Academic literature on the topic 'U-Pb monazite geochronology'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'U-Pb monazite geochronology.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "U-Pb monazite geochronology"

1

Tang, Xu, Qiu-Li Li, Bin Zhang, Peng Wang, Li-Xin Gu, Xiao-Xiao Ling, Chen-Hui Fei, and Jin-Hua Li. "The Chemical State and Occupancy of Radiogenic Pb, and Crystallinity of RW-1 Monazite Revealed by XPS and TEM." Minerals 10, no. 6 (May 31, 2020): 504. http://dx.doi.org/10.3390/min10060504.

Full text
Abstract:
Monazite ((Ce, La, Nd, Th)PO4) is one of the widely used minerals for U–Th–Pb dating in geochronology. To better understand the possible effects of radiogenic Pb on the in situ dating method, a natural monazite U–Th–Pb standard sample (RW-1) was chemically and structurally characterized down to atomic scales by using the combination of Raman spectrum (RM), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The experimental results revealed that radiogenic Pb exists as Pb2+ and substitutes for the Ce site in the monazite crystal lattice. Moreover, TEM imaging demonstrated that monazite is well crystalline revealed by an atomic structure in most areas except for a few tiny defects, which are likely attributed to alpha self-healing from an electronic energy loss of α particles. The characterization of the chemical state and occupancy of radiogenic Pb, and the distribution of Pb and Th in monazite at the nanoscale and atomic scale could provide insight for us to understand the mechanisms of the nanogeochronology.
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Li, Hai-Li Li, Guo-Guang Wang, and Jian-Dong Sun. "Geochronology of the Baishi W-Cu Deposit in Jiangxi Province and Its Geological Significance." Minerals 12, no. 11 (October 30, 2022): 1387. http://dx.doi.org/10.3390/min12111387.

Full text
Abstract:
The Baishi W-Cu deposit is located in the Nanling metallogenic belt, which is famous for its numerous W deposits and reserves. The formation age of this deposit remains unclear. In order to further infer the formation age of the deposit, this study conducted detailed LA-ICP-MS U-Pb isotopic analyses of zircon and monazite selected from ore-related Baishi granite. The LA-ICP-MS zircon U-Pb weighted average ages of Baishi granite were determined to be 223 ± 2 Ma and 226 ± 1 Ma, and the LA-ICP-MS U-Pb weighted average ages of monazite were determined to be 224 ± 2 Ma and 223 ± 1 Ma. The BSE image of monazite was homogeneous, and the pattern of rare earth elements had an obvious negative Eu anomaly, indicating that monazite was of magmatic origin. Combining the ages of zircon and monazite, this study inferred that Baishi granite and the Baishi W-Cu deposit formed in the Triassic. The determination of the ore-forming event of the Baishi W-Cu deposit provides new data regarding the important Indosinian (Triassic) mineralization events in the Nanling metallogenic belt and suggests that geologists should strengthen the prospecting work of Indosinian tungsten deposits in the Nanling area. In terms of tectonic setting, it was inferred that the Triassic Baishi W-Cu deposit was formed in the extensional environment after intracontinental orogeny.
APA, Harvard, Vancouver, ISO, and other styles
3

Mohammadi, Nadia, Christopher R. M. McFarlane, David R. Lentz, and Kathleen G. Thorne. "Timing of magmatic crystallization and Sn–W–Mo greisen vein formation within the Mount Douglas Granite, New Brunswick, Canada." Canadian Journal of Earth Sciences 57, no. 7 (July 2020): 814–39. http://dx.doi.org/10.1139/cjes-2019-0043.

Full text
Abstract:
U–Pb geochronology was applied to a combination of magmatic and hydrothermal minerals to help constrain the timing of emplacement of three units in the Mount Douglas Granite (MDG) and reveal their association with a complex mineralized hydrothermal system containing endogranitic Sn–W–Mo–Zn–Bi–U-bearing greisen/sheeted veins within the pluton. Magmatic monazite and zircon U–Pb ages obtained by LA–ICP–MS overlap at 368 Ma, recording a Late Devonian crystallization age for the MDG. Although discrimination, outside analytical error, of sequential pulses of magmatism is beyond the resolution of LA–ICP–MS U–Pb geochronology, geochemical variations of monazite accompanied by previous whole-rock geochemical analyses support a progressive fractional crystallization process starting from a parental magma (Dmd1), leading to the generation of Dmd2, and finally Dmd3 as the most fractionated unit. Hydrothermal uraninite, cassiterite, and monazite, collected from endogranitic greisen/sheeted veins, reveal evidence for syn-magmatic-related mineralization and a longer-lived post-magmatic hydrothermal system. The first stage is recorded by concordant uraninite dates at 367 ± 3 Ma and by an inverse isochron lower intercept of 362 ± 8 Ma for cassiterite. In contrast, hydrothermal monazite crystallized over a wider range of ages from 368 to 344 Ma, demonstrating post-magmatic hydrothermal activity within the MDG. These magmatic and hydrothermal ages combined with the geochemical signature of the MDG are similar to those documented for the nearby Mount Pleasant Sn–W–Mo–Bi–In granite-related deposit, which suggests that the two mineralizing systems occur at different levels of the same magmatic system.
APA, Harvard, Vancouver, ISO, and other styles
4

STEPANYUK, L. M., N. M. KONOVAL, T. I. DOVBUSH, O. V. KOVTUN, O. B. VYSOTSKY, and V. P. SNISAR. "Uranium-Lead Age of Granites of Kirovohrad Massif of the Inhul Megablock of the Ukrainian Shield." Mineralogical Journal 43, no. 4 (2021): 56–62. http://dx.doi.org/10.15407/mineraljournal.43.04.056.

