Journal articles on the topic 'Twistronics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Twistronics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Hu, Guangwei, Cheng-Wei Qiu, and Andrea Alù. "Twistronics for photons: opinion." Optical Materials Express 11, no. 5 (April 8, 2021): 1377. http://dx.doi.org/10.1364/ome.423521.
Full textArmghan, Ammar, Meshari Alsharari, Khaled Aliqab, Osamah Alsalman, Juveriya Parmar, and Shobhit K. Patel. "Graphene Twistronics: Tuning the Absorption Spectrum and Achieving Metamaterial Properties." Mathematics 11, no. 7 (March 24, 2023): 1579. http://dx.doi.org/10.3390/math11071579.
Full textGardezi, S. Minhal, Harris Pirie, Stephen Carr, William Dorrell, and Jennifer E. Hoffman. "Simulating twistronics in acoustic metamaterials." 2D Materials 8, no. 3 (April 13, 2021): 031002. http://dx.doi.org/10.1088/2053-1583/abf252.
Full textWu, Di, Yi Pan, and Tai Min. "Twistronics in Graphene, from Transfer Assembly to Epitaxy." Applied Sciences 10, no. 14 (July 8, 2020): 4690. http://dx.doi.org/10.3390/app10144690.
Full textVeerpal and Ajay. "Exotic Electronic Properties of Twisted Bilayer Graphene-Emergence of Twistronics." Journal of Physics: Conference Series 2518, no. 1 (June 1, 2023): 012013. http://dx.doi.org/10.1088/1742-6596/2518/1/012013.
Full textLiu, Mengya, Liping Wang, and Gui Yu. "Developing Graphene‐Based Moiré Heterostructures for Twistronics." Advanced Science 9, no. 1 (November 2021): 2103170. http://dx.doi.org/10.1002/advs.202103170.
Full textDonaldson, Laurie. "Twistronics breakthrough on manipulation of 2D materials." Materials Today 44 (April 2021): 3–4. http://dx.doi.org/10.1016/j.mattod.2021.01.021.
Full textKang, Peng, Wanting Zhang, Vincent Michaud-Rioux, Xin Wang, Jiangni Yun, and Hong Guo. "Twistronics in tensile strained bilayer black phosphorus." Nanoscale 12, no. 24 (2020): 12909–16. http://dx.doi.org/10.1039/d0nr02179b.
Full textHennighausen, Zachariah, and Swastik Kar. "Twistronics: a turning point in 2D quantum materials." Electronic Structure 3, no. 1 (March 1, 2021): 014004. http://dx.doi.org/10.1088/2516-1075/abd957.
Full textRen, Ya-Ning, Yu Zhang, Yi-Wen Liu, and Lin He. "Twistronics in graphene-based van der Waals structures." Chinese Physics B 29, no. 11 (October 2020): 117303. http://dx.doi.org/10.1088/1674-1056/abbbe2.
Full textCraig, Steven R., Zhenglu Li, Jiawei Ruan, Steven G. Louie, and Chengzhi Shi. "Acoustic analog of twisted bilayer graphene." Journal of the Acoustical Society of America 151, no. 4 (April 2022): A130. http://dx.doi.org/10.1121/10.0010876.
Full textYang, Yaping, Jidong Li, Jun Yin, Shuigang Xu, Ciaran Mullan, Takashi Taniguchi, Kenji Watanabe, Andre K. Geim, Konstantin S. Novoselov, and Artem Mishchenko. "In situ manipulation of van der Waals heterostructures for twistronics." Science Advances 6, no. 49 (December 2020): eabd3655. http://dx.doi.org/10.1126/sciadv.abd3655.
Full textKang, Peng. "Indirect-to-direct bandgap transition in bilayer InSe: roles of twistronics." 2D Materials 7, no. 2 (January 27, 2020): 021002. http://dx.doi.org/10.1088/2053-1583/ab6707.
Full textRakib, Tawfiqur, Pascal Pochet, Elif Ertekin, and Harley T. Johnson. "Moiré engineering in van der Waals heterostructures." Journal of Applied Physics 132, no. 12 (September 28, 2022): 120901. http://dx.doi.org/10.1063/5.0105405.
Full textVarma Sangani, L. D., R. S. Surya Kanthi, Pratap Chandra Adak, Subhajit Sinha, Alisha H. Marchawala, Takashi Taniguchi, Kenji Watanabe, and Mandar M. Deshmukh. "Facile deterministic cutting of 2D materials for twistronics using a tapered fibre scalpel." Nanotechnology 31, no. 32 (May 28, 2020): 32LT02. http://dx.doi.org/10.1088/1361-6528/ab8b93.
Full textBrzhezinskaya, Maria, Oleg Kononenko, Victor Matveev, Aleksandr Zotov, Igor I. Khodos, Vladimir Levashov, Vladimir Volkov, Sergey I. Bozhko, Sergey V. Chekmazov, and Dmitry Roshchupkin. "Engineering of Numerous Moiré Superlattices in Twisted Multilayer Graphene for Twistronics and Straintronics Applications." ACS Nano 15, no. 7 (July 13, 2021): 12358–66. http://dx.doi.org/10.1021/acsnano.1c04286.
Full textYves, Simon, Yu-Gui Peng, and Andrea Alù. "Topological Lifshitz transition in twisted hyperbolic acoustic metasurfaces." Applied Physics Letters 121, no. 12 (September 19, 2022): 122201. http://dx.doi.org/10.1063/5.0107465.
Full textAraujo, Ravel de Moraes Telles, Juliana Zarpellon, and Dante Homero Mosca. "Unveiling ferromagnetism and antiferromagnetism in two dimensions at room temperature." Journal of Physics D: Applied Physics 55, no. 28 (April 14, 2022): 283003. http://dx.doi.org/10.1088/1361-6463/ac60cd.
Full textGangemi, Nicholas, Caleb F. Sieck, Joseph Vignola, Diego Turo, Alec K. Ikei, Amelia Vignola, Jeffrey Baldwin, et al. "Frequency-dependent surface wave suppression at the Dirac point of an acoustic graphene analog." Journal of the Acoustical Society of America 153, no. 3_supplement (March 1, 2023): A362. http://dx.doi.org/10.1121/10.0019168.
Full textChen, Yaoyao, Liwei Liu, Xuan Song, Han Yang, Zeping Huang, Teng Zhang, Huixia Yang, Hong-Jun Gao, and Yeliang Wang. "Twisted charge-density-wave patterns in bilayer 2D crystals and modulated electronic states." 2D Materials 9, no. 1 (December 29, 2021): 014007. http://dx.doi.org/10.1088/2053-1583/ac427f.
Full textXin, Kaiyao, Xingang Wang, Kasper Grove-Rasmussen, and Zhongming Wei. "Twist-angle two-dimensional superlattices and their application in (opto)electronics." Journal of Semiconductors 43, no. 1 (January 1, 2022): 011001. http://dx.doi.org/10.1088/1674-4926/43/1/011001.
Full textArturo Sánchez-Sánchez, Jesús, Montserrat Navarro-Espino, Yonatan Betancur-Ocampo, José Eduardo Barrios-Vargas, and Thomas Stegmann. "Steering the current flow in twisted bilayer graphene." Journal of Physics: Materials 5, no. 2 (February 11, 2022): 024003. http://dx.doi.org/10.1088/2515-7639/ac4ae0.
Full textZhou, Kun, Liya Wang, Ruijie Wang, Chengyuan Wang, and Chun Tang. "One Dimensional Twisted Van der Waals Structures Constructed by Self-Assembling Graphene Nanoribbons on Carbon Nanotubes." Materials 15, no. 22 (November 18, 2022): 8220. http://dx.doi.org/10.3390/ma15228220.
Full textShoaib, Hassan, Qing Peng, and Abduljabar Q. Alsayoud. "Atomic Insights into Fracture Characteristics of Twisted Tri-Layer Graphene." Crystals 11, no. 10 (October 6, 2021): 1202. http://dx.doi.org/10.3390/cryst11101202.
Full textEnaldiev, V. V., F. Ferreira, S. J. Magorrian, and Vladimir I. Fal’ko. "Piezoelectric networks and ferroelectric domains in twistronic superlattices in WS2/MoS2 and WSe2/MoSe2 bilayers." 2D Materials 8, no. 2 (February 25, 2021): 025030. http://dx.doi.org/10.1088/2053-1583/abdd92.
Full textLei, Shiming, Jingjing Lin, Yanyu Jia, Mason Gray, Andreas Topp, Gelareh Farahi, Sebastian Klemenz, et al. "High mobility in a van der Waals layered antiferromagnetic metal." Science Advances 6, no. 6 (February 2020): eaay6407. http://dx.doi.org/10.1126/sciadv.aay6407.
Full textMcDonnell, Liam P., Jacob J. S. Viner, David A. Ruiz-Tijerina, Pasqual Rivera, Xiaodong Xu, Vladimir I. Fal’ko, and David C. Smith. "Superposition of intra- and inter-layer excitons in twistronic MoSe2/WSe2 bilayers probed by resonant Raman scattering." 2D Materials 8, no. 3 (March 25, 2021): 035009. http://dx.doi.org/10.1088/2053-1583/abe778.
Full textEnaldiev, Vladimir V., Fabio Ferreira, and Vladimir I. Fal’ko. "A Scalable Network Model for Electrically Tunable Ferroelectric Domain Structure in Twistronic Bilayers of Two-Dimensional Semiconductors." Nano Letters 22, no. 4 (February 7, 2022): 1534–40. http://dx.doi.org/10.1021/acs.nanolett.1c04210.
Full textRen, Lingling, and Baojuan Dong. "Ferroelectric Polarization in an h-BN-Encapsulated 30°-Twisted Bilayer–Graphene Heterostructure." Magnetochemistry 9, no. 5 (April 26, 2023): 116. http://dx.doi.org/10.3390/magnetochemistry9050116.
Full textNikitin, Alexey Y. "Photothermal twistronics." Nature Nanotechnology, March 29, 2021. http://dx.doi.org/10.1038/s41565-021-00890-8.
Full textMizobata, William, José Sanches, Mathaus Penha, Willian Carvalho Silva, Carlos Alberto Batista Carvalho, Marcos Figueira, Mariano de Souza, and Antonio C. Seridonio. "Atomic frustration-based twistronics." 2D Materials, September 16, 2021. http://dx.doi.org/10.1088/2053-1583/ac277f.
Full textWu, Fengcheng, Rui-Xing Zhang, and Sankar Das Sarma. "Three-dimensional topological twistronics." Physical Review Research 2, no. 2 (April 13, 2020). http://dx.doi.org/10.1103/physrevresearch.2.022010.
Full textYu, Yun, Madeline Van Winkle, and D. Kwabena Bediako. "Tuning interfacial chemistry with twistronics." Trends in Chemistry, August 2022. http://dx.doi.org/10.1016/j.trechm.2022.07.003.
Full textSalamon, Tymoteusz, Alessio Celi, Ravindra W. Chhajlany, Irénée Frérot, Maciej Lewenstein, Leticia Tarruell, and Debraj Rakshit. "Simulating Twistronics without a Twist." Physical Review Letters 125, no. 3 (July 14, 2020). http://dx.doi.org/10.1103/physrevlett.125.030504.
Full textMullan, Ciaran, Sergey Slizovskiy, Jun Yin, Ziwei Wang, Qian Yang, Shuigang Xu, Yaping Yang, et al. "Mixing of moiré-surface and bulk states in graphite." Nature, July 19, 2023. http://dx.doi.org/10.1038/s41586-023-06264-5.
Full textAngeli, Mattia, Gabriel R. Schleder, and Efthimios Kaxiras. "Twistronics of Janus transition metal dichalcogenide bilayers." Physical Review B 106, no. 23 (December 29, 2022). http://dx.doi.org/10.1103/physrevb.106.235159.
Full textSong, Jizhe, and Mengtao Sun. "Challenging breaking thermoelectric performance limits by twistronics." Journal of Materials Chemistry A, 2023. http://dx.doi.org/10.1039/d3ta02283h.
Full textYuan, Jiahao, Mengzhou Liao, Zhiheng Huang, Jinpeng Tian, Yanbang Chu, Luojun Du, Wei Yang, Dongxia Shi, Rong Yang, and Guangyu Zhang. "Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation." Chinese Physics B, May 23, 2022. http://dx.doi.org/10.1088/1674-1056/ac720e.
Full textHennighausen, Zachariah, and Swastik Kar. "Twistronics: A turning point in 2D quantum materials." Electronic Structure, January 7, 2021. http://dx.doi.org/10.1088/2516-1075/abd957.
Full textLiu, Diyi, Mitchell Luskin, and Stephen Carr. "Seeing moiré: Convolutional network learning applied to twistronics." Physical Review Research 4, no. 4 (December 30, 2022). http://dx.doi.org/10.1103/physrevresearch.4.043224.
Full textXie, Lingbin, Longlu Wang, Weiwei Zhao, Shujuan Liu, Wei Huang, and Qiang Zhao. "WS2 moiré superlattices derived from mechanical flexibility for hydrogen evolution reaction." Nature Communications 12, no. 1 (August 20, 2021). http://dx.doi.org/10.1038/s41467-021-25381-1.
Full text"Twistronics: A Recent Avenue in van der Waals Heterostructures." Proceedings International 2, no. 2 (September 27, 2020): 44. http://dx.doi.org/10.33263/proceedings22.044044.
Full textSachin, Saurav, Puja Kumari, Neelam Gupta, Shivani Rani, Subhasmita Kar, and Soumya Jyoti Ray. "Van der Waals twistronics in a MoS2/WS2 heterostructure." Computational Condensed Matter, March 2023, e00797. http://dx.doi.org/10.1016/j.cocom.2023.e00797.
Full textCiarrocchi, Alberto, Fedele Tagarelli, Ahmet Avsar, and Andras Kis. "Excitonic devices with van der Waals heterostructures: valleytronics meets twistronics." Nature Reviews Materials, January 31, 2022. http://dx.doi.org/10.1038/s41578-021-00408-7.
Full textNguyen, Viet-Hung, Xuan-Hoang Trinh, and Jean-Christophe Charlier. "Electronic properties of twisted multilayer graphene." Journal of Physics: Materials, May 3, 2022. http://dx.doi.org/10.1088/2515-7639/ac6c4a.
Full textMannaï, Marwa, and Sonia Haddad. "Twistronics versus straintronics in twisted bilayers of graphene and transition metal dichalcogenides." Physical Review B 103, no. 20 (May 18, 2021). http://dx.doi.org/10.1103/physrevb.103.l201112.
Full textSalamon, Tymoteusz, Ravindra W. Chhajlany, Alexandre Dauphin, Maciej Lewenstein, and Debraj Rakshit. "Quantum anomalous Hall phase in synthetic bilayers via twistronics without a twist." Physical Review B 102, no. 23 (December 14, 2020). http://dx.doi.org/10.1103/physrevb.102.235126.
Full textMiranda, Hudson, Vitor Monken, João Luiz Campos, Thiago de Lourenço e. Vasconcelos, Cassiano Rabelo, Braulio Soares Archanjo, Clara M. Almeida, et al. "Establishing the excitation field in tip-enhanced Raman spectroscopy to study nanostructures within two-dimensional systems." 2D Materials, October 8, 2022. http://dx.doi.org/10.1088/2053-1583/ac988f.
Full textAlvarado, Miguel, and Alfredo Levy Yeyati. "2D topological matter from a boundary Green's functions perspective: Faddeev-LeVerrier algorithm implementation." SciPost Physics 13, no. 1 (July 25, 2022). http://dx.doi.org/10.21468/scipostphys.13.1.009.
Full textDavid, Alessandro, Péter Rakyta, Andor Kormányos, and Guido Burkard. "Induced spin-orbit coupling in twisted graphene–transition metal dichalcogenide heterobilayers: Twistronics meets spintronics." Physical Review B 100, no. 8 (August 8, 2019). http://dx.doi.org/10.1103/physrevb.100.085412.
Full text