of chaos in the electron acceleration is analyzed. PIC code simulation results confirm the stochastic heating.
APA, Harvard, Vancouver, ISO, and other styles
9

Chériaux, Gilles, and Jean-Paul Chambaret. "Ultra-short high-intensity laser pulse generation and amplification." Measurement Science and Technology 12, no. 11 (October 9, 2001): 1769–76. http://dx.doi.org/10.1088/0957-0233/12/11/303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chériaux, Gilles, and Jean-Paul Chambaret. "Ultra-short high-intensity laser pulse generation and amplification." Measurement Science and Technology 19, no. 12 (November 4, 2008): 129801. http://dx.doi.org/10.1088/0957-0233/19/12/129801.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Ultra High Intensity Laser"

1

Bernath, Robert Thomas. "High-Intensity Ultra-Fast Laser Interaction Technologies." Doctoral diss., University of Central Florida, 2007. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2173.

Full text
Abstract:
To our knowledge this is the first comprehensive study of laser-induced effects generated at intermediate distances using self-channeled femtosecond laser pulses. Studies performed were made both experimentally and theoretically with the use of novel modeling techniques. Peak laser pulse powers above 3 GW allow beam propagation without divergence for up to several kilometers. In this regime, experiments were performed at 30 meters from the laser system in a custom propagation and target range, utilizing the Laser Plasma Laboratory's Terawatt laser system. Experiments included investigations of laser ablation; electromagnetic pulsed (EMP) radiation generation over the 1-18 GHz region; shockwave formation in air and solid media; optical coupling of channeled pulses into transparent media; and, conservation of energy in these interactions. The use of bursts of femtosecond pulses was found to increase the ablation rate significantly over single-pulse ablation in both air and vacuum. EMP generation from near-field focused and distance-propagated pulses was investigated. Field strengths upwards of 400 V/m/[Lambda] for vacuum focusing and 25 V/m/[Lambda] for self-channeled pulses were observed. The total field strengths over 1-18 GHz measured at distance surpassed 12 kV/m. Shockwaves generated in transparent media at 30 meters were observed as a function of time. It was found that the interaction conditions control the formation and propagation of the shock fronts into the medium. Due to the processes involved in self-channeling, significant fractions of the laser pulse were coupled into the target materials, resulting in internal optical and exit-surface damage. Basic estimations on the conservation of energy in the interaction are presented. The results of the experiments are supported by hydrodynamic plasma physics code and acoustic modeling.
Ph.D.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Electrical Engineering PhD
APA, Harvard, Vancouver, ISO, and other styles
2

Flacco, Alessandro. "Experimental study of proton acceleration with ultra-high intensity, high contrast laser beam." École polytechnique, 2010. http://www.theses.fr/2008EPXX0071.

Full text
Abstract:
La production de faisceaux énergétiques d'ions/protons avec des impulsions laser à intensités relativistes (I>10^{18}W/cm^2) a reçu, au cours des dernières années, un intérêt croissant parmi les scientifiques travaillant dans les domaines de l'optique, de la physique des plasmas et des accélérateurs. Une fraction des électrons est chauffée à haute température lors de l'interaction entre une impulsion laser femtoseconde et un plasma surdense. Les ions et les protons sont extraits et accélérés par la séparation de charge qui est produite pendant l'expansion du plasma. Les résultats présentés dans ce manuscrit décrivent la réalisation d'expériences d'accélération d'ions avec un système laser à haute puissance et à haut contraste (XPW). Deux expériences préparatoires sont réalisées, afin d'étudier l'interaction entre le piédestal d'une impulsion laser et une cible. L'expansion d'un plasma créé par laser à intensité moyenne est mesurée par interférométrie; l'évolution de la longueur de son gradient de densité est déduite par les cartes de densité électronique, mesurées à différents instants. La variation de la réflectivité absolue d'une cible mince d'aluminium est mise en corrélation avec la température électronique afin de contrôler le débouché du choc produit par le laser. La corrélation entre les deux expériences est finalement utilisée pour définir le conditions optimales pour l'accélération des protons. Des expériences d'accélération de protons avec un laser à haut contraste, la construction et la validation d'un spectromètre (Galette a Micro-canaux et Parabole Thomson), ainsi que des autres détails sur le montage sont présentés. Les résultats ainsi obtenus montrent que l'amélioration du contraste permet d'utiliser des cibles plus minces et de produire des conditions d'interaction plus stables et contrôlables. Des faisceaux des protons ayant énergie cinétique supérieure à 4MeV sont produits, avec une stabilité tir à tir meilleure de 4% rms. L'accélération des protons avec deux impulsions laser confirme que l'absorption d'énergie laser est augmentée dans le cas des cibles pre-chauffées par une impulsion laser avec les bons paramètres
The production of energetic proton/ion beams with laser pulses at relativistic intensities (I>10^{18}W/cm^2) has received, in the past few years, increasing interest from the scientific community in plasma, optics and accelerator physics. A fraction of electrons is heated to high temperature during the ultrafast interaction between a femtosecond laser pulse and an overdense plasma. Ions and protons are extracted and accelerated by the charge separation set up during the expansion of the plasma. The results presented in this manuscript report on the realization of ion acceleration experiments using a high contrast (XPW) multi-terawatt laser system. Two preparatory experiments are set up, aiming to study the pedestal of a laser pulse interacting with the target. The expansion of a plasma created by a laser at moderate intensity is measured by interferometry; the evolution of the density gradient length is deduced from the electron density maps at different moments. The variation of the absolute reflectivity of a thin aluminium foil is correlated to the electron temperature and is used to monitor the arrival time of the laser produced shock. The crossing between the two experiments is finally used to define the optimum condition for proton acceleration. Proton acceleration experiments with high contrast laser are reported, including the construction and the validation of a real-time, single shot ion spectrometer (Micro-channel Plate and Thomson Parabola), and other details of the realised setup. The obtained results show that the increased contrast enables the use of thinner targets and the production of more stable and controllable interaction conditions. Proton beams with kinetic energy higher than 4 MeV are produced, with a shot-to-shot stability better than 4% rms. Proton acceleration experiment with two laser beams confirms that the laser energy absorption is enhanced when the target is pre-heated by a laser pulse with proper parameters
APA, Harvard, Vancouver, ISO, and other styles
3