Full text
Abstract:
The porphyry-like biotite-garnet granites (sample KВ-5-1) of the Sokolivkа quarry were studied. The quarry is located in the Kirovohrad granite massif on the southwest of Kropyvnytsky city. The aim of our geochronology investigation is to determine the age of granites of the Kirovohrad massif by the U-Pb isotope method using monazite. The age of granites from Kirovohrad massif by the U-Pb method using monazite has not been determined yet. According to our data, the porphyry granites of the Kirovohrad massif (Sokolivkа quarry) were formed 2034 million years ago. This U-Pb data of the porphyry-like granites is significantly lower than the U-Pb age of the granites from other parts of this massif. This may be due to the multistage formation of the Kirovohrad massif, for example, the Novoukrainskiy and some granite massifs of the Zhytomyr complex from Volyn’ megablock.
APA, Harvard, Vancouver, ISO, and other styles
5

C.A. NETO, CARLA, CLAUDIO M. VALERIANO, CLAUDIA R. PASSARELLI, MONICA HEILBRON, and MARCELA LOBATO. "Monazite ID-TIMS U-Pb geochronology in the LAGIR laboratory, Rio de Janeiro State University: protocols and first applications to the assembly of Gondwana supercontinent in SE-Brazil." Anais da Academia Brasileira de Ciências 86, no. 1 (March 2014): 171–86. http://dx.doi.org/10.1590/0001-3765201420120005.

Full text
Abstract:
The chemical and spectrometric procedures of the U-Pb geochronology method on monazites, recently installed in the LAGIR laboratory, are described in detail. In addition, preliminary results on monazite samples from the Brasília and Ribeira belts are reported and discussed in the context of the regional geology. Several experiments for calibration of ion exchange chromatographic columns with the AG-1x8 resin, were performed with HCl, using dissolved natural monazite samples. The Pb blanks of reagents are ∼0.5 pg/g in acids and ∼1 pg/g in H2O. The total Pb blanks in chemical procedures were below 22 pg. Preliminary results are presented from three case studies related to Brasiliano orogenic belts of SE-Brazil, which correlate very well with previous age determinations from literature: two sub-concordant grains from an Araxá Group quartzite (southern Brasília belt) define a concordia age of 602.6 ±1.4 Ma; a -0.8% discordant grain from a quartzite of the São Fidelis Group (Costeiro Domain, central Ribeira belt) yielded a concordia age of 535.3 ± 2.4 Ma; two 0.4 % and 1.3 % discordant monazite grains from the post-collisional Itaoca Granite (Costeiro Domain, central Ribeira belt) define a concordia age of 476.4 ± 1.8 Ma.
APA, Harvard, Vancouver, ISO, and other styles
6

Peterman, Emily M., James M. Mattinson, and Bradley R. Hacker. "Multi-step TIMS and CA-TIMS monazite U–Pb geochronology." Chemical Geology 312-313 (June 2012): 58–73. http://dx.doi.org/10.1016/j.chemgeo.2012.04.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yan, Taotao, Dongsheng Liu, Chen Si, and Yu Qiao. "Coupled U–Pb Geochronology of Monazite and Zircon for the Bozhushan Batholith, Southeast Yunnan Province, China: Implications for Regional Metallogeny." Minerals 10, no. 3 (March 6, 2020): 239. http://dx.doi.org/10.3390/min10030239.

Full text
Abstract:
Constraining the duration of magmatism is of vital importance to the understanding of the magmatic-hydrothermal mineral system. The Bozhushan batholith, located in the middle section of the southeastern Yunnan ore district, mainly consists of biotite monzogranite and monzogranite. Many Sn–W–polymetallic deposits are developed around the Bozhushan batholith, but their temporal and genetic relationships remain controversial. LA-ICP-MS U–Pb zircon and monazite dating were respectively conducted on the same two samples, yielding weighted mean 206Pb/238U zircon ages of 85.1 ± 0.7 and 85.6 ± 0.9 Ma, and weighted mean 206Pb/238U monazite ages of 87.1 ± 0.9 and 88.1 ± 1.1 Ma. The crystallization ages of S-type granites obtained from the zircon U–Th–Pb system and monazite U–Th–Pb system are consistent within the analytical errors. After combining the new ages obtained in this study with recently published U–Pb zircon and cassiterite ages from the giant Baniuchang Ag–Sn–Pb–Zn deposit in the north, and U–Pb zircon and Re-Os molybdenite ages from the large Guanfang W deposit in the south, a temporal framework of magmatism-mineralization in the Bozhushan region has been established. The duration of magmatic activity at Bozhushan is about 7 Ma, with W mineralization occurring at ca. 92 Ma and Sn mineralization at 88–87 Ma.
APA, Harvard, Vancouver, ISO, and other styles
8

Torab, F. M., and B. Lehmann. "Magnetite-apatite deposits of the Bafq district, Central Iran: apatite geochemistry and monazite geochronology." Mineralogical Magazine 71, no. 3 (June 2007): 347–63. http://dx.doi.org/10.1180/minmag.2007.071.3.347.

