Academic literature on the topic 'UAV'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'UAV.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "UAV"
Ye, Jia, Chao Zhang, Hongjiang Lei, Gaofeng Pan, and Zhiguo Ding. "Secure UAV-to-UAV Systems With Spatially Random UAVs." IEEE Wireless Communications Letters 8, no. 2 (April 2019): 564–67. http://dx.doi.org/10.1109/lwc.2018.2879842.
Full textLi, Huadong, Yiliang Liu, Daochun Li, Dawei Bie, and Zi Kan. "Ground Test and Numerical Simulation of Aerodynamic Interference of the Marsupial UAS." Aerospace 10, no. 2 (February 14, 2023): 175. http://dx.doi.org/10.3390/aerospace10020175.
Full textNopiani, Yanti, Dewi Fortuna Ayu, Evy Rossi, Yelmira Zalfiatri, and Siti Nurhajijah. "PENGARUH TEPUNG AMPAS KEDELAI DALAM PEMBUATAN FLAKES UBI JALAR MERAH." Jurnal Teknologi Pertanian 24, no. 2 (August 31, 2023): 95–104. http://dx.doi.org/10.21776/ub.jtp.2023.024.02.3.
Full textSilva, Mário, and Jorge Silva. "Management of urban air logistics with unmanned aerial vehicles: The case of medicine supply in Aveiro, Portugal." Journal of Airline and Airport Management 11, no. 1 (June 30, 2021): 34. http://dx.doi.org/10.3926/jairm.182.
Full textSzabolcsi, Róbert. "The Quadrotor-Based Night Watchbird UAV System Used In The Force Protection Tasks." International conference KNOWLEDGE-BASED ORGANIZATION 21, no. 3 (June 1, 2015): 749–55. http://dx.doi.org/10.1515/kbo-2015-0126.
Full textHu, Xiaodan, Yifan Li, Han Wu, Zhijie Liu, and Jiyu Li. "A YOLOv3-Based Rice Vortex Detecting System Using Dual Collaborative UAVs." Journal of the ASABE 65, no. 5 (2022): 1133–40. http://dx.doi.org/10.13031/ja.14994.
Full textBlagodaryashchev, I. V., M. A. Kiselev, R. S. Naumov, and V. S. Shapkin. "Topical issues of personnel training in the field of unmanned aircraft systems." Civil Aviation High Technologies 25, no. 4 (September 6, 2022): 8–19. http://dx.doi.org/10.26467/2079-0619-2022-25-4-8-19.
Full textTkachyck, P., O. Kotcemyr, S. Sokolovskyi, and D. Bilous. "Accounting for real meteorological conditions at the time of UAV flight mission planning." Military Technical Collection, no. 25 (December 21, 2021): 54–60. http://dx.doi.org/10.33577/2312-4458.25.2021.54-60.
Full textZhang, Jingmin, Xiaokui Yue, Haofei Zhang, and Tiantian Xiao. "Optimal Unmanned Ground Vehicle—Unmanned Aerial Vehicle Formation-Maintenance Control for Air-Ground Cooperation." Applied Sciences 12, no. 7 (April 1, 2022): 3598. http://dx.doi.org/10.3390/app12073598.
Full textAn, Namwon, Kyung-Mee Lim, and So-Young Jeong. "Acquiring Precise Coordinates of Ground Targets through GCP Geometric Correction of Captured Images in UAS." Journal of the Korea Institute of Military Science and Technology 26, no. 2 (April 5, 2023): 129–38. http://dx.doi.org/10.9766/kimst.2023.26.2.129.
Full textDissertations / Theses on the topic "UAV"
Andersson, Per-Olov. "UAV/UCAV i fredens tjänst : UAV/UCAV och dess operativa betydelse i framtida Peace Support Operations." Thesis, Försvarshögskolan, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:fhs:diva-1898.
Full textAvdelning: ALB - Slutet Mag 3 C-upps.Hylla: Upps. ChP 99-01
Hajri, Riadh. "UAV to UAV Target Detection and Pose Estimation." Thesis, Monterey, California. Naval Postgraduate School, 2012. http://hdl.handle.net/10945/7351.
Full textStalmakou, Artsiom. "UAV/UAS path planning for ice management information gathering." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for teknisk kybernetikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-13232.
Full textHoltby, Johan. "Autonom UAV." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-168611.