Flacco, A. "Experimental Study of Proton Acceleration with Ultra-High Intensity, High Contrast Laser Beam." Phd thesis, Ecole Polytechnique X, 2008. http://pastel.archives-ouvertes.fr/pastel-00005616.

Full text
Abstract:
La production de faisceaux énergétiques d'ions/protons avec des impulsions laser à intensités relativistes (I>10^{18}W/cm^2) a reçu, au cours des dernières années, un intérêt croissant parmi les scientifiques travaillant dans les domaines de l'optique, de la physique des plasmas et des accélérateurs. Une fraction des électrons est chauffée à haute température lors de l'interaction entre une impulsion laser femtoseconde et un plasma surdense. Les ions et les protons sont extraits et accélérés par la séparation de charge qui est produite pendant l'expansion du plasma. Les résultats présentés dans ce manuscrit décrivent la réalisation d'expériences d'accélération d'ions avec un système laser à haute puissance et à haut contraste (XPW). Deux expériences préparatoires sont réalisées, afin d'étudier l'interaction entre le piédestal d'une impulsion laser et une cible. L'expansion d'un plasma créé par laser à intensité moyenne est mesurée par interférométrie; l'évolution de la longueur de son gradient de densité est déduite par les cartes de densité électronique, mesurées à différents instants. La variation de la réflectivité absolue d'une cible mince d'aluminium est mise en corrélation avec la température électronique afin de contrôler le débouché du choc produit par le laser. La corrélation entre les deux expériences est finalement utilisée pour définir le conditions optimales pour l'accélération des protons. Des expériences d'accélération de protons avec un laser à haut contraste, la construction et la validation d'un spectromètre (Galette a Micro-canaux et Parabole Thomson), ainsi que des autres détails sur le montage sont présentés. Les résultats ainsi obtenus montrent que l'amélioration du contraste permet d'utiliser des cibles plus minces et de produire des conditions d'interaction plus stables et contrôlables. Des faisceaux des protons ayant énergie cinétique supérieure à 4MeV sont produits, avec une stabilité tir à tir meilleure de 4% rms. L'accélération des protons avec deux impulsions laser confirme que l'absorption d'énergie laser est augmentée dans le cas des cibles pre-chauffées par une impulsion laser avec les bons paramètres.
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Sophia Nan. "X-ray spectroscopy of buried layer foils irradiated with an ultra high intensity short pulse laser." Diss., [La Jolla] : University of California, San Diego, 2009. http://wwwlib.umi.com/cr/ucsd/fullcit?p3352706.

Full text
Abstract:
Thesis (Ph. D.)--University of California, San Diego, 2009.
Title from first page of PDF file (viewed June 16, 2009). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 117-126).
APA, Harvard, Vancouver, ISO, and other styles
5

Debayle, Arnaud. "Theoretical study of Ultra High Intensity laser-produced high-current relativistic electron beam transport through solid targets." Thesis, Bordeaux 1, 2008. http://www.theses.fr/2008BOR13708/document.

Full text
Abstract:
Cette thèse porte sur l’étude théorique du transport d’un faisceau intense d’électrons relativistes dans une cible solide. Dans la première partie nous présentons les interprétations théoriques d’une partie des résultats d’une campagne d’expérience portant sur la production et le transport d’électrons relativistes dans une cible d’aluminium. Nous y démontrons la prédominance des e?ets collectifs sur les e?ets collisionels dans la première dizaine de microns de propagation grâce à des modèles de transports déjà existant au début de cette thèse. Ces modèles deviennent insu?sants dans le cas du transport de faisceau dans un isolant. Aussi, dans la deuxième partie, nous présentons un modèle de propagation du faisceau d’électrons relativistes dans un diélectrique incluant l’e?et de l’ionisation de la cible par le faisceau. Nous y quanti?ons les pertes d’énergies des électrons en fonction des paramètres du faisceau et du milieu environnant, et nous démontrons l’existence d’un régime de propagation pour lequel les électrons du plasma ne sont pas à l’équilibre thermodynamique local avec les ions. Ces résultats ont été comparés et con?rmés avec un code cinétique qui prend en compte l’ionisation par champ électrique et par collisions entre les électrons du plasma et les ions. Nous avons examiné la stabilité du faisceau et montré que ce dernier pouvait exciter deux types d’instabilités transverses sur des longueurs de propagation de l’ordre de 30 à 300 µm en fonction de la taille de la perturbation
This PhD thesis is a theoretical study of high-current relativistic electron beam transport through solid targets. In the ?rst part, we present an interpretation of a part of experimental results of laser– produced electron beam transport in aluminium foil targets. We have estimated the fast electron beam characteristics and we demonstrated that the collective e?ects dominate the transport in the ?rst tens of µm of propagation. These quantitative estimates were done with the transport models already existing at the beginning of this thesis. These models are no longer su?cient in the case a fast electron beam propagation in insulator targets. Thus, in the second part, we have developed a propagation model of the beam that includes the e?ects of electric ?eld ionization and the collisional ionization by the plasma electrons. We present estimates of the electron energy loss induced by the target ionization, and we discuss its dependence on the beam and target parameters. In the case of a relatively low fast electron density, we demonstrated that the beam creates a plasma where the electons are not in a local thermodynamic equilibrium with ions. We have examined the beam stability and we demonstrated that transverse instabilities can be excited by the relativistic electron beam over the propagation distances of 30 - 300 µm depending on the perturbation wavelength
APA, Harvard, Vancouver, ISO, and other styles
6

Moulanier, Ioaquin. "Modélisation réaliste de l'accélération laser-plasma." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP173.

Full text
Abstract:
L'interaction d'un laser intense et court avec un plasma peu dense permet de créer de forts gradients de champ électrique se propageant dans le sillage du laser et de piéger des électrons du plasma qui atteignent des énergies ultra-relativistes. L'interaction d'un faisceau laser d'intensité supérieure à 10 puissance 18 Watt par centimètre carré est non-linéaire, et les caractéristiques spatio-temporelles du laser évoluent au cours de sa propagation dans le plasma.La numérisation de la distribution transverse du laser mesurée expérimentalement, et la prise en compte de la phase spectrale permettent de décrire les imperfections laser pour mieux rendre compte de la physique de l'interaction et reproduire les propriétés des faisceaux d'électrons mesurés.Le développement d'outils numériques de reconstruction de la distribution laser, leur intégration dans des simulations particulaires, ont permis d'atteindre un meilleur accord entre les diagnostics numériques de fin de simulation et les diagnostics expérimentaux du spectre des électrons.L'algorithme de reconstruction de la distribution laser transverse est présenté, ainsi que son intégration à un code particulaire en géométrie 3D quasi-cylindrique. Des exemples montrent l'impact de l'asymétrie transverse de la distribution laser en régime d'interaction non-linéaire dans le cadre de simulations caractérisant des expériences d'accélération laser-plasma menées en salle longue focale de l'installation laser APOLLON, ainsi qu'au Lund Laser Centre
The interaction of a short laser pulse with an underdense plasma generates strong electric field gradients in the laser beam wake, trapping electrons of the plasma and accelerating them to ultra-relativistic energies. For laser peak intensities above 10 to the power 18 Watt per squared centimeter, the process is non-linear, and the spatiotemporal laser characteristics evolve during its propagation in the plasma.The modeling of the laser transverse distribution measured in experiment, together with its spectral phase,is used to describe the imperfections of the laser and improve the accuracy of the description of the mechanisms during interaction and the resulting electron bunch properties. Numerical tools were developped for the reconstruction of the laser distribution and its integration in particle-in-cell simulations, allowing us to achieve a better agreement between numerical diagnostics and experimental measurements of the electron spectra.The reconstruction algorithm of the laser distribution is introduced, as well as its integration in a quasi-3D particle-in-cell code. Specific examples show the impact of the laser distribution transverse asymmetry in the non-linear interaction regime through simulations that reproduce accurately laser-plasma acceleration experiments performed in the long-focal area of the APOLLON laser facility and at the Lund Laser Centre
APA, Harvard, Vancouver, ISO, and other styles
7

Carrié, Michaël. "Accélération de protons par laser à ultra-haute intensité : étude et application au chauffage isochore." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00608050.

