Academic literature on the topic 'UAV collision avoidance'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'UAV collision avoidance.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "UAV collision avoidance"
Shan, Lin, Huan-Bang Li, Ryu Miura, Takashi Matsuda, and Takeshi Matsumura. "A Novel Collision Avoidance Strategy with D2D Communications for UAV Systems." Drones 7, no. 5 (April 22, 2023): 283. http://dx.doi.org/10.3390/drones7050283.
Full textChen, C. W., P. H. Hsieh, and W. H. Lai. "APPLICATION OF DECISION TREE ON COLLISION AVOIDANCE SYSTEM DESIGN AND VERIFICATION FOR QUADCOPTER." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W6 (August 23, 2017): 71–75. http://dx.doi.org/10.5194/isprs-archives-xlii-2-w6-71-2017.
Full textTan, Chee Yong, Sunan Huang, Kok Kiong Tan, Rodney Swee Huat Teo, Wen Qi Liu, and Feng Lin. "Collision Avoidance Design on Unmanned Aerial Vehicle in 3D Space." Unmanned Systems 06, no. 04 (October 2018): 277–95. http://dx.doi.org/10.1142/s2301385018500115.
Full textHe, Renke, Ruixuan Wei, and Qirui Zhang. "UAV autonomous collision avoidance approach." Automatika 58, no. 2 (April 3, 2017): 195–204. http://dx.doi.org/10.1080/00051144.2017.1388646.
Full textEt.al, Jung Kyu Park. "UAV Collision Detection Algorithm based on Formulafor Fast Calculation." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, no. 6 (April 10, 2021): 452–56. http://dx.doi.org/10.17762/turcomat.v12i6.1869.
Full textH. Sawalmeh, Ahmad, and Noor Shamsiah Othman. "An Overview of Collision Avoidance Approaches and Network Architecture of Unmanned Aerial Vehicles (UAVs)." International Journal of Engineering & Technology 7, no. 4.35 (November 30, 2018): 924. http://dx.doi.org/10.14419/ijet.v7i4.35.27395.
Full textLam, T. Mung, Max Mulder, and M. M. (René) van Paassen. "Haptic Interface For UAV Collision Avoidance." International Journal of Aviation Psychology 17, no. 2 (April 17, 2007): 167–95. http://dx.doi.org/10.1080/10508410701328649.
Full textBerdonosov, V. D., A. A. Zivotova, Zaw Htet Naing, and D. O. Zhuravlev. "Speed Approach for UAV Collision Avoidance." Journal of Physics: Conference Series 1015 (May 2018): 052002. http://dx.doi.org/10.1088/1742-6596/1015/5/052002.
Full textPeng, Zhihong, and Zhimin Chen. "Ground Target Tracking and Collision Avoidance for UAV Based Guidance Vector Field." Journal of Advanced Computational Intelligence and Intelligent Informatics 19, no. 2 (March 20, 2015): 277–83. http://dx.doi.org/10.20965/jaciii.2015.p0277.
Full textHARUN, MOHAMAD HANIFF, SHAHRUM SHAH ABDULLAH, MOHD SHAHRIEEL MOHD ARAS, MOHD BAZLI BAHAR, and FARIZ ALI @IBRAHIM. "3D COLLISION AVOIDANCE SYSTEM FOR UNMANNED AERIAL VEHICLE (UAV) WITH DECENTRALIZED APPROACH." IIUM Engineering Journal 24, no. 2 (July 4, 2023): 373–90. http://dx.doi.org/10.31436/iiumej.v24i2.2803.
Full textDissertations / Theses on the topic "UAV collision avoidance"
Patel, Amir. "UAV collision avoidance: a specific acceleration matching approach." Master's thesis, University of Cape Town, 2011. http://hdl.handle.net/11427/11582.
Full textIncludes bibliographical references.
An increased level of autonomy is required for future Unmanned Aerial Vehicle (UAV) missions. One of the technologies required for this to occur is an adequate sense and avoid system to enable the UAV to detect threat aircraft and take evasive action if required. This thesis investigates a collision avoidance system to satisfy a significant portion of the requirements for sense and avoid. It was hypothesised that a recently published method of UAV guidance, Specific Acceleration Matching (SAM) Control, could address the shortcomings of the current implementations. Additionally, a novel algorithm, the Linear 3D Velocity Guidance Control Algorithm (3DVGC) was developed to address the particular requirements of UAV collision avoidance.
Lee, Hua. "High-Precision Geolocation Algorithms for UAV and UUV Applications in Navigation and Collision Avoidance." International Foundation for Telemetering, 2008. http://hdl.handle.net/10150/606155.
Full textUUV homing and docking and UAV collision avoidance are two seemingly separate research topics for different applications. Upon close examination, these two are a pair of dual problems, with interesting correspondences and commonality. In this paper, we present the theoretical analysis, signal processing, and the field experiments of these two algorithms in UAV and UUV applications in homing and docking as well as collision avoidance.
Brandt, Adam M. "Haptic Collision Avoidance for a Remotely Operated Quadrotor UAV in Indoor Environments." Diss., CLICK HERE for online access, 2009. http://contentdm.lib.byu.edu/ETD/image/etd3177.pdf.
Full textJaroń, Piotr, and Mateusz Kucharczyk. "Vision System Prototype for UAV Positioning and Sparse Obstacle Detection." Thesis, Blekinge Tekniska Högskola, Sektionen för ingenjörsvetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-4663.
Full textVision systems are employed more and more often in navigation of ground and air robots. Their greatest advantages are: low cost compared to other sensors, ability to capture large portion of the environment very quickly on one image frame, and their light weight, which is a great advantage for air drone navigation systems. In the thesis the problem of UAV (Unmanned Aerial Vehicle) is considered. Two different issues are tackled. First is determining the vehicles position using one down-facing or two front-facing cameras, and the other is sparse obstacle detection. Additionally, in the thesis, the camera calibration process and camera set up for navigation is discussed. Error causes and types are analyzed.
Klaus, Robert Andrew. "Development of a Sense and Avoid System for Small Unmanned Aircraft Systems." BYU ScholarsArchive, 2013. https://scholarsarchive.byu.edu/etd/3761.
Full textDegen, Shane C. "Reactive image-based collision avoidance system for unmanned aircraft systems." Thesis, Queensland University of Technology, 2011. https://eprints.qut.edu.au/46969/1/Shane_Degen_Thesis.pdf.
Full textCosentino, Andrea. "Obstacle detection & collision avoidance system for an Unmanned Aerial Vehicle with real time trajectory generation." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.
Find full textLindsten, Fredrik. "Angle-only based collision risk assessment for unmanned aerial vehicles." Thesis, Linköping University, Department of Electrical Engineering, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-15757.
Full textThis thesis investigates the crucial problem of collision avoidance for autonomous vehicles. An anti-collision system for an unmanned aerial vehicle (UAV) is studied in particular. The purpose of this system is to make sure that the own vehicle avoids collision with other aircraft in mid-air. The sensor used to track any possible threat is for a UAV limited basically to a digital video camera. This sensor can only measure the direction to an intruding vehicle, not the range, and is therefore denoted an angle-only sensor. To estimate the position and velocity of the intruder a tracking system, based on an extended Kalman filter, is used. State estimates supplied by this system are very uncertain due to the difficulties of angle-only tracking. Probabilistic methods are therefore required for risk calculation. The risk assessment module is one of the essential parts of the collision avoidance system and has the purpose of continuously evaluating the risk for collision. To do this in a probabilistic way, it is necessary to assume a probability distribution for the tracking system output. A common approach is to assume normality, more out of habit than on actual grounds. This thesis investigates the normality assumption, and it is found that the tracking output rapidly converge towards a good normal distribution approximation. The thesis furthermore investigates the actual risk assessment module to find out how the collision risk should be determined. The traditional way to do this is to focus on a critical time point (time of closest point of approach, time of maximum collision risk etc.). A recently proposed alternative is to evaluate the risk over a horizon of time. The difference between these two concepts is evaluated. An approximate computational method for integrated risk, suitable for real-time implementations, is also validated. It is shown that the risk seen over a horizon of time is much more robust to estimation accuracy than the risk from a critical time point. The integrated risk also gives a more intuitively correct result, which makes it possible to implement the risk assessment module with a direct connection to specified aviation safety rules.
Boček, Michal. "Rozšíření řídicího systému modelu letadla Skydog o podporu vzdáleného a samočinného řízení Android aplikací." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2014. http://www.nusl.cz/ntk/nusl-236091.
Full textLai, John. "A hidden Markov model and relative entropy rate approach to vision-based dim target detection for UAV sense-and-avoid." Thesis, Queensland University of Technology, 2010. https://eprints.qut.edu.au/34462/1/John_Lai_Thesis.pdf.
Full textBooks on the topic "UAV collision avoidance"
Sense and avoid in UAS: Research and applications. Hoboken, NJ: Wiley, 2012.
Find full textBook chapters on the topic "UAV collision avoidance"
Pedro, Dário, André Mora, João Carvalho, Fábio Azevedo, and José Fonseca. "ColANet: A UAV Collision Avoidance Dataset." In IFIP Advances in Information and Communication Technology, 53–62. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45124-0_5.
Full textSong, Xiao Ou. "Dynamic MAC Protocol Designed for UAV Collision Avoidance System." In Advances in Intelligent Systems and Computing, 489–98. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61566-0_44.
Full textZhao, Jiannan, Xingzao Ma, Qinbing Fu, Cheng Hu, and Shigang Yue. "An LGMD Based Competitive Collision Avoidance Strategy for UAV." In IFIP Advances in Information and Communication Technology, 80–91. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19823-7_6.
Full textPark, Jung Kyu, and Jaeho Kim. "Collision Avoidance Method for UAV Using A* Search Algorithm." In Advances in Intelligent, Interactive Systems and Applications, 186–93. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-02804-6_25.
Full textFang, Bin, and Tefang Chen. "Research on UAV Collision Avoidance Strategy Considering Threat Levels." In Advances in Intelligent Systems and Computing, 887–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54927-4_85.
Full textLin, Lin, Yao Cheng, Liu Zhiyong, Liu Yinchuan, and Li Nisi. "A UAV Collision Avoidance System Based on ADS-B." In Lecture Notes in Electrical Engineering, 159–67. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7423-5_16.
Full textWen, Ma, and Liang Jin. "Research on Autonomous Collision Avoidance Method of Cooperative UAV." In Lecture Notes in Electrical Engineering, 2414–22. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6613-2_235.
Full textPęszor, Damian, Marzena Wojciechowska, Konrad Wojciechowski, and Marcin Szender. "Fast Moving UAV Collision Avoidance Using Optical Flow and Stereovision." In Intelligent Information and Database Systems, 572–81. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54430-4_55.
Full textLancovs, Dmitrijs. "Introducing Fixed-Wing Aircraft into Cooperative UAV Collision Avoidance System." In Lecture Notes in Networks and Systems, 392–99. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74454-4_38.
Full textChi, Pei, Xuan Zhang, Kun Wu, Lili Zheng, Jiang Zhao, and Yingxun Wang. "Distributed Formation Control and Collision Avoidance for Heterogeneous UAV Swarm." In Lecture Notes in Electrical Engineering, 1837–48. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6613-2_180.
Full textConference papers on the topic "UAV collision avoidance"
Merchant, John, and Frank Pope. "Micro UAV collision avoidance." In Defense and Security Symposium, edited by Grant R. Gerhart, Douglas W. Gage, and Charles M. Shoemaker. SPIE, 2007. http://dx.doi.org/10.1117/12.718984.
Full textKwag, Young K., Min S. Choi, Chul H. Jung, and Kwang Y. Hwang. "Collision Avoidance Radar for UAV." In 2006 CIE International Conference on Radar. IEEE, 2006. http://dx.doi.org/10.1109/icr.2006.343231.
Full textKwag, Young K., and Chul H. Chung. "UAV based collision avoidance radar sensor." In 2007 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2007. http://dx.doi.org/10.1109/igarss.2007.4422877.
Full textTony, Lima Agnel, Debasish Ghose, and Animesh Chakravarthy. "Avoidance maps: A new concept in UAV collision avoidance." In 2017 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 2017. http://dx.doi.org/10.1109/icuas.2017.7991382.
Full textTony, Lima A., Debasish Ghose, and Animesh Chakravarthy. "Precision UAV Collision Avoidance Using Computationally Efficient Avoidance Maps." In 2018 AIAA Guidance, Navigation, and Control Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-0875.
Full textKay, Jacob, Yutaka Ikeda, and Ba Nguyen. "Distributed Development of Automatic Air Collision Avoidance System Using PC-based Simulation." In 1st UAV Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-3475.
Full textGan, Xusheng, Yarong Wu, Pingni Liu, and Qian Wang. "Dynamic Collision Avoidance Zone Modeling Method Based on UAV Emergency Collision Avoidance Trajectory." In 2020 IEEE International Conference on Artificial Intelligence and Information Systems (ICAIIS). IEEE, 2020. http://dx.doi.org/10.1109/icaiis49377.2020.9194915.
Full textLin, Zijie, Lina Castano, and Huan Xu. "UAV Collision Avoidance with Varying Trigger Time." In 2020 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 2020. http://dx.doi.org/10.1109/icuas48674.2020.9213955.
Full textKrämer, Marc Steven, and Klaus-Dieter Kuhnert. "Multi-Sensor Fusion for UAV Collision Avoidance." In the 2018 2nd International Conference. New York, New York, USA: ACM Press, 2018. http://dx.doi.org/10.1145/3185066.3185081.
Full textZsedrovits, Tamas, Akos Zarandy, Balint Vanek, Tamas Peni, Jozsef Bokor, and Tamas Roska. "Collision avoidance for UAV using visual detection." In 2011 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2011. http://dx.doi.org/10.1109/iscas.2011.5938030.
Full textReports on the topic "UAV collision avoidance"
Wilson, Mike, and Glenn Baker. Passive Collision Avoidance System for UAS. Fort Belvoir, VA: Defense Technical Information Center, September 2008. http://dx.doi.org/10.21236/ada486617.
Full textPadhi, Radhakant, Amit K. Tripathi, and Ramsingh G. Raja. Reactive Collision Avoidance of UAVs withStereovision Sensing. Fort Belvoir, VA: Defense Technical Information Center, January 2014. http://dx.doi.org/10.21236/ada595808.
Full text