Academic literature on the topic 'Type II Heterostructures'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Type II Heterostructures.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Type II Heterostructures"
Maevskaya, Maria V., Aida V. Rudakova, Alexandra V. Koroleva, Aleksandr S. Sakhatskii, Alexei V. Emeline, and Detlef W. Bahnemann. "Effect of the Type of Heterostructures on Photostimulated Alteration of the Surface Hydrophilicity: TiO2/BiVO4 vs. ZnO/BiVO4 Planar Heterostructured Coatings." Catalysts 11, no. 12 (November 23, 2021): 1424. http://dx.doi.org/10.3390/catal11121424.
Full textBhardwaj, Garima, Sandhya K., Richa Dolia, M. Abu-Samak, Shalendra Kumar, and P. A. Alvi. "A Comparative Study on Optical Characteristics of InGaAsP QW Heterostructures of Type-I and Type-II Band Alignments." Bulletin of Electrical Engineering and Informatics 7, no. 1 (March 1, 2018): 35–41. http://dx.doi.org/10.11591/eei.v7i1.872.
Full textBehara, Dilip Kumar, Jalajakshi Tammineni, and Mukkara Sudha Maheswari. "TiO2/ZnO: Type-II Heterostructures for electrochemical crystal violet dye degradation studies." Macedonian Journal of Chemistry and Chemical Engineering 39, no. 2 (October 26, 2020): 217. http://dx.doi.org/10.20450/mjcce.2020.2058.
Full textLi, Jiayi, Yanming Lin, Minjie Zhang, Ying Peng, Xinru Wei, Zhengkun Wang, Zhenyi Jiang, and Aijun Du. "Ferroelectric polarization and interface engineering coupling of Z-scheme ZnIn2S4/α-In2Se3 heterostructure for efficient photocatalytic water splitting." Journal of Applied Physics 133, no. 10 (March 14, 2023): 105702. http://dx.doi.org/10.1063/5.0136862.
Full textZakharova, A., and V. Gergel. "Resonant tunneling in type II heterostructures." Solid State Communications 96, no. 4 (October 1995): 209–13. http://dx.doi.org/10.1016/0038-1098(95)00435-1.
Full textSchäfer, F., M. Stein, J. Lorenz, F. Dobener, C. Ngo, J. T. Steiner, C. Fuchs, et al. "Gain recovery dynamics in active type-II semiconductor heterostructures." Applied Physics Letters 122, no. 8 (February 20, 2023): 082104. http://dx.doi.org/10.1063/5.0128777.
Full textLi, Honglin, Yuting Cui, Haijun Luo, and Wanjun Li. "The strain induced type-II band re-alignment of blue phosphorus-GeX (X = C/H/Se) heterostructures." European Physical Journal Applied Physics 89, no. 1 (January 2020): 10103. http://dx.doi.org/10.1051/epjap/2020190325.
Full textIchimura, Masaya. "Calculation of Band Offsets of Mg(OH)2-Based Heterostructures." Electronic Materials 2, no. 3 (July 1, 2021): 274–83. http://dx.doi.org/10.3390/electronicmat2030019.
Full textБаженов, Н. Л., К. Д. Мынбаев, А. А. Семакова, and Г. Г. Зегря. "Сравнительный анализ эффективности электролюминесценции в гетероструктурах I и II типа на основе узкозонных соединений А-=SUP=-III-=/SUP=-B-=SUP=-V-=/SUP=-." Физика и техника полупроводников 56, no. 5 (2022): 477. http://dx.doi.org/10.21883/ftp.2022.05.52349.9805.
Full textLiu, Zixiang, and Zhiguo Wang. "Electronic Properties of MTe2/AsI3(M=Mo and W) Van der Waals Heterostructures." MATEC Web of Conferences 380 (2023): 01011. http://dx.doi.org/10.1051/matecconf/202338001011.
Full textDissertations / Theses on the topic "Type II Heterostructures"
LUGAGNE-DELPON, EMMANUEL. "Contributions a l'etude des heterostructures de type ii inp-(alin)as." Paris 6, 1993. http://www.theses.fr/1993PA066160.
Full textTEISSIER, ROLAND. "Effets electro-optiques dans les heterostructures gaas/alas de type ii." Paris 6, 1992. http://www.theses.fr/1992PA066340.
Full textNemitz, Ian R. "Synthesis of Nanoscale Semiconductor Heterostructures for Photovoltaic Applications." Bowling Green State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1277087935.
Full textDiederich, Geoffrey M. "Synthesis of Zinc Telluride/Cadmium Selenide/Cadmium Sulfide Quantum Dot Heterostructures for use in Biological Applications." Bowling Green State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1342542873.
Full textFuchs, Christian [Verfasser], and Wolfgang [Akademischer Betreuer] Stolz. "Epitaxial growth and characterization of GaAs-based type-II (GaIn)As/Ga(AsSb)/(GaIn)As “W”-quantum well heterostructures and lasers / Christian Fuchs ; Betreuer: Wolfgang Stolz." Marburg : Philipps-Universität Marburg, 2018. http://d-nb.info/1171424728/34.
Full textArnoult, Alexandre. "Dopage par modulation d'hétérostructures de semiconducteurs II-VI semimagnétiques en épitaxie par jets moléculaires." Université Joseph Fourier (Grenoble), 1998. http://www.theses.fr/1998GRE10237.
Full textGodoy, Marcio Peron Franco de. "Propriedades de pontos quânticos de InP/GaAs." [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/277715.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin
Made available in DSpace on 2018-08-06T18:02:06Z (GMT). No. of bitstreams: 1 Godoy_MarcioPeronFrancode_D.pdf: 4057709 bytes, checksum: 0df1e56082150d4109dcf891f05d4da6 (MD5) Previous issue date: 2006
Resumo: Neste trabalho estudamos as propriedade estruturais e ópticas de pontos quânticos auto-organizados de InP crescidos sobre o substrato de GaAs. Esta estrutura apresenta o alinhamento de bandas tipo-II na interface, confinando o elétron no ponto quântico, enquanto o buraco mantém-se na barreira, próximo à interface devido à interação coulombiana atrativa. As amostras foram crescidas por epitaxia de feixe químico (CBE) no modo Stranskii-Krastanov. Os pontos quânticos apresentam raio médio de 25 nm e grande dispersão de altura (1-5 nm) e ocorre a relaxação parcial do parâmetro de rede, chegando a 2 %, em pontos quânticos superficiais. Do ponto de vista de propriedades ópticas, a fotoluminescência de pontos quânticos superficiais exibe uma eficiente emissão óptica, devido a baixa velocidade de recombinação dos estados superficiais do InP, e reflete a densidade e distribuição bimodal de tamanhos. Além disso, sua emissão óptica em função da intensidade de excitação exibe comportamento diverso em comparação com pontos quânticos cobertos com uma camada de GaAs. Em pontos quânticos cobertos, determinamos a energia de ativação térmica, que varia de 6 a 8 meV, e é associada à energia de ligação do éxciton ou energia de ionização do buraco. O decaimento temporal da luminescência de pontos quânticos é de 1,2 ns, um tempo relativamente curto para um ponto quântico tipo-II. A análise das propriedades magneto-ópticas em pontos quânticos individuais, inédita em QDs tipo-II, permitiu verificar que o fator-g do éxciton é praticamente constante, independentemente do tamanho dos QDs, devido ao fato dos buracos estarem levemente ligados. Por fim, mostramos a versatilidade do sistema acoplando-o a um poço quântico de InGaAs. Este acoplamento introduz mudanças na superposição das funções de onda do par elétron-buraco que permitem a manipulação do tempo de decaimento da luminescência e da energia de ligação excitônica
Abstract: We have investigated structural and optical properties of InP self-assembled quantum dots grown on GaAs substrate. This system presents a type-II band lineup where only electrons are confined in the InP quantum dots. The InP/GaAs quantum dots were grown by chemical beam epitaxy in the Stranskii-Krastanov mode. Our quantum dots present a mean radius of 25 nm and large height dispersion, 1-5 nm, and a partial relieve of the strain up to 2 % is observed. The photoluminescence spectra of surface quantum dots show an efficient optical emission, which is attributed to the low surface recombination velocity in InP. We observed a bimodal dispersion of the dots size distribution, giving rise to two distinct emission bands. A remarkable result is the relatively large blue shift of the emission band from uncapped samples as compared to those for capped dots. In capped quantum dots, we obtained the thermal activation energy, from 6 to 8 meV, which is associated to the exciton binding energy or hole ionization energy. The observed luminescence decay time is about 1.2 ns, relatively short decay time for type II system. We investigated magneto-optical properties using single-dot spectroscopy. The values of the exciton g factor obtained for a large number of single InP/GaAs dots are mainly constant independent of the emission energy and, therefore, of the quantum dot size. The result is attributed to the weak confinement of the holes in InP/GaAs QDs. We have also investigated structures where InP quantum dots are coupled to a InGaAs quantum well. This system permits the manipulation of the wave function overlap between electron-hole in order to control the optical emission decay time and exciton binding energy
Doutorado
Física
Doutor em Ciências
Eley, Clive William. "The rational design of photocatalytic semiconductor nanocrystals." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:ee29c922-857c-432a-8316-a7e04c822b1d.
Full textO'Connor, Timothy F. III. "Synthesis and Dynamics of Photocatalytic Type-II ZnSe/CdS/Pt Metal-Semiconductor Heteronanostructures." Bowling Green State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1340038781.
Full textNogaret, Alain. "Etude comparée du transport par effet tunnel résonnant dans les hétérostructures semiconductrices de type I et II en présence de pression hydrostatique et de fort champ magnétique." Toulouse, INSA, 1993. http://www.theses.fr/1993ISAT0037.
Full textBook chapters on the topic "Type II Heterostructures"
Mendez, E. E., H. Ohno, L. Esaki, and W. I. Wang. "Resonant Magnetotunneling in Type II Heterostructures." In Resonant Tunneling in Semiconductors, 51–60. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3846-2_5.
Full textZhang, Yong. "ZnO and GaN Nanowire-Based Type II Heterostructures." In Wide Band Gap Semiconductor Nanowires 2, 85–103. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984291.ch4.
Full textHeuring, W., E. Bangert, G. Landwehr, G. Weimann, and W. Schlapp. "p-Type GaAs-(GaAI)As Heterostructures in Tilted Magnetic Fields: Theory and Experiments." In High Magnetic Fields in Semiconductor Physics II, 190–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83810-1_30.
Full textRoberts, M., N. J. Mason, S. G. Lyapin, Y. C. Chung, and P. C. Klipstein. "Vertical transport and interband luminescence in type II InAs/GaSb/InAs heterostructures." In Springer Proceedings in Physics, 829–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59484-7_393.
Full textOssau, W., T. L. Kuhn, E. Bangert, and G. Weimann. "The H-Band Luminescence of p-Type GaAs-(GaAl)As Heterostructures in High Magnetic Fields." In High Magnetic Fields in Semiconductor Physics II, 268–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83810-1_41.
Full textAkimoto, R., Y. Kinpara, and K. Akita. "Large quantum confinement effect of conduction electrons in ZnSe/BeTe type II heterostructures." In Springer Proceedings in Physics, 471–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59484-7_220.
Full textGourdon, C., D. Martins, V. Voliotis, P. Lavallard, and E. L. Ivchenko. "Oscillatory behavior of the Г-X coupling with AlAs thickness in type II GaAs/AlAs heterostructures." In Springer Proceedings in Physics, 515–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59484-7_242.
Full textTeissier, R., R. Planel, and F. Mollot. "All Optical Bistability in a Type II Heterostructure." In Optical Information Technology, 265–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-78140-7_29.
Full textSingh, Amit Kumar, Rohit Singh, Dibyendu Chowdhury, and Amit Rathi. "Optical Response in Strained Type-II AlInAs/AlSb Ultrathin QW Heterostructure." In Lecture Notes in Electrical Engineering, 569–75. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0588-9_56.
Full textYadav, Nisha, Garima Bhardwaj, S. G. Anjum, K. Sandhya, M. J. Siddiqui, and P. A. Alvi. "Quantum Well Width Effect on Intraband Optical Absorption in Type-II InAs/AlSb Nano-Scale Heterostructure." In Lecture Notes in Electrical Engineering, 191–97. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7395-3_22.
Full textConference papers on the topic "Type II Heterostructures"
Hirst, Louise C., Michael K. Yakes, Chaffra A. Affouda, Christopher G. Bailey, Joseph G. Tischler, Hamidreza Esmaielpour, Vincent R. Whiteside, et al. "Hot-carrier effects in type II heterostructures." In 2015 IEEE 42nd Photovoltaic Specialists Conference (PVSC). IEEE, 2015. http://dx.doi.org/10.1109/pvsc.2015.7356231.
Full textAhn, H. S., M. S. Park, and J. H. Jang. "Phototransistors based on InP/GaAsSb/InGaAs type-II heterostructures." In Related Materials (IPRM). IEEE, 2008. http://dx.doi.org/10.1109/iciprm.2008.4703037.
Full textNussbaum, Simon. "Towards organic-inorganic hybrid type-II layered perovskite nano-heterostructures." In MATSUS23 & Sustainable Technology Forum València (STECH23). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.matsus.2023.029.
Full textShterengas, L., A. Ongstad, R. Kaspi, S. Suchalkin, G. Belenky, M. Kisin, and D. Donetsky. "Carrier capture in InGaAsSb/InAs/InGaSb type-II QW laser heterostructures." In 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference. IEEE, 2006. http://dx.doi.org/10.1109/cleo.2006.4628718.
Full textDuggan, G., and H. I. Ralph. "Exciton Binding Energy In Type-II GaAs-AlAs Quantum Well Heterostructures." In Semiconductor Conferences, edited by Gottfried H. Doehler and Joel N. Schulman. SPIE, 1987. http://dx.doi.org/10.1117/12.940833.
Full textZheng, Jun, C. H. T. Lin, and Shin Shem Pei. "Simulations of InAs/InGaSb type-II heterostructures for mid-IR lasers." In Optoelectronics '99 - Integrated Optoelectronic Devices, edited by Peter Blood, Akira Ishibashi, and Marek Osinski. SPIE, 1999. http://dx.doi.org/10.1117/12.356917.
Full textMiles, R. H., and M. E. Flatté. "Type-II Superlattices for Infrared Optoelectronics and Lasers." In Quantum Optoelectronics. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/qo.1997.qfa.3.
Full textNanda, Jagjit, Sergei Ivanov, Ilya Bezel, and Victor I. Klimov. "Tunable optical gain and amplified spontaneous emission using type I and type II nanocrystal heterostructures." In International Quantum Electronics Conference. Washington, D.C.: OSA, 2004. http://dx.doi.org/10.1364/iqec.2004.ithc2.
Full textTitkov, A. N., Yury P. Yakovlev, Alexej N. Baranov, and V. N. Cheban. "Tunneling recombination of carriers at type-II interface in GaInAsSb-GaSb heterostructures." In Physical Concepts of Materials for Novel Optoelectronic Device Applications, edited by Manijeh Razeghi. SPIE, 1991. http://dx.doi.org/10.1117/12.24429.
Full textLiu, Hui C., Emmanuel Dupont, John P. McCaffrey, Margaret Buchanan, Dongxu Zhang, Rui Q. Yang, C. H. T. Lin, Stefan J. Murry, and Shin Shem Pei. "Mid-infrared interband cascade emission in InAs/GaInSb/AlSb type-II heterostructures." In Optoelectronics and High-Power Lasers & Applications, edited by Hong K. Choi and Peter S. Zory. SPIE, 1998. http://dx.doi.org/10.1117/12.304456.
Full text