Full text
Abstract:
L'interaction d'impulsions lasers brèves et intenses avec un plasma est une source intéressante d'ions énergétiques. Les travaux effectués au cours de cette thèse s'articulent autour de deux grandes thématiques : la production de protons par laser, et leur utilisation pour le chauffage isochore, avec, pour principal outil d'étude, la simulation à l'aide de codes numériques (cinétique particulaire et hydrodynamique). Dans un premier temps, nous avons étudié le comportement de l'énergie cinétique maximale des protons qu'il est possible d'accélérer avec le mécanisme du Target Normal Sheath Acceleration (TNSA), en régime sub-ps, en fonction de différents paramètres, notamment de la durée d'impulsion laser. Nous avons montré que l'allongement de la durée d'impulsion, à énergie laser constante, est responsable du préchauffage et de la détente du plasma avant l'arrivé du pic d'intensité. Les gradients de densité ainsi produits (face avant et face arrière) peuvent favoriser, ou au contraire pénaliser, le gain en énergie cinétique des protons. Les résultats obtenus ont servi à l'interprétation d'une étude expérimentale réalisée au Laboratoire d'Optique Appliquée. Nos efforts se sont ensuite concentrés sur l'élaboration d'un modèle semi-analytique rendant compte de l'énergie cinétique maximale des protons accélérés par le biais du TNSA. Ce modèle permet de retrouver l'ordre de grandeur des intensités nécessaires, de l'ordre de 6x1021 W/cm², pour atteindre des énergies de proton supérieures à 150 MeV avec des impulsions laser de quelques joules et plusieurs dizaines de fs. Dans la dernière partie de cette thèse, nous nous sommes intéressés à l'utilisation de ces faisceaux de protons pour le chauffage isochore. Nous avons caractérisé, dans un premier temps, les fonctions de distribution produites par des cibles composées d'un substrat lourd (A >> 1) sur la face arrière duquel est déposé un plot d'hydrogène (schéma d'Esirkepov). Ensuite, à partir de simulations hydrodynamiques, nous avons étudié le temps caractéristique de détente de la cible chauffée en modifiant des paramètres tels que la distance à la source de protons, l'intensité et la tache focale du laser, et la densité surfacique du plot. Nous avons enfin étendu cette étude aux cibles cylindriques et nous avons montré qu'il est possible de réduire les effets liés à la divergence naturelle du faisceau de protons et ainsi d'obtenir des températures plus élevées.
APA, Harvard, Vancouver, ISO, and other styles
8

Kallala, Haithem. "Massively parallel algorithms for realistic PIC simulations of ultra high intensity laser-plasma interaction, application to attosecond pulses separation of Doppler harmonics." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASS052.