Full text
Abstract:
AbstractThe Bafq mining district is in the Early Cambrian Kashmar-Kerman volcano-plutonic arc in Central Iran and hosts important ‘Kiruna-type’ magnetite-apatite deposits. The hydrothermal magnetite-apatite mineralization occurs mostly as massive orebodies, metasomatic replacements, veins and stockworks. Apatite (low-Sr fluorapatite containing small amounts of hydroxyl) has undergone a partial hydrothermal overprint which involved leaching of Na, Cl and REE. The REE were remobilized into monazite (and minor allanite, parisite and xenotime) which nucleated as inclusions within apatite or as individual crystals. The monazites have very small ThO2 contents (usually <1 wt.%), but they occasionally show an inner core of high-Th monazite, with low-Th overgrowth rims. The chemical Th-U-total Pb dating of the high-Th monazites by electron microprobe analysis yields an isochron age of 515±21 Ma (initial PbO intercept = 68 ppm), or 529±21 Ma (forced initial PbO = 0), which is contemporaneous with the emplacement of the volcano-plutonic host rocks of the magnetite-apatite mineralization, as well as with widespread sedimentation of Late Proterozoic to Cambrian evaporitic rocks in Central Iran. The monazite age and the mineralogical and geochemical data suggest that the magnetite-apatite deposits are probably related to large-scale brine circulation induced by felsic magmatism during the Cambrian.
APA, Harvard, Vancouver, ISO, and other styles
9

Lucas, S. B., E. C. Syme, and K. E. Ashton. "Introduction to Special Issue 2 on the NATMAP Shield Margin Project: The Flin Flon Belt, Trans-Hudson Orogen, Manitoba and Saskatchewan." Canadian Journal of Earth Sciences 36, no. 11 (November 10, 1999): 1763–65. http://dx.doi.org/10.1139/e00-005.

Full text
Abstract:
The Shield Margin Project of the National Geoscience Mapping Program (NATMAP) resulted in a new understanding of the Paleoproterozoic Flin Flon Belt (Manitoba and Saskatchewan) in four dimensions. A multidisciplinary approach was utilized in the NATMAP project, based on partnerships with government, university, and private sector geoscientists, and close cooperation with the Lithoprobe's Trans-Hudson Orogen Transect. Research areas spanned from bedrock and surficial geoscience, to crustal and mantle geophysics, to high precision U-Pb geochronology and tracer isotope studies. This Special Issue contains nine papers covering a wide variety of topics related to the NATMAP Shield Margin Project, including volcanic-hosted massive sulphide deposits in the Flin Flon and Snow Lake camps; structural geology of the Flin Flon townsite and southern flank of the Kisseynew Domain; geochronology and the U-Pb systematics of monazite in metasedimentary rocks; and the geoelectrical and crustal conductivity structure of the Flin Flon Belt.
APA, Harvard, Vancouver, ISO, and other styles
10

Passarelli, Cláudia R., Miguel A. S. Basei, Oswaldo Siga Jr., Kei Sato, Walter M. Sproesser, and Vasco A. P. Loios. "Dating minerals by ID-TIMS geochronology at times of in situ analysis: selected case studies from the CPGeo-IGc-USP laboratory." Anais da Academia Brasileira de Ciências 81, no. 1 (March 2009): 73–97. http://dx.doi.org/10.1590/s0001-37652009000100010.

Full text
Abstract:
Since 1964, the Center for Geochronological Research - CPGeo, one of the interdepartmental centers of the Instituto de Geociências (IG) of São Paulo University, has developed studies related to several geological processes associated with different rock types. Thermal Ionization Mass Spectrometry Isotopic Dilution (ID-TIMS) has been the technique widely used in the CPGeo U-Pb Laboratory. It provides reliable and accurate results in age determination of superposed events. However, the open-system behavior such as Pb-loss, the inheritance problem and metamictization processes allow and impel us to a much richer understanding of the power and limitations of U-Pb geochronology and thermochronology. In this article, we present the current methodology used at the CPGeo-IGc-USP U-Pb laboratory, the improvements on ID-TIMS method, and report high-precision U-Pb data from zircon, monazite, epidote, titanite, baddeleyite and rutile from different rock types of several domains of the Brazilian south-southeast area, Argentina and Uruguay.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "U-Pb monazite geochronology"

1

Laurent, Antonin. "Etude pétrologique et chronométrique (U-Th-Pb) de la monazite et du zircon dans les granulites de ultra-haute température du Rogaland, Norvège." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30290/document.

Full text
Abstract:
La compréhension des processus orogéniques nécessite un couplage toujours plus étroit entre données pétrologiques visant à contraindre le trajet pression-température des roches et les données géochronologiques donnant accès aux âges et durées absolues. Cette thèse vise en premier lieu à étudier le comportement des monazites et des zircons, utilisés en géochronométrie U-Th-Pb dans les granulites de ultra-haute température (UHT) du Rogaland (sud de la Norvège). Nous montrons que la datation ponctuelle in-situ U-Th-Pb, combinée à l'analyse des éléments majeurs et traces contenus dans la monazite permet d'identifier et de quantifier deux incursions à ultra-haute température du Rogaland à 1030-1005 Ma et à 940-930 Ma. En effet, l'examen des relations de phases à l'équilibre entre monazite, xénotime et huttonite a permis de démontrer que les monazites étaient capables de cristalliser et d'enregistrer des températures supérieures à 880 °C. D'autre part, la caractérisation chimique et isotopique U-Th-Pb-O des néocristallisations et surcroissances des zircons permet de définir un intervalle de temps de 60 Ma entre les deux pics de métamorphisme, au cours duquel la croûte moyenne était partiellement fondue à des températures supérieures à 800°C et à basse pression (0.7-0.4 GPa). Ces travaux de thèse soulignent par ailleurs la variété des facteurs susceptibles de conduire à la remise à zéro, partielle ou non, des âges U-Th-Pb dans les monazites et les zircons. Nous montrons que compte tenu de l'histoire T-t du domaine étudié, le système chronométrique U-Th-Pb est largement contrôlé dans le zircon par le degré d'amorphisation de ce dernier lié à son auto-irradiation, alors que dans la monazite, ce sont les processus de dissolution-recristallisation en présence de fluides silicatés ou aqueux qui sont prépondérants. Nous montrons également qualitativement l'influence des conditions d'oxydo-réduction dans l'incorporation du S comme sulfate dans le réseau cristallin de la monazite et par conséquent le potentiel que représente la monazite pour sonder l'état d'oxydo-réduction lié aux différents évènements géologiques, dans les roches métamorphiques. Finalement, nous mettons en évidence une corrélation spatiale et temporelle entre magmatisme mantellique et métamorphisme de ultra-haute température qui ne peut être expliquée avec les modèles actuellement acceptés pour la genèse du métamorphisme de UHT. Ces observations peuvent néanmoins être expliquées en prenant en compte la différence de composition et de température du manteau Protérozoïque comparé à l'actuel, favorisant le développement d'orogènes ultra-chauds et de phénomènes gravitaires
Understanding mountain building processes requires a better integration of petrological and peochronological data in order to link pressure-temperature paths to absolute ages. This work focuses on the behaviour of monazite and zircon, which are used as geochronometers, in ultra-high temperature granulites of Rogaland (South Norway). We show that linking in-situ U-Th-Pb dating of monazite with its major- and trace-element composition lead to the recognition of two ultra-high temperature (UHT) metamorphic events in Rogaland at c.1030-1005 Ma and c. 940-930 Ma. Indeed, the examination of monazite-xenotime-huttonite phase relationships suggests that monazite may record crystallization age at or near ultra-high temperature. Besides, the chemical and U-Th-Pb-O isotopic characterization of zircon neo-crystallization or overgrowths indicates that the Rogaland crust remains molten (> 800 °C at 0.7-0.4 GPa) at least during 60 My between the two identified UHT excursions. This manuscript also highlights the various factors responsible for U-Th-Pb (partial) resetting in the course of granulite facies metamorphism. Zircon behaviour is mostly controlled its level of amorphization, enhancing Pb loss during annealing, whereas monazite resetting is dominated by dissolution-precipitation processes in the presence of a melt or fluid phase. More specifically, we point out that monazite may be used to monitor the redox conditions of its crystallizing medium since monazite may incorporate the redox-sensitive element S in its lattice as sulphate. Finally, we demonstrate a spatial and temporal correlation between magmatism and UHT metamorphism in Rogaland. The timescale, P-T path and tectono-magmatic history however cannot be explained by currently accepted models for UHT. We suggest that physical and thermal specificities of Proterozoic mantle may explain the observed ultra-hot orogen style and the occurrence of gravity driven processes during orogeny
APA, Harvard, Vancouver, ISO, and other styles
2

Fielding, Imogen Olivia Heather. "In Situ U–Pb Geochronology of Hydrothermal Xenotime and Monazite to Date Gold Mineralization in the Northern Capricorn Orogen, Western Australia." Thesis, Curtin University, 2018. http://hdl.handle.net/20.500.11937/75055.

Full text
Abstract:
In situ SHRIMP U-Pb geochronology of xenotime and monazite is a powerful method for dating hydrothermal gold mineralization. This method has been applied to the northern Capricorn Orogen of Western Australia, providing a new geological framework that reveals a more complex mineralization history than previously recognised. The study has identified three gold mineralization events (2.4, 1.77 and 1.68 billion years ago) and demonstrates a direct link between fault reactivation and hydrothermal fluid flow during orogeny.
APA, Harvard, Vancouver, ISO, and other styles
3

Jones, Carson L. "U-Pb geochronology of monazite and zircon in Precambrian metamorphic rocks from the Ruby Range, SW Montana deciphering geological events that shaped the NW Wyoming province /." [Kent, Ohio] : Kent State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=kent1214308001.

Full text
Abstract:
Thesis (M.S.)--Kent State University, 2008.
Title from PDF t.p. (viewed Oct. 5, 2009). Advisor: Peter Dahl. Keywords: Geochronology; Radiometric Dating; Plate Tectonics. Includes bibliographical references (p. 106-109).
APA, Harvard, Vancouver, ISO, and other styles
4

Ghosh, Amiya Kumar. "Reconnaissance U-Pb geochronology of Precambrian crystalline rocks from the northern Black Hills, South Dakota: Implications for regional thermotectonic history." [Kent, Ohio] : Kent State University, 2009. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=kent1240007954.

Full text
Abstract:
Thesis (M.S.)--Kent State University, 2009.
Title from PDF t.p. (viewed Feb. 12, 2010). Advisor: Peter Dahl. Keywords: Black Hills; Crook Mountain granite; Homestake gold mine; gold mineralization; magmatism; metamorphism; metapelite; g monazite; zircon; titanite; geochronology; thermotectonism Includes bibliographical references (p. 97-106).
APA, Harvard, Vancouver, ISO, and other styles
5

Caquineau, Tom. "Etude géochronologique U-Pb et isotopique Lu-Hf sur zircon du groupe de Turee Creek : implications sur l’événement de grande oxygénation et les glaciations paléoprotérozoïques." Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC236/document.

Full text
Abstract:
La transition Archéen – Protérozoïque (~2,45 Ga) est marquée par des bouleversements environnementaux majeurs dans l’histoire de la Terre (oxygénation de l’atmosphère et glaciations globales). Les séquences sédimentaires qui enregistrent ces événements ont été très étudiées en Amérique du Nord (séquence Huronienne) et en Afrique du Sud (Transvaal). Une séquence analogue sur le craton de Pilbara en Australie Occidentale (groupe de Turee Creek, TCG) contient 3 niveaux de diamictites glaciaires. 3 forages continentaux (Turee Creek Drilling Project, TCDP) ont été réalisés pour étudier la séquence. La géochronologie U-Pb de monazite et zircon dans des échantillons de forage et de surface a daté la première glaciation à 2,45 Ga et la seconde à ~2,34 Ga. Des analyses Re-Os de pyrites de la seconde diamictite ont donné une isochrone à 2,31 Ga. Ces résultats ont permis de proposer un scenario de corrélation des glaciations paléoprotérozoïques enregistrées sur différents continents. Une ‘Snowball Earth’ aurait eu lieu à ~2,45 Ga sur au moins 5 cratons (Pilbara, Kaapvaal, Supérieur, Wyoming, Karélia). Une seconde glaciation aurait pu avoir lieu à ~2,31 Ga sur 4 cratons. L’ensemble des zircons détritiques du TCG ont une distribution d’âge avec des pics à 2,45, 2,54, 2,68, 2,82, 2,95 et 3,2 Ga. Un cristal de zircon Hadéen a été découvert et indique la présence d’une probable croûte différenciée dans le craton de Pilbara à 4,0 Ga. 70% des zircons ont des compositions isotopiques en Hf juvéniles, suggérant que le TCG a incorporé du matériel volcanique provenant de larges provinces ignées continentales à travers l’érosion des groupes sous jacents de Hamersley et Fortescue
The Archean – Proterozoic transition at 2.45 Ga is marked by major environmental changes in Earth’s history (atmosphere oxygenation and global glaciations). The origin and the relationships between these events are debated. Sedimentary sequences that record these events have been widely studied in North America (Huronian sequence) and South Africa (Transvaal). An analog sequence in the Pilbara craton in Western Australia (Turee Creek Group, TCG) contains 3 glacial horizons. 3 continental drill cores (Turee Creek Drilling Project, TCDP) were performed in order to investigate the sequence. U-Pb geochronology of monazite and zircon from drill core and surface samples allows to date the first paleoproterozoic glaciation at 2.45 Ga and a second glacial event at ~2.34 Ga. Re-Os analyses of pyrites from the second diamictite yielded an isochron at 2.31 Ga. These results enable to propose a correlation scenario of the paleoproterozoic glacial events recorded on different continents. A ‘Snowball Earth’ would have occured at 2.45 Ga at least on 5 cratons. A second glaciation could have occured at ~2.31 Ga on 4 cratons. Detrital zircons age spectrum highlights age peaks at 2.45, 2.54, 2.68, 2.82, 2.95 and 3.2 Ga. A crystal of Hadean zircon was discovered and indicate the existence of a probable differentiated crust within the Pilbara craton at 4.0 Ga. 70% of the analyzed zircons have juvenile Hf isotope composition, suggesting that the TCG incorporated volcanic material from continental large igneous provinces through the erosion of the underlying Hamersley and Fortescue groups
APA, Harvard, Vancouver, ISO, and other styles
6

Séjourné, Brianna L. "Behaviour of Accessory Monazite and Age Significance During Metamorphism and Partial Melting During Grenville Orogeny: An Example from Otter Lake Area, Central Metasedimentary Belt, QC." Thesis, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/31574.

Full text
Abstract:
The accretionary Mesoproterozoic Grenville Orogeny (ca. 1300 – 980 Ma) involving the Central Metasedimentary Belt is a key building block of the eastern Laurentian margin. A petrographic, mineralogical, geochemical and geochronological study of the migmatite complex in Otter Lake (QC) within the Marble Domain is used to resolve regional metamorphic and magmatic events primarily recorded in the leucosome accessory minerals (i.e. monazite). The relationship between the different stages of monazite and garnet growth and dissolution during the tectonic evolution of the orogenic history for the interpreted metasomatic (injected) and anatectic (in situ) monazite-bearing neosomes from this study supports published thermochronological work in the area and challenges the claim that the Central Metasedimentary Belt was not heated above 500 °C during the Ottawan phase. Instead, the region shows Grenville magmatic and anatectic events were overprinted by high-temperature, fluid-rich Ottawan-phase metamorphism recorded within both injected (monazite-bearing) and in situ (monazite- and garnet-bearing) neosomes.
APA, Harvard, Vancouver, ISO, and other styles
7

Kuiper, Yvette Dominique. "Isotopic constraints on timing of deformation and metamorphism in the Thor–Odin dome, Monashee Complex, southeastern British Columbia." Thesis, Department of Geology, University of New Brunswick, 2003. http://hdl.handle.net/1882/46.

Full text
Abstract:
New and existing U–Pb and 40Ar/39Ar geochronological data, and oxygen and hydrogen stable isotope data, are combined with structural and metamorphic data from Thor–Odin, the southern culmination of the Monashee Complex. This leads to a new interpretation of the timing of deformation and metamorphism. Amphibolites in Thor–Odin with hornblende 40Ar/39Ar dates between ~75–70 and ~51 Ma experienced more 18O- and D-depletion than amphibolites with older dates. The younger dates that were previously interpreted as cooling ages, may have resulted from complete or partial Ar loss in the presence of meteoric fluids that were introduced into the rock during extension.

Monazite crystals in pelitic schist, quartzite and orthogneiss, which have U–Pb ages younger than 40Ar/39Ar hornblende ages in amphibolite in northwest Thor–Odin, may have grown during tension in the presence of fluids. Titanite, xenotime and zircon dates may be interpreted in the same way. Thus, the U–Pb dates that were previously interpreted as representing peak of metamorphism and the hornblende 40Ar/39Ar dates that were previously interpreted as representing cooling ages, may be interpreted as reflecting meteoric fluid penetration of the crust during regional extension. This implies that the age of the thermal peak of metamorphism is older than ~75–70 Ma. Migmatisation in a basement orthogneiss in Thor–Odin occurred at ~1.8 Ga. Dissolution rims are preserved in zircon between ~1.8 Ga domains and 52 Ma overgrowths. Because growth of new zircon (and possibly other U–Pb accessory phases) did not take place, any geological event that occurred during the ~1.8 Ga to 52 Ma time interval is not recorded. Cordilleran deformation and metamorphism may have taken place within that time interval, e.g. in the Middle Jurassic and/or mid- to Late Cretaceous, the time of Cordilleran deformation and metamorphism in the rocks overlying the Monashee Complex.

The Joss Mountain orthogneiss, west of the Monashee Complex in the Selkirk Allochthon, is dated at 362 +/– 13 Ma. F3 folding in pelitic schist at Joss Mountain is constrained between ~73 and ~70 Ma. Existing structural, metamorphic and geochronological data in, and close to, the Shuswap Metamorphic Complex in the southern Canadian Cordillera are shown to be consistent with a channel flow model.
APA, Harvard, Vancouver, ISO, and other styles
8

Weller, Owen M. "An integrated metamorphic and geochronological study of the south-eastern Tibetan plateau." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:f4104b43-389a-4d54-bd7b-ba3fc0e8ab95.

Full text
Abstract:
The Tibetan plateau is a vast, elevated region located in central Asia, which is underlain by the thickest crust known on Earth (up to 90 km). An outstanding question of importance to many fields within geology is how and why did the Tibetan plateau form? Models attribute the growth of the plateau to a consequence of the ongoing India-Asia continental collision, but differ in the details of how the crustal thickening was accommodated: was it by underplating of Indian lower crust or by homogeneous shortening? High-grade metamorphic rocks sampled from the region potentially hold the key to answering this question, as they contain a record of past tectonic events that can discriminate between the various proposed models. This record can be decoded by integrating field, thermobarometric and geochronological techniques, to elucidate a detailed thermotectonic understanding of a region. This methodology was applied to three case studies, each of which targeted rare tectonic windows into the mid-crust of the plateau. These regions comprise Danba in eastern Tibet, Basong Tso in south-eastern Tibet and the Western Nyainqentanglha in southern Tibet. Each case study documents previously unreported metamorphic events that have allowed original interpretations to be made regarding tectonic evolution: in Danba, all metamorphism is shown to be early Jurassic; in Basong Tso, two metamorphic belts are documented that reveal a late Triassic--early Jurassic orogenic event; and in the Western Nyainqengtanglha, Cretaceous--Neogene magmatism is shown to overprint late Triassic metamorphism. Integration of the results has enabled commentary on the large scale evolution of the Tibetan plateau from the Permian until the present day, and even hinted at its future. The results indicate that the closure of the Paleotethys played an important role in the construction of the Tibetan plateau, and suggest that homogeneous crustal thickening is not a viable model for the documented exposure levels.
APA, Harvard, Vancouver, ISO, and other styles
9

Seydoux-Guillaume, Anne-Magali. "LES EFFETS DE L'IRRADIATION DANS LES MINERAUX ET LEURS CONSEQUENCES EN GEOCHRONOLOGIE." Habilitation à diriger des recherches, Université Paul Sabatier - Toulouse III, 2011. http://tel.archives-ouvertes.fr/tel-00606544.

Full text
Abstract:
Le but de ce mémoire n'est pas de faire une présentation exhaustive de toutes mes activités de recherche mais d'essayer de cibler celles qui à la fois me correspondent le mieux, celles qui me tiennent le plus à cœur, parmi les activités de recherche que j'ai menées depuis que je suis partie de Potsdam (thèse). Je présenterai donc dans une première partie une synthèse de mes travaux sur les effets de l'irradiation, liée à la radioactivité, intra-ou inter-minéraux, naturelle ou artificielle. Je donnerai ensuite des exemples d'études ciblées sur des processus (diffusion, altération) dont la cinétique peut être considérablement accrues par les effets de la radioactivité. Dans une troisième partie je détaillerai un exemple particulier d'effet d'irradiation, celle induite par un faisceau laser femtoseconde et je terminerai sur des perspectives à plus ou moins long terme, ciblées sur les interactions entre les minéraux radioactifs (ou minéraux irradiés) et les fluides et les conséquences sur le signal géochronologique.
APA, Harvard, Vancouver, ISO, and other styles
10

Goncalves, Philippe. "PÉTROLOGIE ET GÉOCHRONOLOGIE DES GRANULITES DE ULTRA-HAUTES TEMPÉRATURES DE L'UNITÉ BASIQUE D'ANDRIAMENA (CENTRE-NORD MADAGASCAR). Apport de la géochronologie in-situ U-Th-Pb à l'interprétation des trajets P-T." Phd thesis, Clermont-Ferrand 2, 2002. http://www.theses.fr/2002CLF21375.