Full textI Abisko Nationalpark finns det ett antal väderstationer. För att på sikt kunna läsa av väderdata från dessa har en quadrocopter-prototyp utvecklats i detta examensarbete. En quadrocopter är en helikopter med fyra rotorer placerade i ett kryss. Quadrocoptern kan navigera autonomt mellan olika GPS-positioner som ges trådlöst via Xbee-moduler. Alla nivåer från källkod, design av elektronik till utformning och tillverkning av chassit har gjorts inom detta projekt. Vid GPS-navigering kan quadrocoptern uppnå en stationär position med en medelvärdesavvikelse mindre än 0.5 meter trots lättare vindar.
Dahl, David, and Fredrik Stetler. "UAV Antarctica." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-152700.
Full textLjungbäck, Jacob, and David Williamsson. "UAV Helikoptertransmission." Thesis, KTH, Maskinkonstruktion (Inst.), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-176309.
Full textA group of researchers at the department of Machine Design KTH are working with the development of a UAV helicopter (unmanned helicopter) which main purpose is demining. The frame, rotor blades and engine are already chosen but a transmission is also needed. This Bachelor thesis contains the development of the transmission including the centrifugal clutch, shafts and bearings. The goal of the thesis is to design a transmission with a structured product development process and to produce a complete CAD model. The thesis will not include choosing manufacturing methods, test flight with the finish transmission or detail design. The weight should be as low as possible for all parts. At the beginning of the project, an information retrieval was made on the internet, old course books and scientific journals to find similar designs. To understand the project and to know what the clients wanted and their demands, a meeting was also accomplished. The conceptual design was achieved with the help of brainstorming and analyzing the product requirements. To find out the requirements, a QFD matrix was used to transform the client’s wishes and demands into product features. Plastic gears and slim steel shaft scored high in the QFD and are therefore desirable. The result of the conceptual design was three concepts. To find out which of the concept that meets the client’s and project member’s demands best, a decision matrix was used. The result was that the concept with twin belts and one gearbox scored highest and was therefore chosen. To design the transmission in a way that meets the product requirements, both analytical- and FEM calculations were done. Only the plastic gears and the belt didn’t meet the requirement that the safety factor should at least be 1,6. To optimize the design further a test flight is needed to measure the forces that are applied on the transmission. After the test flight the forces are known and therefore it’s probably possible to reduce the weight. To reduce the weight even further a design with lubricated gears would make the gears smaller and lighter since the lubricant enables higher contact pressure. The clients should therefore consider a more expansive and complicated design if the weight should be reduced from the 1, 8 kg that the current design weighs.
BOZKURT, Ugur, and Mustafa Aslan. "Assembly of a UAV : hardware design of a UAV." Thesis, Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-3247.
Full textThis bachelor thesis is dedicated to assemble the hardware system of a UAV (Unmanned Aerial Vehicle) in order to prepare the platform for an autonomous flight in the air for a given path through the pre-programmed check points. A UAV is an aircraft that contains sensors, GPS, radio system, servomechanisms and computers, which provide the capability of an autonomous flight without a human pilot in the cockpit. A stable flight requires sensing the roll, pitch, and yaw angles of aircraft. Roll and pitch angles were ensured by a sensor system of FMA Direct Company called co-pilot flight stabilization system (CPD4), which allows controlling ailerons and elevator manually.
An autopilot is required for steering the aircraft autonomously according the GPS data and the establish waypoints that the airplane have to pass by. The GPS gives heading information to the autopilot, and this uses the information of the next waypoint to decide which direction to go. Hereby an autonomous flight is provided. In this project a lego mindstorm NXT was used as an autopilot that is product of LEGO Company [1]. The output of the autopilot is used to control the airplane servos to fly in the desired direction. A software and hardware interface was designed to allow the autopilot to receive the data from the co-pilot sensor and to transmit data to the co-pilot processor, which will finally steer the actuator servos. Experiments were performed with different parts of the system and the results reported.
Blomberg, Andreas. "Utvärdering av mätosäkerheten vid georeferering med UAS och Post Processed Kinematic-GNSS." Thesis, Högskolan i Gävle, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-22145.
Full textDen starka teknikutvecklingen för UAS resulterar i flera nya produkter på marknaden och för att utvärdera deras mätosäkerheter krävs det kontroller av systemen. Den vanligaste metoden vid georeferering med UAS är att använda koordinatbestämda flygsignaler på marken. På senare år har metoder för direkt georeferering presenterats, vilket i teorin innebär att positionen för UAS kan bestämmas så pass noggrant att flygsignaler kan uteslutas. I denna studie utvärderas mätosäkerheter för Freya, ett UAS från SmartPlanes som med hjälp av bra positionering och blockutjämning ska kunna användas för georeferering utan flygsignalering. Systemet från Smartplanes bygger på Post Processed Kinematic (PPK) för koordinatbestämning, vilket innebär att insamlat GNSS data kan efterberäknas med korrektioner från en referensstation. Mätosäkerheten för PPK-tekniken testas och utvärderas med 3 olika metoder för att se både på mätosäkerhet samt möjlig användning. Totalt fem flygningar har utförts på ett testområde som var cirka 280x320 m och beläget i den norra delen av Gävle flygplats. Flyghöjden var kring 90 m för alla flygningar som vidare har bearbetats och utvärderats i programvaran PhotoScan från Agisoft. Kontrollen av mätosäkerheten har gjorts mot 16 spridda kontrollpunkter på marken som har positionsbestämts med fyra oberoende nätverks-RTK mätningar vardera. Varje flygning är utförd i två ortogonala block och utvärderades med fyra olika konfigurationer mot de 16 kontrollpunkterna. Resultaten visar att georeferering med hjälp av blockutjämning och PPK-tekniken har potential för att uppnå mätosäkerheter i nivå med indirekt georeferering med hjälp av stödpunkter på marken. I plan visar resultaten på väldigt jämna mätosäkerheter, kring 0,020 m i RMS, för alla utvärderingar med PPK-tekniken. Resultaten i höjd är mer spridda där de lägsta visar mätosäkerheter under 0,015 m RMS och de högsta över 0,100 m i RMS för avvikelsen mot kontrollpunkterna. Det är fullt möjligt att uppnå låga mätosäkerheter med metoden utan användning av stödpunkter. För användningsområden där stödpunkter inte kan etableras är detta UAS med PPK-tekniken ett mycket lämpligt alternativ att använda. Resultaten visar på relativt stora skillnader mellan de olika testade metoderna och för att avgöra den exakta orsaken till dem skulle vidare studier behövas.
Grafström, Erik, Erik Hansson, and Max Morén. "Quadrotor UAV : Konstruktion och användbarhetsstudie av en UAV i sensornätverk." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-143813.
Full textLöfqvist, Ulf. "Kollisionsundvikning för UAV." Thesis, Linköping University, Department of Electrical Engineering, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-8192.
Full textI en obemannad flygfarkost måste datorer ta över pilotens förmåga att värdera risker och undvika kollisioner. På algoritmnivå brukar man dela in problemet i tre delar: Upptäckt och estimering av inblandade farkosters positioner och hastigheter, kollisionsriskberäkning och slutligen undanmanöver.
Saabs arbete med obemannade farkoster har tidigare berört kollisionsundvikning lite ytligt men nu börjat på större allvar. Det här examensarbetet är en del i denna satsning och har resulterat i ett sätt att beräkna kollisionsrisken samt ett sätt att beräkna en undanmanöver, givet att de inblandade farkosternas positioner och hastigheter är kända.
I examensarbetet behandlas parvisa kollisionsscenarier mellan ickekommunicerande farkoster givet två olika fall. Dels där den främmande farkostens position skattats väl, dels där den främmande farkostens position skattats sämre. En enkel simuleringsmiljö har utvecklats, där två algoritmer för beräknandet av kollisionsrisken, en för varje fall, testats samtidigt som undanmanövern testats för en mängd kollisionsscenarier. Givet att den främmande farkostens position skattats väl behöver den obemannade farkosten cirka 6 s på sig för att kunna undvika en kollision. I fallet där den främmande farkostens position skattats sämre kan vi beräkna kollisionsrisken och i vissa fall sluta oss till hur farkosterna är orienterade och därigenom göra ett undanmanöverval.
Saabs work with unmanned aerial vehicles has only scratched the surface of collision avoidance, but is now advancing. This master thesis sheds light on some parts of the collision avoidance problem and has resulted in an innovative way to calculate the risk of collision and a way to determine an avoidance maneuver.
In this master thesis collision scenarios between non-communicating vehicles are being looked upon in pairs, given two different sets of data. Good estimates of the unknown vehicles position and unsatisfying position estimate. Through the development of a simple simulation environment, two algorithms, one for each set of data, has been tested simultaneously with tests of the collision avoidance maneuver for several collision scenarios. Given a good estimate of the unknown aerial vehicles position, the unmanned vehicle need approximately 6 seconds to act to avoid a collision. For the case with unsatisfactory estimate of the unknown vehicle the risk of collision can be calculated and in some cases the orientation of the aerial vehicles and thus a choice of avoidance maneuver can be made.
Books on the topic "UAV"
Gerken, Louis. UAV-- unmanned aerial vehicles. Chula Vista, Calif., U.S.A: American Scientific Corp., 1991.
Find full textFahlstrom, Paul Gerin. Introduction to UAV systems. 4th ed. Hoboken, NJ: John Wiley & Sons, 2012.
Find full textNawrat, Aleksander, and Zygmunt Kuś, eds. Vision Based Systemsfor UAV Applications. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00369-6.
Full textNawrat, Aleksander. Vision Based Systemsfor UAV Applications. Heidelberg: Springer International Publishing, 2013.
Find full textPan, Gaofeng, Xiaqing Miao, Xuanhe Yang, and Ziyi Yang, eds. UAV Communications: Modeling and Analyses. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-0383-8.
Full textFahlstrom, Paul Gerin, and Thomas James Gleason. Introduction to UAV Systems, Fourth Edition. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781118396780.
Full textMarqués, Pascual, and Andrea Da Ronch, eds. Advanced UAV Aerodynamics, Flight Stability and Control. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118928691.
Full textPapageorgiou, Evangelos C. Development of a dynamic model for a UAV. Monterey, Calif: Naval Postgraduate School, 1997.
Find full textAustin, Reg. Unmanned air vehicles: UAV design, development, and deployment. Chichester, West Sussex, U.K: Wiley, 2010.
Find full textBai, Lu, Ziwei Huang, and Xiang Cheng. Propagation Characterization and Channel Modeling for UAV Communications. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-57503-7.
Full textBook chapters on the topic "UAV"
Ye, Jia, Yanci Si, and Gaofeng Pan. "UAV-to-UAV Communications." In UAV Communications: Modeling and Analyses, 87–112. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-0383-8_3.
Full textRanjan, Prashant, Ram Shringar Rao, Krishna Kumar, and Pankaj Sharma. "UAV." In Wireless Communication, 151–62. New York: CRC Press, 2022. http://dx.doi.org/10.1201/9781003181699-8.
Full textZhang, Yan. "Mobile Edge Computing for UAVs." In Simula SpringerBriefs on Computing, 65–80. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83944-4_6.
Full textDuan, Haibin. "Multiple UAV/UGV Heterogeneous Control." In Bio-inspired Computation in Unmanned Aerial Vehicles, 183–214. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41196-0_6.
Full textValavanis, Kimon P., and George J. Vachtsevanos. "Networked UAVs and UAV Swarms: Introduction." In Handbook of Unmanned Aerial Vehicles, 1983–85. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-90-481-9707-1_146.
Full textAl-Kaff, Abdulla, Francisco Miguel Moreno, Luis Javier San José, Fernando García, David Martín, Arturo de la Escalera, Alberto Nieva, and José Luis Meana Garcéa. "VBII-UAV: Vision-Based Infrastructure Inspection-UAV." In Advances in Intelligent Systems and Computing, 221–31. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56538-5_24.
Full textDuan, Haibin, and Pei Li. "UAV Path Planning." In Bio-inspired Computation in Unmanned Aerial Vehicles, 99–142. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41196-0_4.
Full textValavanis, Kimon P., and George J. Vachtsevanos. "UAV Fundamentals: Introduction." In Handbook of Unmanned Aerial Vehicles, 241–42. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-90-481-9707-1_134.
Full textValavanis, Kimon P., and George J. Vachtsevanos. "UAV Propulsion: Introduction." In Handbook of Unmanned Aerial Vehicles, 493–94. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-90-481-9707-1_136.
Full textValavanis, Kimon P., and George J. Vachtsevanos. "UAV Control: Introduction." In Handbook of Unmanned Aerial Vehicles, 527–28. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-90-481-9707-1_137.
Full textConference papers on the topic "UAV"
Pryor, Jacob, Scott Martin, and David Bevly. "Evaluation of Cooperative UAV-UGV Navigation Strategies with Maneuvering UAVs." In 34th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2021). Institute of Navigation, 2021. http://dx.doi.org/10.33012/2021.17934.