Full text
Abstract:
La complexité des mécanismes physiques mis en jeu lors de l'interaction laser-plasma à ultra-haute intensité nécessite de recourir à des simulations PIC particulièrement lourdes. Au cœur de ces codes de calcul, les solveurs de Maxwell pseudo-spectraux d'ordre élevé présentent de nombreux avantages en termes de précision numérique. Néanmoins, ces solveurs ont un coût élevé en termes de ressources nécessaires. En effet, les techniques de parallélisation existantes pour ces solveurs sont peu performantes au-delà de quelques milliers de coeurs, ou induisent un important usage mémoire, ce qui limite leur scalabilité à large échelle. Dans cette thèse, nous avons développé une toute nouvelle approche de parallélisation qui combine les avantages des méthodes existantes. Cette méthode a été testée à très large échelle et montre un scaling significativement meilleur que les précédentes techniques, tout en garantissant un usage mémoire réduit.En capitalisant sur ce travail numérique, nous avons réalisé une étude numérique/théorique approfondie dans le cadre de la génération d'harmoniques d'ordres élevés sur cible solide. Lorsqu'une impulsion laser ultra-intense (I>10¹⁶W.cm⁻² ) et ultra-courte (de quelques dizaines de femtosecondes) est focalisée sur une cible solide, elle génère un plasma sur-dense, appelé miroir plasma, qui réfléchit non-linéairement le laser incident. La réflexion de l'impulsion laser est accompagnée par l'émission cohérente d'harmoniques d'ordres élevées, sous forme d'impulsions X-UV attosecondes (1 attosecond = 10⁻¹⁸s). Pour des intensités laser relativistes (I>10¹⁹ W.cm⁻²), la surface du plasma est incurvée sous l'effet de la pression de radiation du laser. De ce fait, les harmoniques rayonnées par la surface du plasma sont focalisées. Dans cette thèse, j'ai étudié la possibilité de produire des impulsions attosecondes isolées en régime relativiste sur miroir plasma, grâce au mécanisme de phare attoseconde. Celui-ci consiste à introduire une rotation des fronts d'onde du laser incident de façon à séparer angulairement les différentes impulsions attosecondes produites à chaque cycle optique. En régime relativiste, la courbure du miroir plasma augmente considérablement la divergence du faisceau harmonique, ce qui rend le mécanisme phare attoseconde inefficace. Pour y remédier, j'ai développé deux techniques de réduction de divergence harmonique afin de mitiger l'effet de focalisation induit par la courbure du miroir plasma et permettre de générer des impulsions attosecondes isolées à partir d’harmoniques Doppler. Ces deux techniques sont basées sur la mise en forme en amplitude et en phase du faisceau laser. Par ailleurs, j'ai développé un modèle théorique pour déterminer les régimes optimaux d'interaction afin de maximiser la séparation angulaire des impulsions attosecondes. Ce modèle a été validé par des simulations numériques PIC en géométries 2D et 3D et sur une large gamme de paramètres laser et plasma. Finalement, on montre qu'en ajustant des paramètres laser et plasma réalistes, il est possible de séparer efficacement les impulsions attosecondes en régime relativiste
The complexity of the physical mechanisms involved in ultra-high intensity laser-plasma interaction requires the use of particularly heavy PIC simulations. At the heart of these computational codes, high-order pseudo-spectral Maxwell solvers have many advantages in terms of numerical accuracy. This numerical approach comes however with an expensive computational cost. Indeed, existing parallelization methods for pseudo-spectral solvers are only scalable to few tens of thousands of cores, or induce an important memory footprint, which also hinders the scaling of the method at large scales. In this thesis, we developed a novel, arbitrarily scalable, parallelization strategy for pseudo-spectral Maxwell's equations solvers which combines the advantages of existing parallelization techniques. This method proved to be more scalable than previously proposed approaches, while ensuring a significant drop in the total memory use.By capitalizing on this computational work, we conducted an extensive numerical and theoretical study in the field of high order harmonics generation on solid targets. In this context, when an ultra-intense (I>10¹⁶W.cm⁻²) ultra-short (few tens of femtoseconds) laser pulse irradiates a solid target, a reflective overdense plasma mirror is formed at the target-vacuum interface. The subsequent laser pulse non linear reflection is accompanied with the emission of coherent high order laser harmonics, in the form of attosecond X-UV light pulses (1 attosecond = 10⁻¹⁸s). For relativistic laser intensities (I>10¹⁹ W.cm⁻²), the plasma surface is curved under the laser radiation pressure. And the plasma mirror acts as a focusing optics for the radiated harmonic beam. In this thesis, we investigated feasible ways for producing isolated attosecond light pulses from relativistic plasma-mirror harmonics, with the so called attosecond lighthouse effect. This effect relies introducing a wavefront rotation on the driving laser pulse in order to send attosecond pulses emitted during different laser optical cycles along different directions. In the case of high order harmonics generated in the relativistic regime, the plasma mirror curvature significantly increases the attosecond pulses divergence and prevents their separation with the attosecond lighthouse scheme. For this matter, we developed two harmonic divergence reduction techniques, based on tailoring the laser pulse phase or amplitude profiles in order to significantly inhibit the plasma mirror focusing effect and allow for a clear separation of attosecond light pulses by reducing the harmonic beam divergence. Furthermore, we developed an analytical model to predict optimal interaction conditions favoring attosecond pulses separation. This model was fully validated with 2D and 3D PIC simulations over a broad range of laser and plasma parameters. In the end, we show that under realistic laser and plasma conditions, it is possible to produce isolated attosecond pulses from Doppler harmonics
APA, Harvard, Vancouver, ISO, and other styles
9

Ramirez, Lourdes Patricia. "Few-cycle OPCPA laser chain." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00806245.

Full text
Abstract:
The Apollon-10 PW laser chain is a large-scale project aimed at delivering 10 PW pulses to reach intensities of 10^22 W/cm^2. State of the art, high intensity lasers based solely on chirped pulse amplification (CPA) and titanium sapphire (Ti:Sa) crystals are limited to peak powers reaching 1.3 PW with 30-fs pulses as a result of gain narrowing in the amplifiers. To access the multipetawatt regime, gain narrowing can be suppressed with an alternative amplification technique called optical parametric chirped pulse amplification (OPCPA), offering a broader gain bandwidth and pulse durations as short as 10 fs. The Apollon-10 PW laser will exploit a hybrid OPCPA-Ti:Sa-CPA strategy to attain 10-PW pulses with 150 J and 15 fs. It will have two high-gain, low-energy amplification stages (10 fs ,100 mJ range) based on OPCPA in the picosecond and nanosecond timescale and afterwards, and will use Ti:Sa for power amplification to the 100-Joule level.Work in this thesis involves the progression of the development on the Apollon-10 PW front end and is focused on the development of a high contrast, ultrashort seed source supporting 10-fs pulses, stretching these pulses prior to OPCPA and the implementation of the picosecond OPCPA stage with a target of achieving 10-mJ pulses and maintaining its bandwidth. To achieve the final goal of 15-fs, 150-J pulses, the seed source must have a bandwidth supporting 10-fs and a temporal contrast of at least 10^10. Thus from an initial commercial Ti:Sa source delivering 25-fs pulses with a contrast of 10^8, spectral broadening via self-phase modulation and contrast enhancement with cross polarized (XPW) generation was performed. Subsequently, the seed pulses were stretched to a few picoseconds to match the pump for picosecond OPCPA. Strecher designs using an acousto-optic programmable dispersive filter (dazzler) for phase control in this purpose are studied. A compact and straightforward compressor using BK7 glass is used and an associated compressor for pulse monitoring was also studied. Lastly, the picosecond OPCPA stage was implemented in single and dual stage configurations.
APA, Harvard, Vancouver, ISO, and other styles
10

Sutherland, Julia Robin Miller. "Phase-Matching Optimization of Laser High-Order Harmonics Generated in a Gas Cell." Diss., CLICK HERE for online access, 2005. http://contentdm.lib.byu.edu/ETD/image/etd880.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Ultra High Intensity Laser"

1

John, Alcock A., and National Research Council Canada, eds. High intensity laser processes. Bellingham, Wash., USA: SPIE--the International Society for Optical Engineering, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hiromitsu, Kiriyama, ed. Science and technology created by ultra-short, ultra-high-peak power lasers. Trivandrum: Transworld Research Network, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Michael, Campbell E., Baldis Hector, Society of Photo-optical Instrumentation Engineers., and American Academy of Otolaryngology--Head and Neck Surgery., eds. High intensity laser-matter interactions: 12-13 January 1988, Los Angeles, California. Bellingham, Wash., USA: SPIE, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

United States. National Aeronautics and Space Administration., ed. Ultra-high bypass ratio jet noise. [Washington, D.C.]: National Aeronautics and Space Administration, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

United States. National Aeronautics and Space Administration., ed. Ultra-high bypass ratio jet noise. [Washington, D.C.]: National Aeronautics and Space Administration, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

United States. National Aeronautics and Space Administration., ed. Ultra-high bypass ratio jet noise. [Washington, D.C.]: National Aeronautics and Space Administration, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

John, Alcock A., National Research Council Canada, and Société inter-port de Québec, eds. High intensity laser processes: 2-4 June 1986, Québec City, Canada. Bellingham, Wash., USA: SPIE--the International Society for Optical Engineering, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

service), SpringerLink (Online, ed. Ultra-high Frequency Linear Fiber Optic Systems. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Magill, Joseph, Heinrich Schwoerer, and Burgard Beleites. Lasers and nuclei: Applications of ultrahigh intensity lasers in nuclear science. Berlin: Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

A, Baldis Hector, and Society of Photo-optical Instrumentation Engineers., eds. Short-pulse high-intensity lasers and applications II: 21-22 January 1993, Los Angeles, California. Bellingham, Wash: SPIE, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Ultra High Intensity Laser"

1

Yanovsky, V., V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk, et al. "Ultra-high intensity-High Contrast 300-TW laser at 0.1 Hz repetition rate." In Springer Series in Chemical Physics, 750–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-95946-5_243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tanyag, Rico Mayro P., Bruno Langbehn, Thomas Möller, and Daniela Rupp. "X-Ray and XUV Imaging of Helium Nanodroplets." In Topics in Applied Physics, 281–341. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94896-2_7.

Full text
Abstract:
AbstractX-ray and extreme ultraviolet (XUV) coherent diffractive imaging (CDI) have the advantage of producing high resolution images with current spatial resolution of tens of nanometers and temporal resolution of tens of femtoseconds. Modern developments in the production of coherent, ultra-bright, and ultra-short X-ray and XUV pulses have even enabled lensless, single-shot imaging of individual, transient, non-periodic objects. The data collected in this technique are diffraction images, which are intensity distributions of the scattered photons from the object. Superfluid helium droplets are ideal systems to study with CDI, since each droplet is unique on its own. It is also not immediately apparent what shapes the droplets would take or what structures are formed by dopant particles inside the droplet. In this chapter, we review the current state of research on helium droplets using CDI, particularly, the study of droplet shape deformation, the in-situ configurations of dopant nanostructures, and their dynamics after being excited by an intense laser pulse. Since CDI is a rather new technique for helium nanodroplet research, we also give a short introduction on this method and on the different light sources available for X-ray and XUV experiments.
APA, Harvard, Vancouver, ISO, and other styles
3

Schwoerer, H. "High-Intensity Laser–Matter Interaction." In Lasers and Nuclei, 7–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-30272-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gibson, G. N., R. R. Freeman, and T. J. McIlrath. "High Intensity Molecular Multiphoton Ionization." In Coherence Phenomena in Atoms and Molecules in Laser Fields, 125–31. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3364-1_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Falcone, R. W., M. M. Murnane, and H. C. Kapteyn. "High-Intensity, Ultrashort Pulse Laser Heated Solids." In Laser Optics of Condensed Matter, 83–86. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3726-7_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Feldhaus, J., and B. Sonntag. "Free-Electron Lasers – High-Intensity X-Ray Sources." In Strong Field Laser Physics, 91–107. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-34755-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Giessen, Harald, Andreas Knorr, Jürgen Kuhl, and Stephan W. Koch. "High-intensity laser pulse propagation in semiconductors." In Advances in Solid State Physics, 483–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/bfb0107506.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gavrila, M. "Atomic Processes in High-Intensity, High-Frequency Laser Fields." In Atoms in Unusual Situations, 225–39. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4757-9337-6_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Muirhead, I. T., K. L. Lewis, A. M. Pitt, N. G. Chew, A. G. Cullis, T. J. Wyatt-Davies, L. Charlwood, and O. D. Dosser. "Fabrication of Optical Coatings Using Ultra-High Vacuum Techniques." In Laser/Optoelektronik in der Technik / Laser/Optoelectronics in Engineering, 470–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-83174-4_95.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fortuna, Damiano. "High-Intensity Laser Therapy for the Equine Patient." In Laser Therapy in Veterinary Medicine, 415–21. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119220190.ch37.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Ultra High Intensity Laser"

1

Vasilyev, Sergey, Mike Goma, Igor Moskalev, Oleg Mishechkin, Yury Barnakov, and Mike Mirov. "Ultra-Low Noise Cr:ZnS Laser Source for High Performance Dual Comb Spectroscopy." In CLEO: Science and Innovations, SM1H.4. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sm1h.4.

Full text
Abstract:
We demonstrate high-power (3 W), few cycle (19 fs), fully referenced (timing jitter < 0.1 fs) optical frequency comb at the middle-IR central wavelength λ = 2.4 µm with ultra-low intensity noise (<0.1% RMS).
APA, Harvard, Vancouver, ISO, and other styles
2

Ge, Renyou, Bigeng Chen, Yuan Shen, Yannong Luo, and Shaoliang Yu. "Hybrid Integrated Arbitrary-Polarized Pulsed Laser with Ultra-High Intensity- and Polarization-Extinction-Ratio." In 2024 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC), 1–4. IEEE, 2024. https://doi.org/10.1109/acp/ipoc63121.2024.10809642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Edwards, M. R., N. M. Fasano, V. M. Perez-Ramirez, M. M. Wang, K. Ou, S. Cao, D. Seyler, A. Giakas, P. Michel, and J. M. Mikhailova. "Structured Light from Structured Plasma: Manipulating Extreme Lasers with Plasma Optics." In CLEO: Applications and Technology, ATh1H.4. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/cleo_at.2024.ath1h.4.

Full text
Abstract:
Plasma volume diffraction optics enable the holographic manipulation of high-intensity beams of light. By varying plasma density with micron precision, high-damage-threshold gratings, lenses, and holograms can be created for compact ultra-high-power laser systems.
APA, Harvard, Vancouver, ISO, and other styles
4

Pérez-Hernández, José Antonio, Roland Guichard, Amelle Zaïr, Luis Roso, and Luis Plaja. "Valley Structure in the Harmonic Efficiency at Ultra-high Laser Intensities." In High Intensity Lasers and High Field Phenomena. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/hilas.2012.ht4c.8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Carbajo, Sergio, Liang J. Wong, Emilio Nanni, Damian N. Schimpf, and Franz X. Kärtner. "Ultra-intense Few-cycle Radial Polarization Source for Vacuum Laser Acceleration." In High Intensity Lasers and High Field Phenomena. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/hilas.2014.htu2c.6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pogorelsky, I., M. Polyanskiy, W. Li, M. Babzien, and M. A. Palmer. "Emerging Ultra-Fast Multi-Terawatt Long-Wave Infrared Lasers." In High Intensity Lasers and High Field Phenomena. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/hilas.2024.htu2b.6.

Full text
Abstract:
We report on generating 9.2 μm sub-picosecond laser pulses of several joule energy and review the status of long-wave infrared laser technology that enables research spanning from particle acceleration to remote detection of ionizing sources.
APA, Harvard, Vancouver, ISO, and other styles
7

Rothhardt, Jan, Carolin Rothhardt, Michael Müller, Arno Klenke, Marco Kienel, Stefan Demmler, Tino E. Elsmann, Manfred Rothhardt, Jens Limpert, and Andreas Tünnermann. "100 W Average Power Femtosecond UV Laser for Ultra-High Photon Flux XUV Sources." In High Intensity Lasers and High Field Phenomena. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/hilas.2016.hm8b.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pomerantz, Ishay, Eddie McCary, Alexander Ross Meadows, Alexey Arefiev, Aaron C. Bernstein, Clay Chester, Jose Cortez, et al. "An Ultra-Short Pulsed Neutron Source." In High Intensity Lasers and High Field Phenomena. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/hilas.2014.hth1b.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Golovin, Grigory, Sudeep Banerjee, Cheng Liu, Shouyuan Chen, Jun Zhang, Baozhen Zhao, Ping Zhang, et al. "Laser-Driven Electron Beams With Ultra-Low Emittance Measured Via Inverse-Compton-Scattered X-Rays." In High Intensity Lasers and High Field Phenomena. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/hilas.2016.hm3b.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Manzoni, Cristian, Shu-Wei Huang, Giovanni Cirmi, Jeffrey Moses, Franz Kärtner, and Giulio Cerullo. "Coherent Synthesis of Ultra-broadband Optical Parametric Amplifiers." In High Intensity Lasers and High Field Phenomena. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/hilas.2012.ht3c.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Ultra High Intensity Laser"

1

N.J. Fisch and V.M. Malkin. Generation of Ultra-high Intensity Laser Pulses. Office of Scientific and Technical Information (OSTI), June 2003. http://dx.doi.org/10.2172/814677.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rax, J. M., and N. J. Fisch. Third harmonic generation with ultra-high intensity laser pulses. Office of Scientific and Technical Information (OSTI), April 1992. http://dx.doi.org/10.2172/10142743.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rax, J. M., and N. J. Fisch. Third harmonic generation with ultra-high intensity laser pulses. Office of Scientific and Technical Information (OSTI), April 1992. http://dx.doi.org/10.2172/5588583.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gold, David Michael. Reflectivity of plasmas created by high-intensity, ultra-short laser pulses. Office of Scientific and Technical Information (OSTI), June 1994. http://dx.doi.org/10.2172/45569.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rax, J. M. Compton harmonic resonances, stochastic instabilities, quasilinear diffusion, and collisionless damping with ultra-high intensity laser waves. Office of Scientific and Technical Information (OSTI), April 1992. http://dx.doi.org/10.2172/10142736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rax, J. M. Compton harmonic resonances, stochastic instabilities, quasilinear diffusion, and collisionless damping with ultra-high intensity laser waves. Office of Scientific and Technical Information (OSTI), April 1992. http://dx.doi.org/10.2172/5393785.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sprangle, Phillip, and Bahman Hafizi. High-Power, High-Intensity Laser Propagation and Interactions. Fort Belvoir, VA: Defense Technical Information Center, March 2014. http://dx.doi.org/10.21236/ada596959.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fisch, Nathaniel J. Ultra-High Intensity Magnetic Field Generation in Dense Plasma. Office of Scientific and Technical Information (OSTI), January 2014. http://dx.doi.org/10.2172/1115189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cousineau, Sarah, Alexander Aleksandrov, Yun Liu, David Jonson, and Timofey Gorlov. Laser Stripping for High Intensity Proton Beams. Office of Scientific and Technical Information (OSTI), July 2018. http://dx.doi.org/10.2172/1496019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ditmire, T. High intensity laser interactions with atomic clusters. Office of Scientific and Technical Information (OSTI), August 2000. http://dx.doi.org/10.2172/15001992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography