Academic literature on the topic 'Two Dimensional Electron Systems (2DES)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Two Dimensional Electron Systems (2DES).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Two Dimensional Electron Systems (2DES)"

1

Satou, Akira, and Koichi Narahara. "Numerical Characterization of Dyakonov-Shur Instability in Gated Two-Dimensional Electron Systems." International Journal of High Speed Electronics and Systems 25, no. 03n04 (2016): 1640024. http://dx.doi.org/10.1142/s0129156416400243.

Full text
Abstract:
We numerically analyze the system based on the essentially non-oscillatory shock capturing scheme in order to characterize the Dyakonov-Shur (DS) instability in a gated two-dimensional electron gas system (2DES). The predictions of the linearized model are examined for a 2DES sandwiched by the top and back metallic gates. By solving Poisson equation self-consistently, the dispersive properties of plasma wave are properly estimated. Special attention is paid to the impact of dispersion to nonlinear dynamics of plasma-wave oscillation. A single-gated 2DES is also investigated for demonstrating the DS instability in practical devices.
APA, Harvard, Vancouver, ISO, and other styles
2

Freeman, M. L., Tzu-Ming Lu, and L. W. Engel. "Resistively loaded coplanar waveguide for microwave measurements of induced carriers." Review of Scientific Instruments 93, no. 4 (2022): 043901. http://dx.doi.org/10.1063/5.0085112.

Full text
Abstract:
We describe the use of a coplanar waveguide (CPW) whose slots are filled with a resistive film, a resistively loaded CPW (RLCPW), to measure two-dimensional electron systems (2DESs). The RLCPW applied to the sample hosting the 2DES provides a uniform metallic surface serving as a gate to control the areal charge density of the 2DES. As a demonstration of this technique, we present measurements on a Si metal–oxide–semiconductor field-effect transistor and a model that successfully converts microwave transmission coefficients into conductivity of a nearby 2DES capacitively coupled to the RLCPW. We also describe the process of fabricating the highly resistive metal film required for fabrication of the RLCPW.
APA, Harvard, Vancouver, ISO, and other styles
3

D’Antuono, M., A. Kalaboukhov, R. Caruso, et al. "Nanopatterning of oxide 2-dimensional electron systems using low-temperature ion milling." Nanotechnology 33, no. 8 (2021): 085301. http://dx.doi.org/10.1088/1361-6528/ac385e.

Full text
Abstract:
Abstract We present a ‘top-down’ patterning technique based on ion milling performed at low-temperature, for the realization of oxide two-dimensional electron system devices with dimensions down to 160 nm. Using electrical transport and scanning Superconducting QUantum Interference Device measurements we demonstrate that the low-temperature ion milling process does not damage the 2DES properties nor creates oxygen vacancies-related conducting paths in the STO substrate. As opposed to other procedures used to realize oxide 2DES devices, the one we propose gives lateral access to the 2DES along the in-plane directions, finally opening the way to coupling with other materials, including superconductors.
APA, Harvard, Vancouver, ISO, and other styles
4

Verseils, Marine, Alexandre Voute, Benjamin Langerome, et al. "Grazing-angle reflectivity setup for the low-temperature infrared spectroscopy of two-dimensional systems." Journal of Synchrotron Radiation 26, no. 6 (2019): 1945–50. http://dx.doi.org/10.1107/s1600577519010920.

Full text
Abstract:
A new optical setup is described that allows the reflectivity at grazing incidence to be measured, including ultrathin films and two-dimensional electron systems (2DES) down to liquid-helium temperatures, by exploiting the Berreman effect and the high brilliance of infrared synchrotron radiation. This apparatus is well adapted to detect the absorption of a 2DES of nanometric thickness, namely that which forms spontaneously at the interface between a thin film of LaAlO3 and its SrTiO3 substrate, and to determine its Drude parameters.
APA, Harvard, Vancouver, ISO, and other styles
5

PHONG, TRAN CONG, VO THANH LAM, and LUONG VAN TUNG. "CALCULATION OF THE INTENSITY-DEPENDENT ABSORPTION SPECTRUM IN TWO-DIMENSIONAL ELECTRON SYSTEMS." Modern Physics Letters B 25, no. 11 (2011): 863–72. http://dx.doi.org/10.1142/s0217984911026061.

Full text
Abstract:
General analytic expression for the intensity-dependent absorption coefficient (IDAC) of an intense electromagnetic wave (IEMW) in two-dimensional electron systems (2DES) is obtained by using the quantum kinetic equation (QKE) for electrons in the case of electron–optical phonon scattering in a doped semiconductor superlattice (DSSL). The dependence of IDAC on the amplitude E0 and the photon energy ℏΩ of an IEMW, the energy ℏωp and the temperature for a specific n-i-p-i superlattice of GaAs : Si / GaAs : Be is achieved due to a numerical method. The computational results show that not only the dependence of IDAC on ℏΩ but also the dependence of IDAC on ℏωp can be applied to optically detect the electric subbands in a DSSL.
APA, Harvard, Vancouver, ISO, and other styles
6

CHEBOTAREV, ANDREY, and GALINA CHEBOTAREVA. "CYCLOTRON RESONANCE VANISHING EFFECT AND THz DETECTION." International Journal of High Speed Electronics and Systems 18, no. 04 (2008): 959–69. http://dx.doi.org/10.1142/s0129156408005916.

Full text
Abstract:
Experimental measurements of photoresistivity under terahertz (THz) radiation in low magnetic fields at conditions of cyclotron resonance (CR) in two-dimensional electron system (2DES) of GaAs / AlGaAs nanostructures are presented and discussed. We report the experimental discovery of "CR-vanishing effect" (CRV) in GaAs / AlGaAs heterostructures with high mobility as a well-defined gap on CR-line that is independent on incident THz power. Our analysis shows that the CRV may appear in systems with well correlated state of 2D electrons such as plasma waves and others. Fundamental nature of these correlated states of electrons in 2DES is discussed. Future THz detectors utilizing the new correlated states in 2DES may expand horizons for supersensitive detection in sub-THz and THz frequencies ranges.
APA, Harvard, Vancouver, ISO, and other styles
7

Cangas, R., and M. A. Hidalgo. "Influence of the Spin–Orbit Interaction on the Magnetotransport Properties of a Two-Dimensional Electron System." SPIN 05, no. 03 (2015): 1530003. http://dx.doi.org/10.1142/s2010324715300030.

Full text
Abstract:
In this paper, we review the contribution of the Rashba spin–orbit coupling to the magnetoconduction of a two-dimensional electron system (2DES) confined in an inversion layer under quantum Hall regime (low temperature and low defects and impurities). The study is based on a semi-classical model for the magnetoconductivities of the 2DES. This model reproduces the measurements of the Shubnikov-de Haas (SdH) oscillations obtained in systems confined in III–V heterostructures, and also the quantum Hall magnetoconductivity (magnetoresistivity). We also discuss the Rashba and Zeeman competition and its effect on the magnetoconductivity.
APA, Harvard, Vancouver, ISO, and other styles
8

MORGENSTERN, MARKUS. "PROBING THE LOCAL DENSITY OF STATES OF DILUTE ELECTRON SYSTEMS IN DIFFERENT DIMENSIONS." Surface Review and Letters 10, no. 06 (2003): 933–62. http://dx.doi.org/10.1142/s0218625x0300575x.

Full text
Abstract:
Scanning tunneling spectroscopy at T = 6 K is used to investigate the local density of states (LDOS) of electron systems belonging to the bulk conduction band of InAs. In particular, the three-dimensional electron system (3DES) of the n-doped material, an adsorbate-induced two-dimensional electron system (2DES) and the tip-induced quantum dot (0DES) are investigated at B = 0 T and B = 6 T. It is found that the 3DES at B = 0 T can be described by Bloch states weakly interacting with the potential disorder provided by ionized dopants. The 2DES at B = 0 T exhibits much stronger LDOS corrugations, stressing the tendency for weak localization in the potential disorder. In a magnetic field, 3DES and 2DES show drift states, which are expected in 2D, but are surprising in 3D, where they point to a new electron phase consisting of droplets of quasi-2D systems. The 0DES at B = 0 T reveals quantized states in accordance with Hartree calculations. At B = 6 T it exhibits Landau states with exchange enhanced spin splitting. These states are used to investigate the influence of potential disorder on the exchange enhancement, which visualizes the nonlocality of the exchange interaction.
APA, Harvard, Vancouver, ISO, and other styles
9

BAENNINGER, MATTHIAS, ARINDAM GHOSH, MICHAEL PEPPER, HARVEY E. BEERE, IAN FARRER, and DAVID A. RITCHIE. "MAGNETIC FIELD INDUCED INSTABILITIES IN LOCALIZED TWO-DIMENSIONAL ELECTRON SYSTEMS." International Journal of Modern Physics B 23, no. 12n13 (2009): 2708–12. http://dx.doi.org/10.1142/s0217979209062232.

Full text
Abstract:
The results of extensive transport studies in localized regime of mesoscopic two-dimensional electron systems (2DES) with varying disorder are presented. A quick overview of previously achieved result is given. The main focus is on the observation of density dependent instabilities manifested by strong resistance oscillations induced by high perpendicular magnetic fields B⊥. While the amplitude of the oscillations is strongly enhanced with increasing B⊥, their position in electron density remains unaffected. The temperature dependence of resistivity shows a transition from an activated behaviour at high temperature to a saturated behaviour at low T. In the positions of resistance minima, the T dependence can even become metal-like (dρ/dT > 0). The activation energies obtained from the high T behaviour exhibit a formation of plateaux in connection with the resistance oscillations when analyzed as a function of electron density. We suggest the interplay between a strongly interacting electron phase and the background disorder as a possible explanation for our observation.
APA, Harvard, Vancouver, ISO, and other styles
10

DOHI, M., R. YONAMINE, K. OTO, and K. MURO. "POTENTIAL IMAGING IN QUANTUM HALL DEVICES BY OPTICAL FIBER BASED POCKELS MEASUREMENT." International Journal of Modern Physics B 21, no. 08n09 (2007): 1414–18. http://dx.doi.org/10.1142/s0217979207042926.

Full text
Abstract:
We have developed an optical-fiber-based Hall potential imaging system using the Pockels effect in GaAs/AlGaAs two dimensional electron systems (2DES) in the quantum Hall regime to investigate current distributions. The mapping of the Hall potential shows the current concentration at the bulk region of 2DES samples, where the critical current depends on the channel width sub-linearly. We report in detail the experimental techniques of the imaging system operating in high magnetic fields.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!