Full text
Abstract:
L'évolution thermomécanique de l'unité d'Andriamena est marquée par la superposition de quatre événements thermiques : 2. 7 Ga, 790 Ma et ~500 Ma. La signification de l'événement Archéen (2. 7 Ga) reste encore problématique : l'événement fini-Archéen (2. 5 Ga) correspond au métamorphisme de UHT (1050°C, 11. 5 kbar). Le Néoprotérozoïque moyen (790Ma) est marqué par un magnatisme basique-ultrabasique contemporain d'un métamorphisme granulithique (850°C, 7 kbar) interprété comme le témoin d'un contexte du type arc continental. L'événement Cambrien (~500 Ma) est à l'origine du champ de déformation finie : il résulte de la superposition de deux phases D1 et D2 synchrones d'un métamorphisme amphibolitique (700°C, 5-6 kbar) compatible avec un raccourcissement horizontal Est-Ouest résultant de la convergence lors de la consolidation du Gondwana. Les Mg-granulites de UHT préservent de nombreuses textures minéralogiques permettant de retracer un trajet PT pétrographique apparemment continu. Les données géochronologiques obtenues par datation in-situ sur monazite à la microsonde électronique montrent que ce trajet pétrographique doit être considéré comme un trajet discontinu résultant de la superposition de deux événements : 2. 5 Ga et 790 Ma. De plus, une partie du trajet pétrographique correspond à un trajet apparent sans signification tectonique, qui résulte de l'équilibration des paragenèses réfractaires de UHT à basses pressions lors de l'événement 790 Ma. La distinction qui existe entre trajet pétrographique et réel montre l'importance de déterminer l'âge absolu des différentes paragenèses. La datation in-situ permet de dater des minéraux dans leur contexte textural et donc de corréler âge et assemblages métamorphiques. Par une nouvelle approche dans leur contexte textural et donc de corréler âge et assemblages métamorphiques. Par une nouvelle approche de datation in-situ qui utilise les méthodes chimiques (microsondes) et isotopiques (ID-TIMS), on combine haute résolution spatiale et haute précision analytique sur les mêmes les grains extraits par micro-forage en lame mince
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "U-Pb monazite geochronology"

1

Wilson, Alan J., Nick Lisowiec, Cameron Switzer, Anthony C. Harris, Robert A. Creaser, and C. Mark Fanning. "Chapter 11: The Telfer Gold-Copper Deposit, Paterson Province, Western Australia." In Geology of the World’s Major Gold Deposits and Provinces, 227–49. Society of Economic Geologists, 2020. http://dx.doi.org/10.5382/sp.23.11.

Full text
Abstract:
Abstract The giant (&gt;20 Moz) Telfer Au-Cu deposit is located in the Paterson Province of Western Australia and is hosted by complexly deformed marine Neoproterozoic metasedimentary siltstones and quartz arenites. The Telfer district also contains magnetite- and ilmenite-series granitoids dated between ca. 645 and 600 Ma and a world-class W skarn deposit associated with the reduced, ~604 Ma O’Callaghans granite. Based on monazite and xenotime U-Pb geochronology, Telfer is estimated to be older than O’Callaghans, forming between 645 and 620 Ma. Au-Cu mineralization at Telfer is hosted in multistage, bedding-parallel quartz-dolomite-pyrite-chalcopyrite reefs and related discordant veins and stockworks of similar composition that were emplaced into two NW-striking doubly plunging anticlines or domes. Mineralization is late orogenic in timing, with hot (≤460°C), saline (&lt;50 wt % NaCl equiv) ore fluids channeled into preexisting domes along a series of shallow, ENE-verging thrust faults and associated fault-propagated fold corridors. A combination of fault-propagated fold corridors acting as fluid conduits below the apex of the Telfer domes and the rheology and chemical contrast between interbedded siltstone and quartz arenite units within the dome are considered key parameters in the formation of the Telfer deposit. Based on the presence of the reduced Au-Cu-W-Bi-Te-Sn-Co-As assemblage, saline and carbonic, high-temperature hydrothermal fluids in Telfer ore, and widespread ilmenite-series granites locally associated with W skarn mineralization, Telfer is considered to be a distal, intrusion-related gold deposit, the high copper content of which may be explained by the predominance of highly saline, magmatic fluids in gangue assemblages cogenetic with ore.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "U-Pb monazite geochronology"

1

Souders, Kate, and Paul J. Sylvester. "LASER ABLATION ICP-MS U-PB MONAZITE GEOCHRONOLOGY AT HIGH SPATIAL RESOLUTION." In GSA Annual Meeting in Phoenix, Arizona, USA - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019am-336629.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Markley, Michelle, Steven R. Dunn, Michael J. Jercinovic, William H. Peck, and Michael L. Williams. "MONAZITE U-TH-PB GEOCHRONOLOGY OF THE CENTRAL METASEDIMENTARY BELT BOUNDARY ZONE (CMBBZ), ONTARIO CANADA." In 53rd Annual GSA Northeastern Section Meeting - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018ne-310544.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lehman, Miranda R., and Richard Palin. "TAKING THE TECTONIC PULSE OF PALEOPROTEROZOIC OROGENESIS: U–TH–PB MONAZITE GEOCHRONOLOGY OF METASEDIMENTS IN THE COLORADO FRONT RANGE." In GSA Annual Meeting in Phoenix, Arizona, USA - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019am-335821.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nordin, Alexandra, Sean R. Mulcahy, William McClelland, Sarah Roeske, Vinicius Meira, Wes Johns, Andrew Tholt, Patricia Webber, Emily Houlihan, and Matthew A. Coble. "TIMING OF OBLIQUE MOTION OF THE LA PUNTILLA – LA FALDA SHEAR ZONE IN NORTHWEST ARGENTINA FROM MONAZITE U-PB GEOCHRONOLOGY." In 115th Annual GSA Cordilleran Section Meeting - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019cd-329635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Braden, Zoe, Laurent Godin, John M. Cottle, Chris Yakymchuk, and W. J. Davis. "DEFORMATION AND MELT CRYSTALLIZATION IN LESSER HIMALAYAN SEQUENCE ROCKS AT 7 MA REVEALED BY U-TH/PB ZIRCON GEOCHRONOLOGY AND IN SITU MONAZITE PETROCHRONOLOGY." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-298324.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tuttle, Larry, D. J. Henry, D. W. Mogk, and Paul Mueller. "CONSTRAINING THE TIMING OF ARCHEAN METAMORPHIC EVENTS IN HIGH-GRADE ROCKS FROM THE BEARTOOTH MOUNTAINS OF MONTANA AND WYOMING VIA U-PB MONAZITE GEOCHRONOLOGY." In GSA Connects 2021 in Portland, Oregon. Geological Society of America, 2021. http://dx.doi.org/10.1130/abs/2021am-366122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Feng, Xinjie, and Ying Song. "THE PROVENANCE OF EARLY CAMBRIAN SEQUENCES IN THE TARIM BASIN, NW CHINA: EVIDENCES FROM THE U-PB GEOCHRONOLOGY OF DETRITAL ZIRCON AND MONAZITE OF DEEP WELL SAMPLES." In GSA Connects 2022 meeting in Denver, Colorado. Geological Society of America, 2022. http://dx.doi.org/10.1130/abs/2022am-380315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Clark, A. D., H. D. Gibson, S. Israel, and R. D. Staples. "HIGHLIGHTING THE TRANSIENCE AND RAPID RATE OF ACCRETIONARY TECTONISM USING IN-SITU U-PB MONAZITE GEOCHRONOLOGY AND GARNET THERMOBAROMETRY: AN EXAMPLE FROM THE YUKON TANANA TERRANE IN SOUTHWEST YUKON." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-285897.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ortiz-Guerrero, Carolina, James J. Vogl, and David Foster. "USING ZIRCON, MONAZITE, AND TITANITE U/PB GEOCHRONOLOGY AND PHASE EQUILIBRIUM MODELING TO CONTRAIN PRESSURE, TEMPERATURE, AND TIME CONDITIONS FOR DECOUPLED MID-CRUSTAL FLOW IN THE PIONEER MOUNTAINS METAMORPHIC CORE COMPLEX." In Joint 118th Annual Cordilleran/72nd Annual Rocky Mountain Section Meeting - 2022. Geological Society of America, 2022. http://dx.doi.org/10.1130/abs/2022cd-374233.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "U-Pb monazite geochronology"

1

Van Breemen, O., P. H. Thompson, P. A. Hunt, and N. Culshaw. U - Pb Zircon Monazite Geochronology From the northern Thelon Tectonic Zone, District of Mackenzie. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1987. http://dx.doi.org/10.4095/122752.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stern, R. A., and N. Sanborn. Monazite U-Pb and Th-Ph geochronology by high-resolution secondary ion mass spectrometry. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1998. http://dx.doi.org/10.4095/210051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mortensen, J. K., and J. A. Percival. Reconnaissance U - Pb Zircon and Monazite Geochronology of the Lac Clairambault area, Ashuanipi Complex, Quebec. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1987. http://dx.doi.org/10.4095/122758.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mohammadi, N., L. R. Fyffe, C. R. M. McFarlane, R. Wilson, and D R Lentz. U-Pb zircon and monazite geochronology of volcanic and plutonic rocks in southwestern, central, and northeastern New Brunswick. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2019. http://dx.doi.org/10.4095/314824.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cross, A. J., A. D. Clark, A. Schofield, and N. Kositcin. SHRIMP U–Pb zircon and monazite geochronology of the East Tennant region; a possible undercover extension of the Warramunga Province, Tennant Creek. Geoscience Australia, 2020. http://dx.doi.org/10.11636/132771.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Van Breemen, O., J. B. Henderson, W. D. Loveridge, and P. H. Thompson. U - Pb Zircon and Monazite Geochronology and Zircon Morphology of Granulites and Granite From the Thelon Tectonic Zone, Healey Lake and Artillery Lake map Areas, N.w.t. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1987. http://dx.doi.org/10.4095/122484.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kositcin, N., A. D. Clark, and M. P. Doublier. New SHRIMP U–Pb geochronology of in situ monazites from the East Tennant area, Northern Territory: Results from the MinEx CRC National Drilling Initiative program. Geoscience Australia, 2022. http://dx.doi.org/10.11636/record.2022.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography