Academic literature on the topic 'TWITTER ANALYTICS'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'TWITTER ANALYTICS.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "TWITTER ANALYTICS"
Goonetilleke, Oshini, Timos Sellis, Xiuzhen Zhang, and Saket Sathe. "Twitter analytics." ACM SIGKDD Explorations Newsletter 16, no. 1 (September 25, 2014): 11–20. http://dx.doi.org/10.1145/2674026.2674029.
Full textHoeber, Orland, Larena Hoeber, Maha El Meseery, Kenneth Odoh, and Radhika Gopi. "Visual Twitter Analytics (Vista)." Online Information Review 40, no. 1 (February 8, 2016): 25–41. http://dx.doi.org/10.1108/oir-02-2015-0067.
Full textGukanesh, A. V., G. Karthick Kumar, and K. Karthik Raja Kumar N. Saranya. "Twitter Data Analytics – Sentiment Analysis of An Election." International Journal of Trend in Scientific Research and Development Volume-2, Issue-3 (April 30, 2018): 1600–1603. http://dx.doi.org/10.31142/ijtsrd11457.
Full textZhang, Min, Feng-Ru Sheu, and Yin Zhang. "Understanding Twitter use by major LIS professional organisations in the United States." Journal of Information Science 44, no. 2 (January 27, 2017): 165–83. http://dx.doi.org/10.1177/0165551516687701.
Full textKota, Venkata Krishna, Venkateswarlu Naik B, and Vasudeva Rao Prasadula. "Smart City Service Monitoring Using Twitter Analytics." International Journal of Scientific and Research Publications (IJSRP) 9, no. 8 (August 24, 2019): p92136. http://dx.doi.org/10.29322/ijsrp.9.08.2019.p92136.
Full textRazis, Gerasimos, Georgios Theofilou, and Ioannis Anagnostopoulos. "Latent Twitter Image Information for Social Analytics." Information 12, no. 2 (January 21, 2021): 49. http://dx.doi.org/10.3390/info12020049.
Full textAlathur, Sreejith, and Rajesh Pai. "Social Media Games: Insights from Twitter Analytics." International Journal of Web Based Communities 16, no. 1 (2020): 1. http://dx.doi.org/10.1504/ijwbc.2020.10026216.
Full textPai, Rajesh R., and Sreejith Alathur. "Social media games: insights from Twitter analytics." International Journal of Web Based Communities 16, no. 1 (2020): 34. http://dx.doi.org/10.1504/ijwbc.2020.105127.
Full textPai, Rajesh R., and Sreejith Alathur. "Assessing mobile health applications with twitter analytics." International Journal of Medical Informatics 113 (May 2018): 72–84. http://dx.doi.org/10.1016/j.ijmedinf.2018.02.016.
Full textDrescher, Larissa S., Carola Grebitus, and Jutta Roosen. "Exploring Food Consumption Trends on Twitter with Social Media Analytics: The Example of #Veganuary." EuroChoices 22, no. 2 (August 2023): 45–52. http://dx.doi.org/10.1111/1746-692x.12403.
Full textDissertations / Theses on the topic "TWITTER ANALYTICS"
Leis, Machín Angela 1974. "Studying depression through big data analytics on Twitter." Doctoral thesis, TDX (Tesis Doctorals en Xarxa), 2021. http://hdl.handle.net/10803/671365.
Full textCarvalho, Eder José de. "Visual analytics of topics in twitter in connection with political debates." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-11092017-140904/.
Full textMídias sociais como o Twitter e o Facebook atuam, em diversas situações, como canais de iniciativas que buscam ampliar as ações de cidadania. Por outro lado, certas ações e manifestações na mídia convencional por parte de instituições governamentais, ou de jornalistas e políticos como deputados e senadores, tendem a repercutir nas mídias sociais. Como resultado, gerase uma enorme quantidade de dados em formato textual que podem ser muito informativos sobre ações e políticas governamentais. No entanto, o público-alvo continua carente de boas ferramentas que ajudem a levantar, correlacionar e interpretar as informações potencialmente úteis associadas a esses textos. Neste contexto, este trabalho apresenta dois sistemas orientados à análise de dados governamentais e de mídias sociais. Um dos sistemas introduz uma nova visualização, baseada na metáfora do rio, para análise temporal da evolução de tópicos no Twitter em conexão com debates políticos. Para tanto, o problema foi inicialmente modelado como um problema de clusterização e um método de segmentação de texto independente de domínio foi adaptado para associar (por clusterização) tweets com discursos parlamentares. Uma versão do algorimo MONIC para detecção de transições entre agrupamentos foi empregada para rastrear a evolução temporal de debates (ou agrupamentos) e produzir um conjunto de agrupamentos com informação de tempo. O outro sistema, chamado ATR-Vis, combina técnicas de visualização com estratégias de recuperação ativa para envolver o usuário na recuperação de tweets relacionados a debates políticos e associa-os ao debate correspondente. O arcabouço proposto introduz quatro estratégias de recuperação ativa que utilizam informação estrutural do Twitter melhorando a acurácia do processo de recuperação e simultaneamente minimizando o número de pedidos de rotulação apresentados ao usuário. Avaliações por meio de casos de uso e experimentos quantitativos, assim como uma análise qualitativa conduzida com três especialistas ilustram a efetividade do ATR-Vis na recuperação de tweets relevantes. Para a avaliação, foram coletados dois conjuntos de tweets relacionados a debates parlamentares ocorridos no Brasil e no Canadá, e outro formado por um conjunto de notícias que receberam grande atenção da mídia no período da coleta.
Haraldsson, Daniel. "Marknadsföring på Twitter : Vilken dag och tidpunkt är optimal?" Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-11517.
Full textMahendiran, Aravindan. "Automated Vocabulary Building for Characterizing and Forecasting Elections using Social Media Analytics." Thesis, Virginia Tech, 2014. http://hdl.handle.net/10919/25430.
Full textMaster of Science
Carlos, Marcelo Aparecido. "Análise de surtos de doenças transmitidas pelo mosquito Aedes aegypti utilizando Big-Data Analytics e mensagens do Twitter." reponame:Repositório Institucional da UFABC, 2017.
Find full textDissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Engenharia da Informação, 2017.
O uso do big-data aliado a técnicas de mineração de textos vem crescendo a cada ano em diversas áreas da ciência, especialmente na área da saúde, na medicina de precisão, em prontuários eletrônicos entre outros. A motivação desse trabalho parte da hipótese de que é possível usar conceitos de big-data para analisar grandes quantidades de dados sobre as doenças da dengue, chikungunya e zika vírus, para monitorar e antecipar informações sobre possíveis surtos dessas doenças. Entretanto, a análise de grandes volumes de dados - inerente ao estudo em big-data - possui desafios, particularmente, devido à falta de escalabilidade dos algoritmos e à complexidade do gerenciamento dos mais diferentes tipos e estruturas dos dados envolvidos. O principal objetivo desse trabalho é apresentar uma implementação de técnicas de mineração de textos, em especial, aqueles oriundos de redes sociais, tais como o Twitter, aliadas à abordagem de análises em big-data e aprendizado de máquina, para monitorar a incidência das doenças da dengue, chikungunya e zika vírus, todas transmitidas pelo mosquito Aedes aegypti. Os resultados obtidos indicam que a implementação realizada, baseado na junção dos algoritmos de aprendizado de máquina K-Means e SVM, teve rendimento satisfatório para a amostra utilizada em comparação aos registros do Ministério da Saúde, indicando, assim, um potencial para utilização do seu propósito. Observa-se que a principal vantagem das análises em big-data está relacionada à possibilidade de empregar dados não estruturados os quais são obtidos em redes sociais, sites de e-commerce, dentre outros. Nesse sentido, dados que antes pareciam, de certo modo, de pouca importância, passam a ter grande potencial e relevância.
The use of the big-data allied to techniques of text mining has been growing every year in several areas of science, especially in the area of health, precision medicine, electronic medical records among others. The motivation from this work, is based on the hypothesis that it is possible to use big-data concepts to analyze large volumes of data about the dengue disease, chikungunya and zika virus, to monitor and anticipate information about possible outbreaks for diseases. However, the analysis of large volumes of data - inherent in the big-data study - has some challenges, particularly due to the lack of scalability of the algorithms and the complexity of managing the most different types and structures of the data involved. The main objective of this work is to present the implementation of text mining techniques - especially from social networks such as Twitter - allies to the approach of big-data and machine-learned analyzes to monitor the incidence of Dengue, Chikungunya and Zika virus, all transmissions by the mosquito Aedes aegypti. The results obtained indicate that the implementation made based on the combination of machine learning algorithms, K-Means and SVM, got a satisfactory yield for a sample used, if compared the publications of the records of the Ministry of Health, thus indicating a potential for the purpose. It is observed that a main advantage of the big-data analyzes is related to the possibility of employing unstructured data, e-commerce sites, among others. In this sense, data that once seemed, in a way, of little importance, have great potential and relevance.
Bigsby, Kristina Gavin. "From hashtags to Heismans: social media and networks in college football recruiting." Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6371.
Full textGröbe, Mathias. "Konzeption und Entwicklung eines automatisierten Workflows zur geovisuellen Analyse von georeferenzierten Textdaten(strömen) / Microblogging Content." Master's thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-210672.
Full textThis Master's Thesis deals with the conception and exemplary implementation of a workflow for georeferenced Microblogging Content. Data from Twitter is used as an example and as a starting point to think about how to build that workflow. In the field of Data Mining and Text Mining, there was found a whole range of useful software modules that already exist. Mostly, they only need to get lined up to a process pipeline using appropriate preferences. Although a logical order can be defined, further adjustments according to the research question and the data are required. The process is supported by different forms of visualizations such as histograms, tag clouds and maps. This way new knowledge can be discovered and the options for the preparation can be improved. This way of knowledge discovery is already known as Geovisual Analytics. After a review of multiple existing software tools, the programming language R is used to implement the workflow as this language is optimized for solving statistical problems. Finally, the workflow has been tested using data from Twitter and Flickr
Dehghan, Ehsan. "Networked discursive alliances: Antagonism, agonism, and the dynamics of discursive struggles in the Australian Twittersphere." Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/174604/1/Ehsan_Dehghan_Thesis.pdf.
Full textVondrášek, Petr. "Komerční využití sociálních sítí." Master's thesis, Vysoká škola ekonomická v Praze, 2013. http://www.nusl.cz/ntk/nusl-197442.
Full textBjörnham, Alexandra. "Agile communication for a greener world." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-122117.
Full textBooks on the topic "TWITTER ANALYTICS"
Kumar, Shamanth, Fred Morstatter, and Huan Liu. Twitter Data Analytics. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-9372-3.
Full textLiu, Huan, Shamanth Kumar, and Fred Morstatter. Twitter Data Analytics. Springer London, Limited, 2013.
Find full textTwitter Data Analytics. Springer-Verlag New York Inc., 2013.
Find full textLiu, Huan, Shamanth Kumar, and Fred Morstatter. Twitter Data Analytics. Springer, 2013.
Find full textChatterjee, Siddhartha, and Michal Krystyanczuk. Python Social Media Analytics: Analyze and visualize data from Twitter, YouTube, GitHub, and more. Packt Publishing - ebooks Account, 2017.
Find full textSzpankowski, Wojciech, and Philippe Jacquet. Analytic Pattern Matching: From DNA to Twitter. Cambridge University Press, 2015.
Find full textSzpankowski, Wojciech, and Philippe Jacquet. Analytic Pattern Matching: From DNA to Twitter. Cambridge University Press, 2015.
Find full textSzpankowski, Wojciech, and Philippe Jacquet. Analytic Pattern Matching: From DNA to Twitter. Cambridge University Press, 2015.
Find full textBook chapters on the topic "TWITTER ANALYTICS"
Kumar, Shamanth, Fred Morstatter, and Huan Liu. "Crawling Twitter Data." In Twitter Data Analytics, 5–22. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9372-3_2.
Full textKumar, Shamanth, Fred Morstatter, and Huan Liu. "Storing Twitter Data." In Twitter Data Analytics, 23–33. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9372-3_3.
Full textKumar, Shamanth, Fred Morstatter, and Huan Liu. "Analyzing Twitter Data." In Twitter Data Analytics, 35–48. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9372-3_4.
Full textKumar, Shamanth, Fred Morstatter, and Huan Liu. "Visualizing Twitter Data." In Twitter Data Analytics, 49–69. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9372-3_5.
Full textKumar, Shamanth, Fred Morstatter, and Huan Liu. "Introduction." In Twitter Data Analytics, 1–3. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9372-3_1.
Full textGarg, Yogesh, and Niladri Chatterjee. "Sentiment Analysis of Twitter Feeds." In Big Data Analytics, 33–52. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13820-6_3.
Full textPradyumn, Mudit, Akshat Kapoor, and Nasseh Tabrizi. "Big Data Analytics on Twitter." In Big Data – BigData 2018, 326–33. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94301-5_26.
Full textMehndiratta, Pulkit, Shelly Sachdeva, Pankaj Sachdeva, and Yatin Sehgal. "Elections Again, Twitter May Help!!! A Large Scale Study for Predicting Election Results Using Twitter." In Big Data Analytics, 133–44. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13820-6_11.
Full textBhargava, Mudit, Pulkit Mehndiratta, and Krishna Asawa. "Stylometric Analysis for Authorship Attribution on Twitter." In Big Data Analytics, 37–47. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-03689-2_3.
Full textHaughton, Dominique, Mark-David McLaughlin, Kevin Mentzer, and Changan Zhang. "Can We Predict Oscars from Twitter and Movie Review Data?" In Movie Analytics, 41–54. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-09426-7_6.
Full textConference papers on the topic "TWITTER ANALYTICS"
Dhamankar, Robin, and Krishna Gade. "Realtime analytics @ twitter." In the fifth international workshop. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2516588.2516593.
Full textPerera, Rohan D. W., S. Anand, K. P. Subbalakshmi, and R. Chandramouli. "Twitter analytics: Architecture, tools and analysis." In MILCOM 2010 - 2010 IEEE Military Communications Conference. IEEE, 2010. http://dx.doi.org/10.1109/milcom.2010.5680493.
Full textFeng, Yue, Hossein Fani, Ebrahim Bagheri, and Jelena Jovanovic. "Lexical Semantic Relatedness for Twitter Analytics." In 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI). IEEE, 2015. http://dx.doi.org/10.1109/ictai.2015.41.
Full textVanitha, P. S., and Sreejith Alathur. "E-learning services: Insights from Twitter Analytics." In 2019 International Conference on Advances in Computing and Communication Engineering (ICACCE). IEEE, 2019. http://dx.doi.org/10.1109/icacce46606.2019.9080001.
Full textGruzd, Anatoliy, and Nadia Conroy. "Learning Analytics Dashboard for Teaching with Twitter." In Hawaii International Conference on System Sciences. Hawaii International Conference on System Sciences, 2020. http://dx.doi.org/10.24251/hicss.2020.330.
Full textShah, Syed Attique, Sadok Ben Yahia, Keegan McBride, Akhtar Jamil, and Dirk Draheim. "Twitter Streaming Data Analytics for Disaster Alerts." In 2021 2nd International Informatics and Software Engineering Conference (IISEC). IEEE, 2021. http://dx.doi.org/10.1109/iisec54230.2021.9672370.
Full textPerez Cabañero, Carmen, Enrique Bigne, Carla Ruiz Mafe, and Antonio Carlos Cuenca. "Sentiment Analysis of Twitter in Tourism Destinations." In CARMA 2020 - 3rd International Conference on Advanced Research Methods and Analytics. Valencia: Universitat Politècnica de València, 2020. http://dx.doi.org/10.4995/carma2020.2020.11621.
Full textDussoye, Hirikesh, and Zarine Cadersaib. "Sentiment analytics framework integrating Twitter and Odoo ERP." In 2017 International Conference on Infocom Technologies and Unmanned Systems (Trends and Future Directions) (ICTUS). IEEE, 2017. http://dx.doi.org/10.1109/ictus.2017.8285994.
Full textAziz, Khadija, Dounia Zaidouni, and Mostafa Bellafkih. "Social Network Analytics: Natural Disaster Analysis Through Twitter." In 2019 Third International Conference on Intelligent Computing in Data Sciences (ICDS). IEEE, 2019. http://dx.doi.org/10.1109/icds47004.2019.8942337.
Full textAlzahrani, Sabah M. "Big Data Analytics Tools: Twitter API and Spark." In 2021 International Conference of Women in Data Science at Taif University (WiDSTaif ). IEEE, 2021. http://dx.doi.org/10.1109/widstaif52235.2021.9430205.
Full text