Full textLee, Jae-Keun, Hahmin Jung, Huosheng Hu, and Dong Hun Kim. "Collaborative control of UAV/UGV." In 2014 11th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI). IEEE, 2014. http://dx.doi.org/10.1109/urai.2014.7057485.
Full textKrupas, Maros, Saahil Chand, Yuqian Lu, Xun Xu, Erik Kajati, and Iveta Zolotova. "Human-Centric UAV-UGV Collaboration." In 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE). IEEE, 2023. http://dx.doi.org/10.1109/case56687.2023.10260412.
Full textShetty, Devdas, and Louis Manzione. "Unmanned Aerial Vehicles (UAV): Design Trends." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64518.
Full textKovalev, D. I. "Analysis of the efficiency of UAV transport and technological cycle operations." In III ALL-RUSSIAN SCIENTIFIC CONFERENCE WITH INTERNATIONAL PARTICIPATION “ACHIEVEMENTS OF SCIENCE AND TECHNOLOGY, CULTURAL INITIATIVES AND SUSTAINABLE DEVELOPMENT-DNIT-III-2024”. Krasnoyarsk Science and Technology City Hall, 2024. http://dx.doi.org/10.47813/dnit-iii.2024.11.3011.
Full textMazur, David. "The X-47A Pegasus: From Design to Flight." In 1st UAV Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-3426.
Full textBuffington, James. "Autonomous Airborne Re-Supply Systems for Unmanned Air Vehicles." In 1st UAV Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-3416.
Full textBarefoot, Terry. "The History of Global Hawk: ACTD Through EMD." In 1st UAV Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-3516.
Full textLavretsky, Eugene, and Kathleen Misovec. "Phase I: Formation Flight Control Design." In 1st UAV Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-3429.
Full textEnderle, Bruce. "Commercial Applications of UAV's in Japanese Agriculture." In 1st UAV Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-3400.
Full textReports on the topic "UAV"
Wackerman, Christopher. Operational Assimilation into UUV and UAV Observations. Fort Belvoir, VA: Defense Technical Information Center, January 2008. http://dx.doi.org/10.21236/ada514634.
Full textStoneking, Craig, Phil DiBona, and Adria Hughes. Multi-UAV Collaborative Sensor Management for UAV Team Survivability. Fort Belvoir, VA: Defense Technical Information Center, August 2006. http://dx.doi.org/10.21236/ada460418.
Full textDiMeo, Michael, Michael Kifarkis, Arshad Narmanwale, John Stanton, Sebastian Szulakiewicz, Bruce Treska, Katsuya Yonehara, and Jonathan Komperda. Radiation Mapping UAV. Office of Scientific and Technical Information (OSTI), February 2020. http://dx.doi.org/10.2172/1637620.
Full textCarlson, Barak J. Past UAV Program Failures and Implications for Current UAV Programs. Fort Belvoir, VA: Defense Technical Information Center, April 2001. http://dx.doi.org/10.21236/ada407103.
Full textCanavan, G. H. UAV sensor and survivability issues. Office of Scientific and Technical Information (OSTI), July 1996. http://dx.doi.org/10.2172/366505.
Full textCanavan, G. H., and R. Leadabrand. Research for new UAV capabilities. Office of Scientific and Technical Information (OSTI), July 1996. http://dx.doi.org/10.2172/383554.
Full textBechtel, Wayne, Nathaniel Hathaway, Trevor Jerdee, Eric Laskey, Jill McConaghy, Lisa Quade, Kariym Smith, Scott Sparrow, and James Tuey. Roving UAV IED Interdiction System. Fort Belvoir, VA: Defense Technical Information Center, March 2011. http://dx.doi.org/10.21236/ada540926.
Full textLukaszewicz, Thomas B. Joint Doctrine and UAV Employment. Fort Belvoir, VA: Defense Technical Information Center, February 1996. http://dx.doi.org/10.21236/ada307450.
Full textViggh, Herbert E., Christopher Weed, Michael T. Chan, and Daniel J. Van Hook. CAUSE Multi-UAV Simulation Demonstration. Fort Belvoir, VA: Defense Technical Information Center, April 2011. http://dx.doi.org/10.21236/ada570527.
Full textMullens, Katheerine D., Estrellina B. Pacis, Stephen B. Stancliff, Aaron B. Burmeister, and Thomas A. Denewiler. An Automated UAV Mission System. Fort Belvoir, VA: Defense Technical Information Center, September 2003. http://dx.doi.org/10.21236/ada422026.
Full text