Journal articles on the topic 'TWO ELECTRON ATOMS'

To see the other types of publications on this topic, follow the link: TWO ELECTRON ATOMS.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'TWO ELECTRON ATOMS.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

OSENDA, OMAR, PABLO SERRA, and SABRE KAIS. "DYNAMICS OF ENTANGLEMENT FOR TWO-ELECTRON ATOMS." International Journal of Quantum Information 06, no. 02 (April 2008): 303–16. http://dx.doi.org/10.1142/s0219749908003463.

Full text
Abstract:
We studied the dynamics of the entanglement for two electron atoms with initial states created from a superposition of the eigenstates of the two-electron Hamiltonian. We present numerical evidence that the pairwise entanglement for the two electrons evolves in a way that is strongly related with the time evolution of the Coulombic interaction between the two electrons.
APA, Harvard, Vancouver, ISO, and other styles
2

Désesquelles, J. "Spectroscopy of two-electron atoms." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 31, no. 1-2 (April 1988): 30–40. http://dx.doi.org/10.1016/0168-583x(88)90391-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Çapak, Mustafa, and Bülent Gönül. "A Search on Two-Electron Atoms." Journal of Modern Physics 02, no. 09 (2011): 1051–55. http://dx.doi.org/10.4236/jmp.2011.29127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Herschbach, D. R. "Dimensional interpolation for two‐electron atoms." Journal of Chemical Physics 84, no. 2 (January 15, 1986): 838–51. http://dx.doi.org/10.1063/1.450584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Loeser, J. G., and D. R. Herschbach. "Dimensional expansions for two‐electron atoms." Journal of Chemical Physics 86, no. 4 (February 15, 1987): 2114–22. http://dx.doi.org/10.1063/1.452109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Boumerzoug, M. S., and J. Miletic. "Variational method for two‐electron atoms." Journal of Chemical Physics 91, no. 8 (October 15, 1989): 5129–31. http://dx.doi.org/10.1063/1.457611.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Richter, Klaus, Gregor Tanner, and Dieter Wintgen. "Classical mechanics of two-electron atoms." Physical Review A 48, no. 6 (December 1, 1993): 4182–96. http://dx.doi.org/10.1103/physreva.48.4182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Feagin, James M., and John S. Briggs. "Molecular Description of Two-Electron Atoms." Physical Review Letters 57, no. 8 (August 25, 1986): 984–87. http://dx.doi.org/10.1103/physrevlett.57.984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hasbani, R., H. Bachau, and E. Cormier. "Two electron atoms in strong field." Le Journal de Physique IV 10, PR8 (May 2000): Pr8–233. http://dx.doi.org/10.1051/jp4:2000868.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bielinska-Waz, D., J. Karwowski, and G. H. F. Diercksen. "Spectra of confined two-electron atoms." Journal of Physics B: Atomic, Molecular and Optical Physics 34, no. 10 (May 4, 2001): 1987–2000. http://dx.doi.org/10.1088/0953-4075/34/10/312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Bhattacharyya, S., J. K. Saha, and T. K. Mukhopadhyay. "Two-electron atoms under spherical confinement." Journal of Physics: Conference Series 488, no. 15 (April 10, 2014): 152012. http://dx.doi.org/10.1088/1742-6596/488/15/152012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Berakdar, J., and N. M. Kabachnik. "Two-electron photoemission from polarized atoms." Journal of Physics B: Atomic, Molecular and Optical Physics 38, no. 1 (December 18, 2004): 23–42. http://dx.doi.org/10.1088/0953-4075/38/1/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Lambropoulos, P., P. Maragakis, and Jian Zhang. "Two-electron atoms in strong fields." Physics Reports 305, no. 5 (November 1998): 203–93. http://dx.doi.org/10.1016/s0370-1573(98)00027-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Høgaasen, Hallstein, Jean-Marc Richard, and Paul Sorba. "Two-electron atoms, ions, and molecules." American Journal of Physics 78, no. 1 (January 2010): 86–93. http://dx.doi.org/10.1119/1.3236392.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Briggs, John S. "The Dynamics of Two-electron Atoms." Australian Journal of Physics 52, no. 3 (1999): 341. http://dx.doi.org/10.1071/ph98114.

Full text
Abstract:
Since the first attempts to calculate the helium ground state in the early days of Bohr–Sommerfeld quantisation, two-electron atoms have posed a series of challenges to theoretical physics. Despite the seemingly simple problem of three charged particles with known interactions it took more than half a century after quantum mechanics was established to describe spectra of two-electron atoms satisfactorily. The evolution of the understanding of correlated two-electron dynamics and its importance for doubly excited resonance states is described in this overview.
APA, Harvard, Vancouver, ISO, and other styles
16

Machida, Tami, and Kiyoshi Kawamura. "Irreversible Electron Transfer between Two Atoms." Journal of the Physical Society of Japan 72, no. 2 (February 15, 2003): 299–306. http://dx.doi.org/10.1143/jpsj.72.299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Feagin, James M. "Molecular description of two-electron atoms." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 24-25 (April 1987): 261–65. http://dx.doi.org/10.1016/0168-583x(87)90637-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Klar, Hubert. "Dominant Correlation Effects in Two-Electron Atoms." Journal of Applied Mathematics and Physics 08, no. 07 (2020): 1424–33. http://dx.doi.org/10.4236/jamp.2020.87108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Sech, C. Le. "Accurate analytic wavefunctions for two-electron atoms." Journal of Physics B: Atomic, Molecular and Optical Physics 30, no. 2 (January 28, 1997): L47—L50. http://dx.doi.org/10.1088/0953-4075/30/2/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Regier, P. E., and A. J. Thakkar. "Momentum space properties of two-electron atoms." Journal of Physics B: Atomic and Molecular Physics 18, no. 15 (August 14, 1985): 3061–71. http://dx.doi.org/10.1088/0022-3700/18/15/013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Poirier, Michel. "Possible rigid rotations in two-electron atoms." Physical Review A 40, no. 7 (October 1, 1989): 3498–504. http://dx.doi.org/10.1103/physreva.40.3498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Krause, Joachim. "Relativistic variational theory for two-electron atoms." Physical Review A 34, no. 5 (November 1, 1986): 3692–99. http://dx.doi.org/10.1103/physreva.34.3692.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Feranchuk, I. D., and V. V. Triguk. "Regular perturbation theory for two-electron atoms." Physics Letters A 375, no. 26 (June 2011): 2550–54. http://dx.doi.org/10.1016/j.physleta.2011.05.037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Herschbach, Dudley R., John G. Loeser, and Wilton L. Virgo. "Exploring Unorthodox Dimensions for Two-Electron Atoms." Journal of Physical Chemistry A 121, no. 33 (August 15, 2017): 6336–40. http://dx.doi.org/10.1021/acs.jpca.7b06148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Grobe, R., S. L. Haan, and J. H. Eberly. "Double-core resonance in two-electron atoms." Physical Review A 54, no. 2 (August 1, 1996): 1516–21. http://dx.doi.org/10.1103/physreva.54.1516.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

He, Chengdong, Elnur Hajiyev, Zejian Ren, Bo Song, and Gyu-Boong Jo. "Recent progresses of ultracold two-electron atoms." Journal of Physics B: Atomic, Molecular and Optical Physics 52, no. 10 (April 24, 2019): 102001. http://dx.doi.org/10.1088/1361-6455/ab153e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

McCartney, M. "A variational wavefunction for two electron atoms." European Journal of Physics 15, no. 6 (November 1, 1994): 312–14. http://dx.doi.org/10.1088/0143-0807/15/6/006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Green, Malcolm L. H., and Gerard Parkin. "The classification and representation of main group element compounds that feature three-center four-electron interactions." Dalton Transactions 45, no. 47 (2016): 18784–95. http://dx.doi.org/10.1039/c6dt03570a.

Full text
Abstract:
Compounds that feature 3-center 4-electron interactions may be classified in terms of the number of electrons that each atom contributes to the interaction: Class I are those in which two atoms provide one electron each and the third atom provides a pair of electrons, while Class II are those in which two atoms each provide a pair of electrons.
APA, Harvard, Vancouver, ISO, and other styles
29

Engelns, A., H. Klar, and A. W. Malcherek. "Two-electron atoms in double continua: asymptotic wavefunctions." Journal of Physics B: Atomic, Molecular and Optical Physics 30, no. 22 (November 28, 1997): L811—L814. http://dx.doi.org/10.1088/0953-4075/30/22/005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Starace, Anthony F., and Joseph H. Macek. "Comment on "Molecular Description of Two-Electron Atoms"." Physical Review Letters 58, no. 22 (June 1, 1987): 2385. http://dx.doi.org/10.1103/physrevlett.58.2385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Forcada, M. L. "A simple correlated wavefunction for two-electron atoms." European Journal of Physics 9, no. 4 (October 1, 1988): 319–22. http://dx.doi.org/10.1088/0143-0807/9/4/014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Scrinzi, Armin, and Bernard Piraux. "Two-electron atoms in short intense laser pulses." Physical Review A 58, no. 2 (August 1, 1998): 1310–21. http://dx.doi.org/10.1103/physreva.58.1310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Dmitrieva, I. K., G. I. Plindov, and S. K. Pogrebnya. "Estimation of two-electron expectation values for atoms." Journal de Physique 46, no. 2 (1985): 159–71. http://dx.doi.org/10.1051/jphys:01985004602015900.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Doren, D. J., and D. R. Herschbach. "Two‐electron atoms near the one‐dimensional limit." Journal of Chemical Physics 87, no. 1 (July 1987): 433–42. http://dx.doi.org/10.1063/1.453588.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Ancarani, L. U., K. V. Rodriguez, G. Gasaneo, and D. M. Mitnik. "Correlatedn1,3Sstates for two-electron atoms in screened potentials." Journal of Physics: Conference Series 488, no. 15 (April 10, 2014): 152015. http://dx.doi.org/10.1088/1742-6596/488/15/152015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Campbell, C. P., Mary T. McAlinden, Ann A. Kernoghan, and H. R. J. Walters. "Positron collisions with one- and two-electron atoms." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 143, no. 1-2 (August 1998): 41–56. http://dx.doi.org/10.1016/s0168-583x(98)00219-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Klar, Hubert. "Novel motion in highly excited two-electron atoms." Journal of the Optical Society of America B 4, no. 5 (May 1, 1987): 788. http://dx.doi.org/10.1364/josab.4.000788.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Ancarani, L. U. "On thes-wave model of two-electron atoms." Journal of Physics B: Atomic, Molecular and Optical Physics 39, no. 16 (August 8, 2006): 3309–13. http://dx.doi.org/10.1088/0953-4075/39/16/013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Saha, Jayanta K., S. Bhattacharyya, T. K. Mukherjee, and P. K. Mukherjee. "Doubly excited 1,3Do states of two-electron atoms." Chemical Physics Letters 478, no. 4-6 (August 2009): 292–94. http://dx.doi.org/10.1016/j.cplett.2009.07.073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Saha, Jayanta K., S. Bhattacharyya, and T. K. Mukherjee. "Two-electron atoms under spatially compressed Debye plasma." Physics of Plasmas 23, no. 9 (September 2016): 092704. http://dx.doi.org/10.1063/1.4962508.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Chakraborty, Sumana, and Y. K. Ho. "Autoionization resonances for quantum confined two electron atoms." Journal of Physics: Conference Series 194, no. 15 (November 1, 2009): 152003. http://dx.doi.org/10.1088/1742-6596/194/15/152003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Koga, Toshikatsu, and Hisashi Matsuyama. "Explicitly correlated extracule densities for two-electron atoms." International Journal of Quantum Chemistry 74, no. 5 (1999): 455–65. http://dx.doi.org/10.1002/(sici)1097-461x(1999)74:5<455::aid-qua3>3.0.co;2-o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Callan, Edwin J. "Analytic Ground State Energies of two-electron Atoms." International Journal of Quantum Chemistry 6, S6 (June 18, 2009): 431–34. http://dx.doi.org/10.1002/qua.560060647.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Fricke, B., and K. Rashid. "On the total energy of two-electron atoms." Zeitschrift f�r Physik A Atoms and Nuclei 321, no. 1 (March 1985): 99–102. http://dx.doi.org/10.1007/bf01411952.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Trentino, Alberto, Kenichiro Mizohata, Georg Zagler, Manuel Längle, Kimmo Mustonen, Toma Susi, Jani Kotakoski, and E. Harriet Åhlgren. "Two-step implantation of gold into graphene." 2D Materials 9, no. 2 (February 9, 2022): 025011. http://dx.doi.org/10.1088/2053-1583/ac4e9c.

Full text
Abstract:
Abstract As a one-atom thick, mechanically strong, and chemically stable material with unique electronic properties, graphene can serve as the basis for a large number of applications. One way to tailor its properties is the controlled introduction of covalently bound heteroatoms into the lattice. In this study, we demonstrate efficient implantation of individual gold atoms into graphene up to a concentration of 1.7 × 1011 atoms cm−2 via a two-step low-energy ion implantation technique that overcomes the limitation posed by momentum conservation on the mass of the implanted species. Atomic resolution scanning transmission electron microscopy imaging and electron energy-loss spectroscopy reveal gold atoms occupying double vacancy sites in the graphene lattice. The covalently bound gold atoms can sustain intense electron irradiation at 60 kV during the microscopy experiments. At best, only limited indication of plasmonic enhancement is observed. The method demonstrated here can be used to introduce a controlled concentration of gold atoms into graphene, and should also work for other heavier elements with similar electronic structure.
APA, Harvard, Vancouver, ISO, and other styles
46

Ceraulo, Sandra C., and R. Stephen Berry. "Quadrupole moments as measures of electron correlation in two-electron atoms." Physical Review A 44, no. 7 (October 1, 1991): 4145–53. http://dx.doi.org/10.1103/physreva.44.4145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

ZHANG, JIAN, and P. LAMBROPOULOS. "NONPERTURBATIVE TIME-DEPENDENT THEORY OF TWO-ELECTRON ATOMS IN STRONG LASER FIELDS." Journal of Nonlinear Optical Physics & Materials 04, no. 03 (July 1995): 633–46. http://dx.doi.org/10.1142/s0218863595000276.

Full text
Abstract:
This work deals with the fundamental problem of the behavior of the two-electron atom under intense laser fields. We present a broad scope of calculations and results and, we believe, the first ATI spectrum, in He and Mg atom, beyond the single active electron model in a fully time-dependent nonperturbative calculation. For He, we perform calculations both on a two-electron basis with configuration interaction where both electrons are allowed to be excited, and on a frozen core basis. The comparison is a direct measure of the effect of correlation under strong fields. The results for Mg shows that the method also opens a way to the study of atoms with much stronger electron correlation in intense laser fields.
APA, Harvard, Vancouver, ISO, and other styles
48

Dogan, Mevlut, Melike Ulu, Zehra Nur Ozer, Murat Yavuz, and Gulin Bozkurt. "Double Differential Cross-Sections for Electron Impact Ionization of Atoms and Molecules." Journal of Spectroscopy 2013 (2013): 1–16. http://dx.doi.org/10.1155/2013/192917.

Full text
Abstract:
The single ionizing collision between an incident electron and an atom/molecule ends up two kinds of outgoing electrons called scattered and ejected electrons. As features of electron impact ionization, these two types of electrons are indistinguishable. Double differential cross-sections (DDCS) can be obtained by measuring the energy and angular distributions of one of the two outgoing electrons with an electron analyzer. We used He, Ar, H2, and CH4targets in order to understand the ionization mechanisms of atomic and molecular systems. We measured differential cross-sections (DCS) and double differential cross-sections at 250 eV electron impact energy. The elastic DCSs were measured for He, Ar, H2, and CH4, whereas the inelastic DCSs of He were obtained for 21P excitation level for 200 eV impact electron energy.
APA, Harvard, Vancouver, ISO, and other styles
49

LETELIER, JORGE RICARDO, ALEJANDRO TORO-LABBÉ, and YING-NAN CHIU. "A MOLECULAR MODEL POTENTIAL STUDY OF THE HOMO–LUMO GAP IN A LOW-DIMENSIONAL CRYSTAL." International Journal of Modern Physics C 10, no. 01 (February 1999): 115–30. http://dx.doi.org/10.1142/s0129183199000073.

Full text
Abstract:
We study the effect of some crystal vibrations on the electron distribution and the gap HOMO–LUMO in a linear chain of atoms where, the valence electrons move in a model potential constructed by combining atromic boxes. It is found that at the turning points, these two levels collapse together for a chain with an even number of atoms while for a chain with an odd number of atoms these two levels never touch each other. The effect of some asymmetric crystal vibrations on the electron density distribution and the gap HOMO–LUMO is also analyzed for a low-dimensional solid whose repeating unit consists of a square arrangement of atoms where the valence electrons move in a CAB model potential.
APA, Harvard, Vancouver, ISO, and other styles
50

SMIRNOV, A. P., N. V. SUETIN, and A. B. SHMELEV. "Two-dimensional bounce-averaged Fokker–Planck modelling of an electron cyclotron resonance plasma source." Journal of Plasma Physics 59, no. 2 (February 1998): 243–57. http://dx.doi.org/10.1017/s0022377897006259.

Full text
Abstract:
The electron energy distribution function in a microwave discharge at the electron cyclotron resonance (ECR) condition is studied using a two-dimensional Fokker–Planck equation in the bounce-averaged approach. Our model takes into account the effects of linearized Coulomb collisions, electron cyclotron resonance heating in the quasilinear approximation, the effects of ionization and excitation of atoms, elastic scattering of electrons on atoms, and the self-consistent ambipolar potential. The plasma is considered to be slightly collisional, so that bounce averaging is valid. We perform a numerical investigation of the Fokker–Planck equation and obtain the dependences of the discharge characteristics on the parameters of the model, such as breakdown threshold values of neutral density, and the dependence of the electron density, temperature and ambipolar potential on the parameters of the ECR wave and gas density. Some results are compared with experimental data.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography