Journal articles on the topic 'Turbulent fluxe'

To see the other types of publications on this topic, follow the link: Turbulent fluxe.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Turbulent fluxe.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Modliński, Norbert J., Włodzimierz K. Kordylewski, and Maciej P. Jakubiak. "Numerical Simulation of O3 and NO Reacting in a Tubular Flow Reactor." Chemical and Process Engineering 34, no. 3 (September 1, 2013): 361–73. http://dx.doi.org/10.2478/cpe-2013-0029.

Full text
Abstract:
Abstract A process capable of NOx control by ozone injection gained wide attention as a possible alternative to proven post combustion technologies such as selective catalytic (and non-catalytic) reduction. The purpose of the work was to develop a numerical model of NO oxidation with O3 that would be capable of providing guidelines for process optimisation during different design stages. A Computational Fluid Dynamics code was used to simulate turbulent reacting flow. In order to reduce computation expense a 11-step global NO - O3 reaction mechanism was implemented into the code. Model performance was verified by the experiment in a tubular flow reactor for two injection nozzle configurations and for two O3/NO ratios of molar fluxe. The objective of this work was to estimate the applicability of a simplified homogeneous reaction mechanism in reactive turbulent flow simulation. Quantitative conformity was not completely satisfying for all examined cases, but the final effect of NO oxidation was predicted correctly at the reactor outlet.
APA, Harvard, Vancouver, ISO, and other styles
2

Durden, D. J., C. J. Nappo, M. Y. Leclerc, H. F. Duarte, G. Zhang, M. J. Parker, and R. J. Kurzeja. "On the impact of wave-like disturbances on turbulent fluxes and turbulence statistics in nighttime conditions: a case study." Biogeosciences 10, no. 12 (December 23, 2013): 8433–43. http://dx.doi.org/10.5194/bg-10-8433-2013.

Full text
Abstract:
Abstract. The interpretation of flux measurements in nocturnal conditions is typically fraught with challenges. This paper reports on how the presence of wave-like disturbances in a time series, can lead to an overestimation of turbulence statistics, errors when calculating the stability parameter, erroneous estimation of the friction velocity u* used to screen flux data, and errors in turbulent flux calculations. Using time series of the pressure signal from a microbarograph, wave-like disturbances at an AmeriFlux site are identified. The wave-like disturbances are removed during the calculation of turbulence statistics and turbulent fluxes. Our findings suggest that filtering eddy-covariance data in the presence of wave-like events prevents both an~overestimation of turbulence statistics and errors in turbulent flux calculations. Results show that large-amplitude wave-like events, events surpassing three standard deviations, occurred on 18% of the nights considered in the present study. Remarkably, on flux towers located in a very stably stratified boundary-layer regime, the presence of a gravity wave can enhance turbulence statistics more than 50%. In addition, the presence of the disturbance modulates the calculated turbulent fluxes of CO2 resulting in erroneous turbulent flux calculations of the order of 10% depending on averaging time and pressure perturbation threshold criteria. Furthermore, the friction velocity u* was affected by the presence of the wave, and in at least one case, a 10% increase caused u* to exceed the arbitrary 0.25 m s−1 threshold used in many studies. This results in an unintended bias in the data selected for analysis in the flux calculations. The impact of different averaging periods was also examined and found to be variable specific. These early case study results provide an insight into errors introduced when calculating "purely" turbulent fluxes. These results could contribute to improving modeling efforts by providing more accurate inputs of both turbulent kinetic energy, and isolating the turbulent component of u* for flux selection in the stable nocturnal boundary layer.
APA, Harvard, Vancouver, ISO, and other styles
3

Maroneze, Rafael, Otávio Costa Acevedo, and Felipe Denardin Costa. "RELAÇÃO ENTRE VELOCIDADE DO VENTO E ENERGIA CINÉTICA TURBULENTA EM MODELOS SIMPLIFICADOS DA CAMADA LIMITE NOTURNA." Ciência e Natura 38 (July 20, 2016): 75. http://dx.doi.org/10.5902/2179460x20091.

Full text
Abstract:
The determination of the turbulent fluxes in very stable conditions is done, generally, through parameterizations. In this work the turbulent fluxes are estimated, by using a simplified model, through prognostic equations for the turbulent intensity, the sensible heat flux and the temperature variance. The results indicate that the model is able to reproduce both atmospheric coupling and the intermittent character of the turbulence in very stable conditions.
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, Lei, Yu Shi, and Fei Hu. "Characteristics of intrinsic non-stationarity and its effect on eddy-covariance measurements of CO<sub>2</sub> fluxes." Nonlinear Processes in Geophysics 29, no. 1 (March 24, 2022): 123–31. http://dx.doi.org/10.5194/npg-29-123-2022.

Full text
Abstract:
Abstract. Stationarity is a critical assumption in the eddy-covariance method that is widely used to calculate turbulent fluxes. Many methods have been proposed to diagnose non-stationarity attributed to external non-turbulent flows. In this paper, we focus on intrinsic non-stationarity (IN) attributed to turbulence randomness. The detrended fluctuation analysis is used to quantify IN of CO2 turbulent fluxes in the downtown of Beijing. Results show that the IN is common in CO2 turbulent fluxes and is a small-scale phenomenon related to the inertial sub-range turbulence. The small-scale IN of CO2 turbulent fluxes can be simulated by the Ornstein–Uhlenbeck (OU) process as a first approximation. Based on the simulation results, we find that the flux-averaging time should be greater than 27 s to avoid the effects of IN. Besides, the non-stationarity diagnosis methods that do not take into account IN would possibly make a wrong diagnosis with some parameters.
APA, Harvard, Vancouver, ISO, and other styles
5

Durden, D. J., C. J. Nappo, M. Y. Leclerc, H. F. Duarte, G. Zhang, L. B. M. Pires, M. J. Parker, and R. J. Kurzeja. "On the impact of atmospheric waves on fluxes and turbulence statistics during nighttime conditions: a case study." Biogeosciences Discussions 10, no. 3 (March 14, 2013): 5149–73. http://dx.doi.org/10.5194/bgd-10-5149-2013.

Full text
Abstract:
Abstract. The interpretation of flux measurements in the nocturnal stable boundary layer is typically fraught with difficulties. This paper reports on how the presence of waves in a time series leads to an overestimation of turbulence statistics and errors in turbulent flux calculations. Using time series of the pressure signal from a microbarograph, the presence of waves at a flux measurement site near Aiken, SC is identified and removed. Our findings suggest that filtering of eddy-covariance data in the presence of wave events prevents both an overestimation of turbulence statistics and errors in turbulent flux calculations. The results showed that large amplitude wave-like events occurred on 31% of the nights considered in the present study. Remarkably, in low-turbulence environments, the presence of a gravity wave can enhance turbulence statistics more than 50%. The presence of the wave modulates the calculated turbulent fluxes of CO2, resulting in erroneous flux calculations of the order of 10% depending on the averaging time and pressure perturbation threshold criteria. In addition, u∗ was affected by the presence of the wave, and in at least one case, a 10% increase caused u∗ to exceed the arbitrary 0.25 ms–1 threshold used in many studies. These preliminary results suggest that biases due to nocturnal atmospheric phenomena can easily creep unnoticed into flux data. The impact of different averaging periods was found to depend on the choice of the variables. This is a product of the width of the averaging window in relation to the wave cycle and dealt with the phase relationship of the variables being analyzed; hence, these errors are primarily introduced through our processing methods. These results provide a novel insight into errors introduced in turbulent fluxes. By contributing more accurate inputs of both turbulent kinetic energy and u∗, these results could be invaluable in improving modeling efforts applied to nocturnal exchange.
APA, Harvard, Vancouver, ISO, and other styles
6

Huang, Junji, Jorge-Valentino Bretzke, and Lian Duan. "Assessment of Turbulence Models in a Hypersonic Cold-Wall Turbulent Boundary Layer." Fluids 4, no. 1 (February 26, 2019): 37. http://dx.doi.org/10.3390/fluids4010037.

Full text
Abstract:
In this study, the ability of standard one- or two-equation turbulence models to predict mean and turbulence profiles, the Reynolds stress, and the turbulent heat flux in hypersonic cold-wall boundary-layer applications is investigated. The turbulence models under investigation include the one-equation model of Spalart–Allmaras, the baseline k - ω model by Menter, as well as the shear-stress transport k - ω model by Menter. Reynolds-Averaged Navier-Stokes (RANS) simulations with the different turbulence models are conducted for a flat-plate, zero-pressure-gradient turbulent boundary layer with a nominal free-stream Mach number of 8 and wall-to-recovery temperature ratio of 0.48 , and the RANS results are compared with those of direct numerical simulations (DNS) under similar conditions. The study shows that the selected eddy-viscosity turbulence models, in combination with a constant Prandtl number model for turbulent heat flux, give good predictions of the skin friction, wall heat flux, and boundary-layer mean profiles. The Boussinesq assumption leads to essentially correct predictions of the Reynolds shear stress, but gives wrong predictions of the Reynolds normal stresses. The constant Prandtl number model gives an adequate prediction of the normal turbulent heat flux, while it fails to predict transverse turbulent heat fluxes. The discrepancy in model predictions among the three eddy-viscosity models under investigation is small.
APA, Harvard, Vancouver, ISO, and other styles
7

Banerjee, Tirtha, Frederik De Roo, and Matthias Mauder. "Connecting the Failure of K Theory inside and above Vegetation Canopies and Ejection–Sweep Cycles by a Large-Eddy Simulation." Journal of Applied Meteorology and Climatology 56, no. 12 (December 2017): 3119–31. http://dx.doi.org/10.1175/jamc-d-16-0363.1.

Full text
Abstract:
AbstractParameterizations of biosphere–atmosphere interaction processes in climate models and other hydrological applications require characterization of turbulent transport of momentum and scalars between vegetation canopies and the atmosphere, which is often modeled using a turbulent analogy to molecular diffusion processes. Simple flux–gradient approaches (K theory) fail for canopy turbulence, however. One cause is turbulent transport by large coherent eddies at the canopy scale, which can be linked to sweep–ejection events and bear signatures of nonlocal organized eddy motions. The K theory, which parameterizes the turbulent flux or stress proportional to the local concentration or velocity gradient, fails to account for these nonlocal organized motions. The connection to sweep–ejection cycles and the local turbulent flux can be traced back to the turbulence triple moment . In this work, large-eddy simulation is used to investigate the diagnostic connection between the failure of K theory and sweep–ejection motions. Analyzed schemes are quadrant analysis and complete and incomplete cumulant expansion methods. The latter approaches introduce a turbulence time scale in the modeling. Furthermore, it is found that the momentum flux and sensible heat flux need different formulations for the turbulence time scale. Accounting for buoyancy in stratified conditions is also deemed important in addition to accounting for nonlocal events to predict the correct momentum or scalar fluxes.
APA, Harvard, Vancouver, ISO, and other styles
8

Kawata, Takuya, and Takahiro Tsukahara. "Spectral Analysis on Transport Budgets of Turbulent Heat Fluxes in Plane Couette Turbulence." Energies 15, no. 14 (July 20, 2022): 5258. http://dx.doi.org/10.3390/en15145258.

Full text
Abstract:
In recent years, scale-by-scale energy transport in wall turbulence has been intensively studied, and the complex spatial and interscale transfer of turbulent energy has been investigated. As the enhancement of heat transfer is one of the most important aspects of turbulence from an engineering perspective, it is also important to study how turbulent heat fluxes are transported in space and in scale by nonlinear multi-scale interactions in wall turbulence as well as turbulent energy. In the present study, the spectral transport budgets of turbulent heat fluxes are investigated based on direct numerical simulation data of a turbulent plane Couette flow with a passive scalar heat transfer. The transport budgets of spanwise spectra of temperature fluctuation and velocity-temperature correlations are investigated in detail in comparison to those of the corresponding Reynolds stress spectra. The similarity and difference between those scale-by-scale transports are discussed, with a particular focus on the roles of interscale transport and spatial turbulent diffusion. As a result, it is found that the spectral transport of the temperature-related statistics is quite similar to those of the Reynolds stresses, and in particular, the inverse interscale transfer is commonly observed throughout the channel in both transport of the Reynolds shear stress and wall-normal turbulent heat flux.
APA, Harvard, Vancouver, ISO, and other styles
9

MASSERONI, DANIELE, CHIARA CORBARI, and MARCO MANCINI. "Limitations and improvements of the energy balance closure with reference to experimental data measured over a maize field." Atmósfera 27, no. 4 (January 13, 2015): 335–52. http://dx.doi.org/10.20937/atm.2014.27.04.01.

Full text
Abstract:
The use of energy fluxes data to validate land surface models requires that energy balance closure conservationis satisfied, but usually this condition is not verified when the available energy is bigger than the sumof turbulent vertical fluxes. In this work, a comprehensive evaluation of energy balance closure problems isperformed on a 2012 data set from Livraga obtained by a micrometeorological eddy covariance station locatedin a maize field in the Po Valley. Energy balance closure is calculated by statistical regression of turbulentenergy fluxes and soil heat flux against available energy. Generally, the results indicate a lack of closure witha mean imbalance in the order of 20%. Storage terms are the main reason for the unclosed energy balance butalso the turbulent mixing conditions play a fundamental role in reliable turbulent flux estimations. Recentlyintroduced in literature, the energy balance problem has been studied as a scale problem. A representativesource area for each flux of the energy balance has been analyzed and the closure has been performed infunction of turbulent flux footprint areas. Surface heterogeneity and seasonality effects have been studied to understand the influence of canopy growth on the energy balance closure. High frequency data have beenused to calculate co-spectral and ogive functions, which suggest that an averaging period of 30 min may misstemporal scales that contribute to the turbulent fluxes. Finally, latent and sensible heat random error estimationsare computed to give information about the measurement system and turbulence transport deficiencies
APA, Harvard, Vancouver, ISO, and other styles
10

Younis, Bassam A., Charles G. Speziale, and Timothy T. Clark. "A rational model for the turbulent scalar fluxes." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 461, no. 2054 (February 8, 2005): 575–94. http://dx.doi.org/10.1098/rspa.2004.1380.

Full text
Abstract:
The paper reports on an alternative approach to modelling the turbulent scalar fluxes that arise from time averaging the transport equation for a scalar. In this approach, a functional relationship between these fluxes and various tensor quantities is constructed with guidance from the exact equations governing the transport of fluxes. Results from tensor representation theory are then used to obtain an explicit relationship between the fluxes and the terms in the assumed functional relationship. Where turbulence length– and time–scales are implied, these are determined from two scalar quantities: the turbulence kinetic energy and its rate of dissipation by viscous action. The general representation is then reduced by certain justifiable assumptions to yield a practical model for the turbulent scalar fluxes that is explicit and algebraic in these quantities and one that correctly reflects their dependence on the gradients of mean velocity and on the details of the turbulence. Examination of alternative algebraic models shows most to be subsets of the present proposal. The new model is calibrated using results from large–eddy simulations (LESs) of homogeneous turbulence with passive scalars and then assessed by reference to benchmark data from heated turbulent shear flows. The results obtained show the model to correctly predict the anisotropy of the turbulent diffusivity tensor. The asymmetric nature of this tensor is also recovered, but only qualitatively, there being significant quantitative differences between the model predictions and the LES results. Finally, comparisons with data from benchmark two–dimensional free shear flows show the new model to yield distinct improvements over other algebraic scalar–flux closures.
APA, Harvard, Vancouver, ISO, and other styles
11

Ren, Yan, Hongsheng Zhang, Wei Wei, Bingui Wu, Xuhui Cai, and Yu Song. "Effects of turbulence structure and urbanization on the heavy haze pollution process." Atmospheric Chemistry and Physics 19, no. 2 (January 28, 2019): 1041–57. http://dx.doi.org/10.5194/acp-19-1041-2019.

Full text
Abstract:
Abstract. In this paper, an automated algorithm is developed, which is used to identify the spectral gap during the heavy haze pollution process, reconstruct acquired data, and obtain pure turbulence data. Comparisons of the reconstructed turbulent flux and eddy covariance (EC) flux show that there are overestimations regarding the exchange between the surface and the atmosphere during heavy haze pollution episodes. After reconstruction via the automated algorithm, pure turbulence data can be obtained. We introduce a definition to characterize the local intermittent strength of turbulence (LIST). The trend in the LIST during pollution episodes shows that when pollution is more intense, the LIST is smaller, and intermittency is stronger; when pollution is weaker, the LIST is larger, and intermittency is weaker. At the same time, the LIST at the city site is greater than at the suburban site, which means that intermittency over the complex city area is weaker than over the flat terrain area. Urbanization seems to reduce intermittency during heavy haze pollution episodes, which means that urbanization reduces the degree of weakening in turbulent exchange during pollution episodes. This result is confirmed by comparing the average diurnal variations in turbulent fluxes at urban and suburban sites during polluted and clean periods. The sensible heat flux, latent heat flux, momentum flux, and turbulent kinetic energy (TKE) in urban and suburban areas are all affected when pollution occurs. Material and energy exchanges between the surface and the atmosphere are inhibited. Moreover, the impact of the pollution process on suburban areas is much greater than on urban areas. The turbulent effects caused by urbanization seem to help reduce the consequences of pollution under the same weather and pollution source condition, because the turbulence intermittency is weaker, and the reduction in turbulence exchange is smaller over the urban underlying surface.
APA, Harvard, Vancouver, ISO, and other styles
12

Nicholson, Lindsey, and Ivana Stiperski. "Comparison of turbulent structures and energy fluxes over exposed and debris-covered glacier ice." Journal of Glaciology 66, no. 258 (April 14, 2020): 543–55. http://dx.doi.org/10.1017/jog.2020.23.

Full text
Abstract:
AbstractWe present the first direct comparison of turbulence conditions measured simultaneously over exposed ice and a 0.08 m thick supraglacial debris cover on Suldenferner, a small glacier in the Italian Alps. Surface roughness, sensible heat fluxes (~20–50 W m−2), latent heat fluxes (~2–10 W m−2), topology and scale of turbulence are similar over both glacier surface types during katabatic and synoptically disturbed conditions. Exceptions are sunny days when buoyant convection becomes significant over debris-covered ice (sensible heat flux ~ −100 W m−2; latent heat flux ~ −30 W m−2) and prevailing katabatic conditions are rapidly broken down even over this thin debris cover. The similarity in turbulent properties implies that both surface types can be treated the same in terms of boundary layer similarity theory. The differences in turbulence between the two surface types on this glacier are dominated by the radiative and thermal contrasts, thus during sunny days debris cover alters both the local surface turbulent energy fluxes and the glacier component of valley circulation. These variations under different flow conditions should be accounted for when distributing temperature fields for modeling applications over partially debris-covered glaciers.
APA, Harvard, Vancouver, ISO, and other styles
13

Prabha, Thara V., Monique Y. Leclerc, Anandakumar Karipot, and David Y. Hollinger. "Low-Frequency Effects on Eddy Covariance Fluxes under the Influence of a Low-Level Jet." Journal of Applied Meteorology and Climatology 46, no. 3 (March 1, 2007): 338–52. http://dx.doi.org/10.1175/jam2461.1.

Full text
Abstract:
Abstract Turbulent bursts observed over a tall forest canopy during the initiation of a nocturnal low-level jet (LLJ) are studied with the help of wavelet analysis. The burst of turbulence is observed in response to a shear instability associated with the initiation of LLJ. Turbulent kinetic energy, momentum, and CO2-rich cold air are transferred downward by large eddies with length scales that are higher than the LLJ height. Microfronts are observed over the canopy as a secondary instability that enhances the mixing processes within and above the canopy. The scale-dependent wavelet correlation analysis reveals that countergradient fluxes result from low frequencies, whereas cogradient flux is associated with high-frequency turbulent motions. The countergradient flux is initially noted at low frequencies, and, through coherent motions, it is transferred to smaller scales with a nearly 20-min delay. The countergradient flux dominates at the initiation of the event and reduces net flux, whereas enhanced cogradient flux at the decay of the event increases the net flux. The wavelet correlation coefficient corresponding to cogradient and countergradient fluxes is applied to segregate three regions of the spectra corresponding to “turbulent,” “coherent,” and “noncoherent” large scales. These findings are used to examine the implications on eddy covariance flux measurements.
APA, Harvard, Vancouver, ISO, and other styles
14

Epifanio, Craig C., and Tingting Qian. "Wave–Turbulence Interactions in a Breaking Mountain Wave." Journal of the Atmospheric Sciences 65, no. 10 (October 2008): 3139–58. http://dx.doi.org/10.1175/2008jas2517.1.

Full text
Abstract:
The mean and turbulent structures in a breaking mountain wave are considered through an ensemble of high-resolution (essentially large-eddy simulation) wave-breaking calculations. Of particular interest are the turbulent heat and momentum fluxes in the breaking wave and their roles in shaping the wave-scale and larger-scale flows. The evolution of the breaking wave in the ensemble mean is found to be broadly consistent with prior low-resolution calculations. A turbulent kinetic energy budget for the wave shows that the turbulence production is almost entirely due to the mean shear. Most of the production is at the top of the leeside shooting flow, where the mean-flow Richardson number is persistently less than 0.25. The turbulent dissipation of mean-flow wave energy is shown to result mainly from the turbulent momentum fluxes—specifically, from the tendency of these fluxes to act counter to the mean-flow disturbance wind. Of particular importance is the eddy deceleration of the leeside shooting flow. The resulting momentum dissipation leads to a mean-flow Bernoulli loss, a cross-stream mean-flow PV flux, and a permanent upward mean-flow vorticity transfer. The dependence of the turbulent fluxes on grid spacing is considered by computing a series of ensembles with grid spacings ranging from L/56 to L/3.7 (where L is the mountain half-width). At the highest resolution, the eddy fluxes are mostly resolved, but with increasing grid spacing, the resolved-scale fluxes decline and the parameterized fluxes become larger. It is shown that for the chosen parameter values, the parameterized fluxes overestimate the mean-flow PV flux: at L/3.7 the PV flux is nearly twice that computed at L/56.
APA, Harvard, Vancouver, ISO, and other styles
15

BRIGGS, DAVID A., JOEL H. FERZIGER, JEFFREY R. KOSEFF, and STEPHEN G. MONISMITH. "Turbulent mixing in a shear-free stably stratified two-layer fluid." Journal of Fluid Mechanics 354 (January 10, 1998): 175–208. http://dx.doi.org/10.1017/s0022112097007672.

Full text
Abstract:
Direct numerical simulation is used to examine turbulent mixing in a shear-free stably stratified fluid. Energy is continuously supplied to a small region to maintain a well-developed kinetic energy profile, as in an oscillating grid flow (Briggs et al. 1996; Hopfinger & Toly 1976; Nokes 1988). A microscale Reynolds number of 60 is maintained in the source region. The turbulence forms a well-mixed layer which diffuses from the source into the quiescent fluid below. Turbulence transport at the interface causes the mixed layer to grow under weakly stratified conditions. When the stratification is strong, large-scale turbulent transport is inactive and pressure transport becomes the principal mechanism for the growth of the turbulence layer. Down-gradient buoyancy flux is present in the large scales; however, far from the source, weak counter-gradient fluxes appear in the medium to small scales. The production of internal waves and counter-gradient fluxes rapidly reduces the mixing when the turbulent Froude number is lower than unity. When the stratification is weak, the turbulence is strong enough to break up the density interface and transport fluid parcels of different density over large vertical distances. As the stratification intensifies, turbulent eddies flatten against the interface creating anisotropy and internal waves. The dominant entrainment mechanism is then scouring. Mixing efficiency, defined as the ratio of buoyancy flux to available kinetic energy, exhibits a similar dependence on Froude number to other stratified flows (Holt et al. 1992; Lienhard & Van Atta 1990). However, using the anisotropy of the turbulence to define an alternative mixing efficiency and Froude number improves the correlation and allows local scaling.
APA, Harvard, Vancouver, ISO, and other styles
16

Jiménez, Javier. "Optimal fluxes and Reynolds stresses." Journal of Fluid Mechanics 809 (November 15, 2016): 585–600. http://dx.doi.org/10.1017/jfm.2016.692.

Full text
Abstract:
It is remarked that fluxes in conservation laws, such as the Reynolds stresses in the momentum equation of turbulent shear flows, or the spectral energy flux in anisotropic turbulence, are only defined up to an arbitrary solenoidal field. While this is not usually significant for long-time averages, it becomes important when fluxes are modelled locally in large-eddy simulations, or in the analysis of intermittency and cascades. As an example, a numerical procedure is introduced to compute fluxes in scalar conservation equations in such a way that their total integrated magnitude is minimised. The result is an irrotational vector field that derives from a potential, thus minimising sterile flux ‘circuits’. The algorithm is generalised to tensor fluxes and applied to the transfer of momentum in a turbulent channel. The resulting instantaneous Reynolds stresses are compared with their traditional expressions, and found to be substantially different. This suggests that some of the alleged shortcomings of simple subgrid models may be representational artefacts, and that the same may be true of the intermittency properties of the turbulent stresses.
APA, Harvard, Vancouver, ISO, and other styles
17

Holloway, A. G. L., and S. A. Ebrahimi-Sabet. "Heat Flux Measurements in Homogeneous Curved Shear Flow." Journal of Heat Transfer 121, no. 1 (February 1, 1999): 190–94. http://dx.doi.org/10.1115/1.2825941.

Full text
Abstract:
Turbulent heat fluxes were measured far downstream of a fine heating wire stretched spanwise across a curved, uniform shear flow. The turbulence was approximately homogeneous and the overheat small enough to be passive. Strong destabilizing and stabilizing curvature effects were produced by directing the shear toward the center of curvature and away from the center of curvature, respectively. The dimensionless turbulent shear stress was strongly affected by the flow curvature, but the dimensionless components of the turbulent heat flux were found to be relatively insensitive.
APA, Harvard, Vancouver, ISO, and other styles
18

Li, H., J. Q. Li, Y. L. Fu, Z. X. Wang, and M. Jiang. "Simulation prediction of micro-instability transition and associated particle transport in tokamak plasmas." Nuclear Fusion 62, no. 3 (January 25, 2022): 036014. http://dx.doi.org/10.1088/1741-4326/ac486b.

Full text
Abstract:
Abstract Two reduced simulation approaches are exploited to predict the parametric boundary of dominant instability regime with global effects and the characteristics of corresponding turbulent particle fluxes in tokamak plasmas. One is usual numerical simulation of coexisting ion temperature gradient (ITG) mode and trapped electron mode (TEM) turbulence employing an extended fluid code (ExFC) based on the so-called Landau–Fluid model including the trapped electron dynamics. Here the density gradient (i.e. R/L n ) driven TEM (∇n-TEM) is emphasized. The other one is a surrogate turbulence transport model, taking a neural network (NN) based approach with speeding calculation. It is shown that the turbulent particle flux, particularly their directions depend on the type of micro-instability as ITG and/or TEM. On the other hand, the density gradient may govern the direction of the turbulent particle fluxes in general circumstances. Specifically, in the parameter regime explored here, the ITG and the electron temperature gradient driven TEM (∇T e-TEM) are destabilized for flat density profile, generally causing an inward particle flux, i.e. particle pinch. Contrarily, for steep density profile, the ∇n-TEM or coexisting ITG and TEM turbulence are dominant so that the particle always diffuses outwards. An empirical criterion is obtained to predict the dominant instability and the direction of particle flux for medium density gradients, involving the gradients of both ion and electron temperature as well as the density. These two transport models are applied to analyze the spontaneous excitation of a quasi-coherent mode in the turbulence modulation discharge by MHD magnetic island observed on tokamak HL-2A, clearly showing a dynamic transition from ITG to TEM. Furthermore, the ExFC-NN model can predict and speed up the analysis of the turbulence transport in tokamak experiments.
APA, Harvard, Vancouver, ISO, and other styles
19

Helgason, Warren, and John W. Pomeroy. "Characteristics of the Near-Surface Boundary Layer within a Mountain Valley during Winter." Journal of Applied Meteorology and Climatology 51, no. 3 (March 2012): 583–97. http://dx.doi.org/10.1175/jamc-d-11-058.1.

Full text
Abstract:
AbstractWithin mountainous regions, estimating the exchange of sensible heat and water vapor between the surface and the atmosphere is an important but inexact endeavor. Measurements of the turbulence characteristics of the near-surface boundary layer in complex mountain terrain are relatively scarce, leading to considerable uncertainty in the application of flux-gradient techniques for estimating the surface turbulent heat and mass fluxes. An investigation of the near-surface boundary layer within a 7-ha snow-covered forest clearing was conducted in the Kananaskis River valley, located within the Canadian Rocky Mountains. The homogeneous measurement site was characterized as being relatively calm and sheltered; the wind exhibited considerable unsteadiness, however. Frequent wind gusts were observed to transport turbulent energy into the clearing, affecting the rate of energy transfer at the snow surface. The resulting boundary layer within the clearing exhibited perturbations introduced by the surrounding topography and land surface discontinuities. The measured momentum flux did not scale with the local aerodynamic roughness and mean wind speed profile, but rather was reflective of the larger-scale topographical disturbances. The intermittent nature of the flux-generating processes was evident in the turbulence spectra and cospectra where the peak energy was shifted to lower frequencies as compared with those observed in more homogeneous flat terrain. The contribution of intermittent events was studied using quadrant analysis, which revealed that 50% of the sensible and latent heat fluxes was contributed from motions that occupied less than 6% of the time. These results highlight the need for caution while estimating the turbulent heat and mass fluxes in mountain regions.
APA, Harvard, Vancouver, ISO, and other styles
20

Hendrickson, Kelli, and Dick K. P. Yue. "Wake behind a three-dimensional dry transom stern. Part 2. Analysis and modelling of incompressible highly variable density turbulence." Journal of Fluid Mechanics 875 (July 26, 2019): 884–913. http://dx.doi.org/10.1017/jfm.2019.506.

Full text
Abstract:
We analyse the turbulence characteristics and consider the closure modelling of the air entraining flow in the wake of three-dimensional, rectangular dry transom sterns obtained using high-resolution implicit large eddy simulations (iLES) (Hendrickson et al., J. Fluid Mech., vol. 875, 2019, pp. 854–883). Our focus is the incompressible highly variable density turbulence (IHVDT) in the near surface mixed-phase region ${\mathcal{R}}$ behind the stern. We characterize the turbulence statistics in ${\mathcal{R}}$ and determine it to be highly anisotropic due to quasi-steady wave breaking. Using unconditioned Reynolds decomposition for our analysis, we show that the turbulent mass flux (TMF) is important in IHVDT for the production of turbulent kinetic energy and is as relevant to the mean momentum equations as the Reynolds stresses. We develop a simple, regional explicit algebraic closure model for the TMF based on a functional relationship between the fluxes and tensor flow quantities. A priori tests of the model show mean density gradients and buoyancy effects are the main driving parameters for predicting the turbulent mass flux and the model is capable of capturing the highly localized nature of the TMF in ${\mathcal{R}}$.
APA, Harvard, Vancouver, ISO, and other styles
21

Hartmann, Jörg, Martin Gehrmann, Katrin Kohnert, Stefan Metzger, and Torsten Sachs. "New calibration procedures for airborne turbulence measurements and accuracy of the methane fluxes during the AirMeth campaigns." Atmospheric Measurement Techniques 11, no. 7 (July 31, 2018): 4567–81. http://dx.doi.org/10.5194/amt-11-4567-2018.

Full text
Abstract:
Abstract. Low-level flights over tundra wetlands in Alaska and Canada have been conducted during the Airborne Measurements of Methane Emissions (AirMeth) campaigns to measure turbulent methane fluxes in the atmosphere. In this paper we describe the instrumentation and new calibration procedures for the essential pressure parameters required for turbulence sensing by aircraft that exploit suitable regular measurement flight legs without the need for dedicated calibration patterns. We estimate the accuracy of the mean wind and the turbulence measurements. We show that airborne measurements of turbulent fluxes of methane and carbon dioxide using cavity ring-down spectroscopy trace gas analysers together with established turbulence equipment achieve a relative accuracy similar to that of measurements of sensible heat flux if applied during low-level flights over natural area sources. The inertial subrange of the trace gas fluctuations cannot be resolved due to insufficient high-frequency precision of the analyser, but, since this scatter is uncorrelated with the vertical wind velocity, the covariance and thus the flux are reproduced correctly. In the covariance spectra the -7/3 drop-off in the inertial subrange can be reproduced if sufficient data are available for averaging. For convective conditions and flight legs of several tens of kilometres we estimate the flux detection limit to be about 4 mg m−2 d−1 for w′CH4′‾, 1.4 g m−2 d−1 for w′CO2′‾ and 4.2 W m−2 for the sensible heat flux.
APA, Harvard, Vancouver, ISO, and other styles
22

Pearson, Brodie C., Alan L. M. Grant, Jeff A. Polton, and Stephen E. Belcher. "Langmuir Turbulence and Surface Heating in the Ocean Surface Boundary Layer." Journal of Physical Oceanography 45, no. 12 (December 2015): 2897–911. http://dx.doi.org/10.1175/jpo-d-15-0018.1.

Full text
Abstract:
AbstractThis study uses large-eddy simulation to investigate the structure of the ocean surface boundary layer (OSBL) in the presence of Langmuir turbulence and stabilizing surface heat fluxes. The OSBL consists of a weakly stratified layer, despite a surface heat flux, above a stratified thermocline. The weakly stratified (mixed) layer is maintained by a combination of a turbulent heat flux produced by the wave-driven Stokes drift and downgradient turbulent diffusion. The scaling of turbulence statistics, such as dissipation and vertical velocity variance, is only affected by the surface heat flux through changes in the mixed layer depth. Diagnostic models are proposed for the equilibrium boundary layer and mixed layer depths in the presence of surface heating. The models are a function of the initial mixed layer depth before heating is imposed and the Langmuir stability length. In the presence of radiative heating, the models are extended to account for the depth profile of the heating.
APA, Harvard, Vancouver, ISO, and other styles
23

WANG, HONGWEI, and ADRIAN WING-KEUNG LAW. "Second-order integral model for a round turbulent buoyant jet." Journal of Fluid Mechanics 459 (May 25, 2002): 397–428. http://dx.doi.org/10.1017/s0022112002008157.

Full text
Abstract:
The development of a second-order integral model for a round turbulent buoyant jet is reported based on new experimental data on turbulent mass and momentum transport. The mean and turbulent characteristics of a round vertical buoyant jet covering the full range from jets to plumes were investigated using a recently developed combined digital particle image velocimetry (DPIV) and planar laser-induced fluorescence (PLIF) system. The system couples the two well-known techniques to enable synchronized planar measurements of flow velocities and concentrations in a study area. The experimental results conserved the mass and momentum fluxes introduced at the source accurately with closure errors of less than 5%. The momentum flux contributed by turbulence and streamwise pressure gradient was determined to be about 10% of the local mean momentum flux in both jets and plumes. The turbulent mass flux, on the other hand, was measured to be about 7.6% and 15% of the mean mass flux for jets and plumes respectively. While the velocity spread rate was shown to be independent of the flow regime, the concentration-to-velocity width ratio λ varied from 1.23 to 1.04 during the transition from jet to plume. Based on the experimental results, a refined second-order integral model for buoyant jets that achieves the conservation of total mass and momentum fluxes is proposed. The model employs the widely used entrainment assumption with the entrainment coefficient taken to be a function of the local Richardson number. Improved prediction is achieved by taking into account the variation of turbulent mass and momentum fluxes. The variation of turbulent mass flux is modelled as a function of the local Richardson number. The turbulent momentum flux, on the other hand, is treated as a fixed percentage of the local mean momentum flux. In addition, unlike most existing integral models that assume a constant concentration-to-velocity width ratio, the present model adopts a more accurate approach with the ratio expressed as a function of the local Richardson number. As a result, smooth transition of all relevant mean and turbulent characteristics from jet to plume is predicted, which is in line with the underlying physical processes.
APA, Harvard, Vancouver, ISO, and other styles
24

You, Cheng, Michael Tjernström, and Abhay Devasthale. "Warm and moist air intrusions into the winter Arctic: a Lagrangian view on the near-surface energy budgets." Atmospheric Chemistry and Physics 22, no. 12 (June 21, 2022): 8037–57. http://dx.doi.org/10.5194/acp-22-8037-2022.

Full text
Abstract:
Abstract. In this study, warm and moist air intrusions (WaMAIs) over the Arctic Ocean sectors of Barents Sea, Kara Sea, Laptev Sea, East Siberian Sea, Chukchi Sea, and Beaufort Sea in 40 recent winters (from 1979 to 2018) are identified from the ERA5 reanalysis using both Eulerian and Lagrangian views. The analysis shows that WaMAIs, fueled by Arctic blocking, cause a relative surface warming and hence a sea-ice reduction by exerting positive anomalies of net thermal irradiances and turbulent fluxes on the surface. Over Arctic Ocean sectors with land-locked sea ice in winter, such as Laptev Sea, East Siberian Sea, Chukchi Sea, and Beaufort Sea, the total surface energy-budget is dominated by net thermal irradiance. From a Lagrangian perspective, total water path (TWP) increases linearly with the downstream distance from the sea-ice edge over the completely ice-covered sectors, inducing almost linearly increasing net thermal irradiance and total surface energy-budget. However, over the Barents Sea, with an open ocean to the south, total net surface energy-budget is dominated by the surface turbulent flux. With the energy in the warm-and-moist air continuously transported to the surface, net surface turbulent flux gradually decreases with distance, especially within the first 2∘ north of the ice edge, inducing a decreasing but still positive total surface energy-budget. The boundary-layer energy-budget patterns over the Barents Sea can be categorized into three classes: radiation-dominated, turbulence-dominated, and turbulence-dominated with cold dome, comprising about 52 %, 40 %, and 8 % of all WaMAIs, respectively. Statistically, turbulence-dominated cases with or without cold dome occur along with 1 order of magnitude larger large-scale subsidence than the radiation-dominated cases. For the turbulence-dominated category, larger turbulent fluxes are exerted to the surface, probably because of stronger wind shear. In radiation-dominated WaMAIs, stratocumulus develops more strongly and triggers intensive cloud-top radiative cooling and related buoyant mixing that extends from cloud top to the surface, inducing a thicker well-mixed layer under the cloud. With the existence of cold dome, fewer liquid water clouds were formed, and less or even negative turbulent fluxes could reach the surface.
APA, Harvard, Vancouver, ISO, and other styles
25

Raga, G. B., and S. Abarca. "On the parameterization of turbulent fluxes over the tropical Eastern Pacific." Atmospheric Chemistry and Physics Discussions 6, no. 3 (June 26, 2006): 5251–68. http://dx.doi.org/10.5194/acpd-6-5251-2006.

Full text
Abstract:
Abstract. We present estimates of turbulent fluxes of heat and momentum derived from low level (~30 m) aircraft measurements over the tropical Eastern Pacific and provide empirical relationships that are valid under high wind speed conditions (up to 25 ms−1). The estimates of total momentum flux and turbulent kinetic energy can be represented very accurately (r2=0.99, when data are binned every 1 ms−1) by empirical fits with a linear and a cubic terms of the average horizontal wind speed. The latent heat flux shows a strong quadratic dependence on the horizontal wind speed and a linear relationship with the difference between the air specific humidity and the saturated specific humidity at the sea surface, explaining 96% of the variance. The estimated values were used to evaluate the performance of three currently used parameterizations of turbulence fluxes, varying in complexity and computational requirements. The comparisons with the two more complex parameterizations show good agreement between the observed and parameterized latent heat fluxes, with less agreement in the sensible heat fluxes, and one of them largely overestimating the momentum fluxes. A third, very simple parameterization shows a surprisingly good agreement of the sensible heat flux, while momentum fluxes are again overestimated and a poor agreement was observed for the latent heat flux (r2=0.62). The performance of all three parameterizations deteriorates significantly in the high wind speed regime (above 10–15 ms−1). The dataset obtained over the tropical Eastern Pacific allows us to derive empirical functions for the turbulent fluxes that are applicable from 1 to 25 ms−1, which can be introduced in meteorological models under high wind conditions.
APA, Harvard, Vancouver, ISO, and other styles
26

Raga, G. B., and S. Abarca. "On the parameterization of turbulent fluxes over the tropical Eastern Pacific." Atmospheric Chemistry and Physics 7, no. 3 (February 9, 2007): 635–43. http://dx.doi.org/10.5194/acp-7-635-2007.

Full text
Abstract:
Abstract. We present estimates of turbulent fluxes of heat and momentum derived from low level (~30 m) aircraft measurements over the tropical Eastern Pacific and provide empirical relationships that are valid under high wind speed conditions (up to 25 ms−1). The estimates of total momentum flux and turbulent kinetic energy can be represented very accurately (r2=0.99, when data are binned every 1 ms−1) by empirical fits with a linear and a cubic terms of the average horizontal wind speed. The latent heat flux shows a strong quadratic dependence on the horizontal wind speed and a linear relationship with the difference between the air specific humidity and the saturated specific humidity at the sea surface, explaining 96% of the variance. The estimated values were used to evaluate the performance of three currently used parameterizations of turbulence fluxes, varying in complexity and computational requirements. The comparisons with the two more complex parameterizations show good agreement between the observed and parameterized latent heat fluxes, with less agreement in the sensible heat fluxes, and one of them largely overestimating the momentum fluxes. A third, very simple parameterization shows a surprisingly good agreement of the sensible heat flux, while momentum fluxes are again overestimated and a poor agreement was observed for the latent heat flux (r2=0.62). The performance of all three parameterizations deteriorates significantly in the high wind speed regime (above 10–15 ms−1). The dataset obtained over the tropical Eastern Pacific allows us to derive empirical functions for the turbulent fluxes that are applicable from 1 to 25 ms−1, which can be introduced in meteorological models under high wind conditions.
APA, Harvard, Vancouver, ISO, and other styles
27

Veron, Fabrice, W. Kendall Melville, and Luc Lenain. "The Effects of Small-Scale Turbulence on Air–Sea Heat Flux." Journal of Physical Oceanography 41, no. 1 (January 1, 2011): 205–20. http://dx.doi.org/10.1175/2010jpo4491.1.

Full text
Abstract:
Abstract The air–sea exchange of heat is mainly controlled by the molecular diffusive layer adjacent to the surface. With an order of magnitude difference between the kinematic viscosity and thermal diffusivity of water, the thermal sublayer is embedded within its momentum analog: the viscous sublayer. Therefore, the surface heat exchange rates are greatly influenced by the surface kinematics and dynamics; in particular, small-scale phenomena, such as near-surface turbulence, have the greatest potential to affect the surface fluxes. Surface renewal theory was developed to parameterize the details of the turbulent transfer through the molecular sublayers. The theory assumes that turbulent eddies continuously replace surface water parcels with bulk fluid, which is not in equilibrium with the atmosphere and therefore is able to transfer heat. The so-called controlled-flux technique gives direct measurements of the mean surface lifetime of such surface renewal events. In this paper, the authors present results from field experiments, along with a review of surface renewal theory, and show that previous estimates of air–sea scalar fluxes using the controlled-flux technique may be erroneous if the probability density function (PDF) of surface renewal time scales is different from the routinely assumed exponential distribution. The authors show good agreement between measured and estimated heat fluxes using a surface renewal PDF that follows a χ distribution. Finally, over the range of forcing conditions in these field experiments, a clear relationship between direct surface turbulence measurements and the mean surface renewal time scale is established. The relationship is not dependent on the turbulence generation mechanism. The authors suggest that direct surface turbulence measurements may lead to improved estimates of scalar air–sea fluxes.
APA, Harvard, Vancouver, ISO, and other styles
28

Ramamurthy, P., E. R. Pardyjak, and J. C. Klewicki. "Observations of the Effects of Atmospheric Stability on Turbulence Statistics Deep within an Urban Street Canyon." Journal of Applied Meteorology and Climatology 46, no. 12 (December 1, 2007): 2074–85. http://dx.doi.org/10.1175/2007jamc1296.1.

Full text
Abstract:
Abstract Data obtained in downtown Oklahoma City, Oklahoma, during the Joint Urban 2003 atmospheric dispersion study have been analyzed to investigate the effects of upstream atmospheric stability on turbulence statistics in an urban core. The data presented include turbulent heat and momentum fluxes at various vertical and horizontal locations in the lower 30% of the street canyon. These data have been segregated into three broad stability classification regimes: stable (z/L > 0.2), neutral (−0.2 < z/L < 0.2), and unstable (z/L < −0.2) based on upstream measurements of the Monin–Obukhov length scale L. Most of the momentum-related turbulence statistics were insensitive to upstream atmospheric stability, while the energy-related statistics (potential temperatures and kinematic heat fluxes) were more sensitive. In particular, the local turbulence intensity inside the street canyon varied little with atmospheric stability but always had large magnitudes. Measurements of turbulent momentum fluxes indicate the existence of regions of upward transport of high horizontal momentum fluid near the ground that is associated with low-level jet structures for all stabilities. The turbulent kinetic energy normalized by a local shear stress velocity collapses the data well and shows a clear repeatable pattern that appears to be stability invariant. The magnitude of the normalized turbulent kinetic energy increases rapidly as the ground is approached. This behavior is a result of a much more rapid drop in the correlation between the horizontal and vertical velocities than in the velocity variances. This lack of correlation in the turbulent momentum fluxes is consistent with previous work in the literature. It was also observed that the mean potential temperatures almost always decrease with increasing height in the street canyon and that the vertical heat fluxes are always positive regardless of upstream atmospheric stability. In addition, mean potential temperature profiles are slightly more unstable during the unstable periods than during the neutral or stable periods. The magnitudes of all three components of the heat flux and the variability of the heat fluxes decrease with increasing atmospheric stability. In addition, the cross-canyon and along-canyon heat fluxes are as large as the vertical component of the heat fluxes in the lower portion of the canyon.
APA, Harvard, Vancouver, ISO, and other styles
29

Tay, B. K., G. B. McFiggans, D. P. Jones, M. W. Gallagher, C. Martin, P. Watkins, and R. M. Harrison. "Linking aerosol fluxes in street canyons to urban city-scale emissions." Atmospheric Chemistry and Physics Discussions 9, no. 5 (September 1, 2009): 18065–112. http://dx.doi.org/10.5194/acpd-9-18065-2009.

Full text
Abstract:
Abstract. In this study we investigate ultrafine particle (UFP) fluxes using a first order eddy viscosity turbulence closure Computational Fluid Dynamics (CFD) model and determine the different factors that influence emissions of UFP into the urban boundary layer. Both vertical turbulent fluxes as well as the fluxes due to mean flow are shown to contribute to the overall ventilation characteristics of street canyons. We then derive a simple parameterised numerical prediction model for canyon top UFP venting which is then compared with tower based micrometeorological flux measurements obtained during the REPARTEE and CityFlux field experiments.
APA, Harvard, Vancouver, ISO, and other styles
30

Li, Dan, Gabriel G. Katul, and Sergej S. Zilitinkevich. "Closure Schemes for Stably Stratified Atmospheric Flows without Turbulence Cutoff." Journal of the Atmospheric Sciences 73, no. 12 (November 21, 2016): 4817–32. http://dx.doi.org/10.1175/jas-d-16-0101.1.

Full text
Abstract:
Abstract Two recently proposed turbulence closure schemes are compared against the conventional Mellor–Yamada (MY) model for stably stratified atmospheric flows. The Energy- and Flux-Budget (EFB) approach solves the budgets of turbulent momentum and heat fluxes and turbulent kinetic and potential energies. The Cospectral Budget (CSB) approach is formulated in wavenumber space and integrated across all turbulent scales to obtain flow variables in physical space. Unlike the MY model, which is subject to a “critical gradient Richardson number,” both EFB and CSB models allow turbulence to exist at any gradient Richardson number and predict a saturation of flux Richardson number () at sufficiently large . The CSB approach further predicts the value of and reveals a unique expression linking the Rotta and von Kármán constants. Hence, all constants in the CSB model are nontunable and stability independent. All models agree that the dimensionless sensible heat flux decays with increasing . However, the decay rate and subsequent cutoff in the MY model appear abrupt. The MY model further exhibits an abrupt cutoff in the turbulent stress normalized by vertical velocity variance, while the CSB and EFB models display increasing trends. The EFB model produces a rapid increase in the ratio of turbulent potential energy and vertical velocity variance as is approached, suggesting a strong self-preservation mechanism. Vertical anisotropy in the turbulent kinetic energy is parameterized in different ways in MY and EFB, but this consideration is not required in CSB. Differences between EFB and CSB model predictions originate from how the vertical anisotropy is specified in the EFB model.
APA, Harvard, Vancouver, ISO, and other styles
31

Strokach, Evgenij, Igor Borovik, and Fang Chen. "Numerical simulation of reacting flow in the combustion chamber and study of the impact of turbulent diffusion coefficients." Advances in Mechanical Engineering 12, no. 9 (September 2020): 168781402095497. http://dx.doi.org/10.1177/1687814020954974.

Full text
Abstract:
A methodology for combustion modeling with complex mixing and thermodynamic conditions, especially in thrusters, is still under development. The resulting flow and propulsion parameters strongly depend on the models used, especially on the turbulence model as it determines the mixing efficiency. In this paper, the effect of the sigma-type turbulent diffusion coefficients arriving in the diffusion term of the turbulence model is studied. This study was performed using complex modeling, considering the conjugate effect of several physical phenomena such as turbulence, chemical reactions, and radiation heat transfer. To consider the varying turbulent Prandtl, an algebraic model was implemented. An adiabatic steady diffusion Flamelet approach was used to model chemical reactions. The P1 differential model with a WSGG spectral model was used for radiation heat transfer. The gaseous oxygen (GOX) and methane (GCH4) operating thruster developed at the Chair of turbomachinery and Flight propulsion of the Technical University of Munich (TUM) is taken as a test case. The studies use the 3D RANS approach using the 60° sector as the modeling domain. The normalized and absolute pressures, the integral and segment averaged heat flux are compared to numerical results. The wall heat fluxes and pressure distributions show good agreement with the experimental data, while the turbulent diffusion coefficients mostly influence the heat flux.
APA, Harvard, Vancouver, ISO, and other styles
32

Wurgaft, E., O. Shamir, and A. Angert. "Technical note: The effect of vertical turbulent mixing on gross O<sub>2</sub> production assessments by the triple isotopic composition of dissolved O<sub>2</sub>." Biogeosciences Discussions 10, no. 8 (August 27, 2013): 14239–59. http://dx.doi.org/10.5194/bgd-10-14239-2013.

Full text
Abstract:
Abstract. The 17O-excess (17Δ) of dissolved O2 has been used, for over a decade, to estimate gross O2 production (G17OP) rates in the mixed layer (ML) in many regions of the ocean. This estimate relies on a steady-state balance of O2 fluxes, which include air-sea gas exchange, photosynthesis and respiration but notably, not turbulent mixing with O2 from the thermocline. In light of recent publications, which showed that neglecting the turbulent flux may lead to inaccurate G17OP estimations, we present a simple correction for the effect of turbulent flux of O2 from the thermocline on ML G17OP. The correction is based on a turbulent-flux term between the thermocline and the ML, and use the difference between the ML 17Δ and that of a single data-point below the ML base. Using a numerical model and measured data we compared turbulence-corrected G17OP rates to those calculated without it. The corrected G17OP rates were 10–90% lower than the uncorrected rates, which implies that a large fraction of the photosynthetic O2 in the ML is actually produced in the thermocline.
APA, Harvard, Vancouver, ISO, and other styles
33

Barbi, Giacomo, Valentina Giovacchini, and Sandro Manservisi. "A New Anisotropic Four-Parameter Turbulence Model for Low Prandtl Number Fluids." Fluids 7, no. 1 (December 22, 2021): 6. http://dx.doi.org/10.3390/fluids7010006.

Full text
Abstract:
Due to their interesting thermal properties, liquid metals are widely studied for heat transfer applications where large heat fluxes occur. In the framework of the Reynolds-Averaged Navier–Stokes (RANS) approach, the Simple Gradient Diffusion Hypothesis (SGDH) and the Reynolds Analogy are almost universally invoked for the closure of the turbulent heat flux. Even though these assumptions can represent a reasonable compromise in a wide range of applications, they are not reliable when considering low Prandtl number fluids and/or buoyant flows. More advanced closure models for the turbulent heat flux are required to improve the accuracy of the RANS models dealing with low Prandtl number fluids. In this work, we propose an anisotropic four-parameter turbulence model. The closure of the Reynolds stress tensor and turbulent heat flux is gained through nonlinear models. Particular attention is given to the modeling of dynamical and thermal time scales. Numerical simulations of low Prandtl number fluids have been performed over the plane channel and backward-facing step configurations.
APA, Harvard, Vancouver, ISO, and other styles
34

Sun, Xia, and Heather A. Holmes. "Surface Turbulent Fluxes during Persistent Cold-Air Pool Events in the Salt Lake Valley, Utah. Part I: Observations." Journal of Applied Meteorology and Climatology 58, no. 12 (December 2019): 2553–68. http://dx.doi.org/10.1175/jamc-d-19-0053.1.

Full text
Abstract:
AbstractThe land surface is coupled to the atmospheric boundary layer through surface turbulent fluxes. Persistent cold-air pools (PCAPs) form in topographic depressions where cold, dense air fills the valley basin and in the presence of air pollution is accompanied by poor air quality. For the first time, the surface turbulence dataset from seven monitors during the Persistent Cold-Air Pool Study conducted in Salt Lake Valley, Utah (December 2010–February 2011), are analyzed. We found that the surface sensible (H) and latent (LE) heat fluxes were lower during strong PCAP events compared with non-PCAPs. The higher ratio of heat flux to net radiation (H/Rn and LE/Rn) for strong PCAPs compared with weak PCAPs is suspected to be related to the presence of boundary layer clouds, which could enhance the turbulent mixing through cloud top–down mixing. The daily average ground heat flux (G) was a similar order of magnitude to H and LE during wintertime. The highest surface turbulent fluxes and energy balance closure occurred in the stability range of −0.05 < ξ ≤ −0.02, or under slightly unstable conditions, near the neutral stability range. The median surface exchange coefficient (Ch), a crucial parameter to determine surface turbulent fluxes in land surface models, was slightly higher at the bare land site (BL) than the short vegetation sites (PH and CR) in wintertime, suggesting the importance of dynamic land-use information in numerical models.
APA, Harvard, Vancouver, ISO, and other styles
35

Li, Qi, and Elie Bou-Zeid. "Contrasts between momentum and scalar transport over very rough surfaces." Journal of Fluid Mechanics 880 (October 7, 2019): 32–58. http://dx.doi.org/10.1017/jfm.2019.687.

Full text
Abstract:
Large-eddy simulations are conducted to contrast momentum and passive scalar transport over large, three-dimensional roughness elements in a turbulent channel flow. Special attention is given to the dispersive fluxes, which are shown to be a significant fraction of the total flux within the roughness sublayer. Based on pointwise quadrant analysis, the turbulent components of the transport of momentum and scalars are found to be similar in general, albeit with increasing dissimilarity for roughnesses with low frontal blockage. However, strong dissimilarity is noted between the dispersive momentum and scalar fluxes, especially below the top of the roughness elements. In general, turbulence is found to transport momentum more efficiently than scalars, while the reverse applies to the dispersive contributions. The effects of varying surface geometries, measured by the frontal density, are pronounced on turbulent fluxes and even more so on dispersive fluxes. Increasing frontal density induces a general transition in the flow from a wall bounded type to a mixing layer type. This transition results in an increase in the efficiency of turbulent momentum transport, but the reverse occurs for scalars due to reduced contributions from large-scale motions in the roughness sublayer. This study highlights the need for distinct parameterizations of the turbulent and dispersive fluxes, as well as the importance of considering the contrasts between momentum and scalar transport for flows over very rough surfaces.
APA, Harvard, Vancouver, ISO, and other styles
36

Heilman, Warren E., Xindi Bian, Kenneth L. Clark, and Shiyuan Zhong. "Observations of Turbulent Heat and Momentum Fluxes during Wildland Fires in Forested Environments." Journal of Applied Meteorology and Climatology 58, no. 4 (April 2019): 813–29. http://dx.doi.org/10.1175/jamc-d-18-0199.1.

Full text
Abstract:
AbstractTurbulent fluxes of heat and momentum in the vicinity of wildland fires contribute to the redistribution of heat and momentum in the fire environment, which in turn can affect the heating of fuels, fire behavior, and smoke dispersion. As an extension of previous observational studies of turbulence regimes in the vicinity of wildland fires in forested environments, this study examines the effects of spreading surface fires and forest overstory vegetation on turbulent heat and momentum fluxes from near the surface to near the top of the overstory vegetation. Profiles of high-frequency (10 Hz) wind velocity and temperature measurements during two prescribed fire experiments are used to assess the relative contributions of horizontal and vertical turbulent fluxes of heat and momentum to the total heat and momentum flux fields. The frequency-dependent temporal variability of the turbulent heat and momentum fluxes before, during, and after fire-front passage is also examined using cospectral analyses. The study results highlight the effects that surface wildland fires and forest overstory vegetation collectively can have on the temporal and vertical variability of turbulent heat and momentum fluxes in the vicinity of the fires and the substantial departures of heat and momentum cospectra from typical atmospheric surface-layer cospectra that can occur before, during, and after fire-front passage.
APA, Harvard, Vancouver, ISO, and other styles
37

Verma, Mahendra K. "Variable energy flux in turbulence." Journal of Physics A: Mathematical and Theoretical 55, no. 1 (December 9, 2021): 013002. http://dx.doi.org/10.1088/1751-8121/ac354e.

Full text
Abstract:
Abstract In three-dimensional hydrodynamic turbulence forced at large length scales, a constant energy flux Π u flows from large scales to intermediate scales, and then to small scales. It is well known that for multiscale energy injection and dissipation, the energy flux Π u varies with scales. In this review we describe this principle and show how this general framework is useful for describing a variety of turbulent phenomena. Compared to Kolmogorov’s spectrum, the energy spectrum steepens in turbulence involving quasi-static magnetofluid, Ekman friction, stable stratification, magnetohydrodynamics, and solution with dilute polymer. However, in turbulent thermal convection, in unstably stratified turbulence such as Rayleigh–Taylor turbulence, and in shear turbulence, the energy spectrum has an opposite behaviour due to an increase of energy flux with wavenumber. In addition, we briefly describe the role of variable energy flux in quantum turbulence, in binary-fluid turbulence including time-dependent Landau–Ginzburg and Cahn–Hillianrd equations, and in Euler turbulence. We also discuss energy transfers in anisotropic turbulence.
APA, Harvard, Vancouver, ISO, and other styles
38

Bourgault, Pascal, David Straub, Kevin Duquette, Louis-Philippe Nadeau, and Bruno Tremblay. "Vertical Heat Fluxes beneath Idealized Sea Ice Leads in Large-Eddy Simulations: Comparison with Observations from the SHEBA Experiment." Journal of Physical Oceanography 50, no. 8 (August 1, 2020): 2189–202. http://dx.doi.org/10.1175/jpo-d-19-0298.1.

Full text
Abstract:
AbstractLarge-eddy simulations (Δx = Δz = 1 m) are used to examine vertical ocean heat fluxes driven by mechanical and buoyancy forcing across idealized sea ice leads. Forcing parameters approximate conditions from a shear event during the Surface Heat Budget of the Arctic (SHEBA) experiment in March 1998. In situ measurements near the lead showed isopycnal displacements of 14 m and turbulent vertical heat fluxes up to 400 W m−2, both of which were attributed to a strong cyclonic stress curl localized along the lead axis. By contrast, the large-eddy simulations show cyclonic shear across the lead to produce no turbulence, with vertical heat transport instead related to an overturning cell that connects a broad upwelling near the lead to downwelling farther away. Anticyclonic forcing produces an opposite-signed overturning cell, but with an intense, narrow downwelling jet and strong turbulent heat fluxes (~100 W m−2) near the lead. For both signs of curl, domain-integrated heat transport due to the overturning cells is somewhat larger than the turbulent heat flux, the latter being confined to the vicinity of the lead. Buoyancy forcing related to sea ice formation in the lead was found to increase both the turbulent and the cell-related heat fluxes (by up to 50% and 10%, respectively). Vertical isopycnal displacements for the upwelling case were found to increase linearly with the strength of the forcing. Possible reasons for the discrepancies with the observations include finer scale variation in the surface ocean stress and turbulence associated with the formation of a ridge during the shear event.
APA, Harvard, Vancouver, ISO, and other styles
39

Jiang, Junxia, Xiaoqing Gao, and Bolong Chen. "The Impact of Utility-Scale Photovoltaics Plant on Near Surface Turbulence Characteristics in Gobi Areas." Atmosphere 12, no. 1 (December 24, 2020): 18. http://dx.doi.org/10.3390/atmos12010018.

Full text
Abstract:
With the rapid deployment of utility-scale photovoltaic (PV) plants, the impact of PV plants on the environment is a new concern of the scientific and social communities. The exchange of sensible and latent heat energy and mass between land and air in PV plants is crucial to understanding its impact. It is known that the near surface turbulence characteristics rule the exchange. Therefore, it is essential for understanding the impact to study the characteristics of near surface turbulence. However, it is not well recognized. Turbulent fluxes and strength characteristics for the PV plant and the adjacent reference site in the Xinjiang Gobi area were investigated in this study. Various surface layer parameters including friction velocity, stability parameter, momentum flux, and turbulent flux were calculated using eddy correlation system. Results indicate that compared to the reference site, near the surface boundary layer was more unstable during the daytime due to the stronger convection heating, while it was more stable at night in the PV plant. In the PV plant, Iu was weakened and Iv was strengthened during the daytime, and Iu and Iv were all weakened at night, while Iw was strengthened across the whole day. The significant difference between Iu and Iv in the PV plant indicated that the horizontally turbulence strengths were affected by the plant layout. The turbulent kinetic energy of the PV plant was lower than the reference site and the momentum in the PV plant was higher than the reference site, especially during the daytime. Compared to the reference site, the PV plant had a higher sensible heat flux and less latent heat flux. The turbulent components of wind followed the 1/3 power law in the unstable conditions and stable conditions in the PV plant and the reference site.
APA, Harvard, Vancouver, ISO, and other styles
40

Litt, Maxime, Jean-Emmanuel Sicart, Delphine Six, Patrick Wagnon, and Warren D. Helgason. "Surface-layer turbulence, energy balance and links to atmospheric circulations over a mountain glacier in the French Alps." Cryosphere 11, no. 2 (April 18, 2017): 971–87. http://dx.doi.org/10.5194/tc-11-971-2017.

Full text
Abstract:
Abstract. Over Saint-Sorlin Glacier in the French Alps (45° N, 6.1° E; ∼ 3 km2) in summer, we study the atmospheric surface-layer dynamics, turbulent fluxes, their uncertainties and their impact on surface energy balance (SEB) melt estimates. Results are classified with regard to large-scale forcing. We use high-frequency eddy-covariance data and mean air-temperature and wind-speed vertical profiles, collected in 2006 and 2009 in the glacier's atmospheric surface layer. We evaluate the turbulent fluxes with the eddy-covariance (sonic) and the profile method, and random errors and parametric uncertainties are evaluated by including different stability corrections and assuming different values for surface roughness lengths. For weak synoptic forcing, local thermal effects dominate the wind circulation. On the glacier, weak katabatic flows with a wind-speed maximum at low height (2–3 m) are detected 71 % of the time and are generally associated with small turbulent kinetic energy (TKE) and small net turbulent fluxes. Radiative fluxes dominate the SEB. When the large-scale forcing is strong, the wind in the valley aligns with the glacier flow, intense downslope flows are observed, no wind-speed maximum is visible below 5 m, and TKE and net turbulent fluxes are often intense. The net turbulent fluxes contribute significantly to the SEB. The surface-layer turbulence production is probably not at equilibrium with dissipation because of interactions of large-scale orographic disturbances with the flow when the forcing is strong or low-frequency oscillations of the katabatic flow when the forcing is weak. In weak forcing when TKE is low, all turbulent fluxes calculation methods provide similar fluxes. In strong forcing when TKE is large, the choice of roughness lengths impacts strongly the net turbulent fluxes from the profile method fluxes and their uncertainties. However, the uncertainty on the total SEB remains too high with regard to the net observed melt to be able to recommend one turbulent flux calculation method over another.
APA, Harvard, Vancouver, ISO, and other styles
41

Tay, B. K., G. B. McFiggans, D. P. Jones, M. W. Gallagher, C. Martin, P. Watkins, and R. M. Harrison. "Linking urban aerosol fluxes in street canyons to larger scale emissions." Atmospheric Chemistry and Physics 10, no. 5 (March 11, 2010): 2475–90. http://dx.doi.org/10.5194/acp-10-2475-2010.

Full text
Abstract:
Abstract. In this study we investigate ultrafine particle (UFP) fluxes using a first order eddy viscosity turbulence closure Computational Fluid Dynamics (CFD) model and determine the different factors that influence emissions of UFP into the urban boundary layer. Both vertical turbulent fluxes as well as the fluxes due to mean circulatory flow are shown to contribute to the overall ventilation characteristics of street canyons. We then derive a simple parameterised numerical prediction model for canyon top UFP venting which is then compared with tower based micrometeorological flux measurements obtained during the REPARTEE &amp; CityFlux field experiments.
APA, Harvard, Vancouver, ISO, and other styles
42

Xiao, X., H. C. Zuo, Q. D. Yang, S. J. Wang, L. J. Wang, J. W. Chen, B. L. Chen, and B. D. Zhang. "On the factors influencing surface-layer energy balance closure and their seasonal variability over semi-arid loess plateau of Northwest China." Hydrology and Earth System Sciences Discussions 8, no. 1 (January 19, 2011): 555–84. http://dx.doi.org/10.5194/hessd-8-555-2011.

Full text
Abstract:
Abstract. In the context of September 2006–August 2010 eddy covariance data of the Semi-Arid Climate Change and Environment Observatory, Lanzhou University (SACOL) as a platform of the Key Laboratory of Semi-Arid Climate Change, Ministry of Education, an intensive study is performed of the SACOL data quality and energy balance closure (EBC) characteristics on a seasonal basis, the EBC impacts of the flux contribution from the target source zone, the low-frequency part of the turbulence spectra, turbulent mixing intensity and diverse schemes for surface soil heat fluxes. Evidence suggests that (1) through the steady state test (SST) and integral turbulence characteristics (ITC) tests as well as analysis of flux contribution from target area to the EBC, it is found that most of the eddy covariance data are within a domain of effective quality. The valid data account for 77.5, 75.4, 68.3 and 61.6% of seasonal total for spring, summer, autumn and winter, respectively; (2) the EBC shows its appreciable seasonal variability, with the energy residual making up 19.0, 14.8, 11.6 and 7.7% of net radiation in winter, summer, autumn and spring, respectively; (3) (i) Flux contribution from the target zone has greater EBC impact and as the flux contribution in percentage increases, EBC is correspondingly improved. Even the percentage reaches 100%, the energy balance fails to be closed entirely. (ii) The Ogive function analysis shows that the EBC suffers the effect of relatively small (maximum) low-frequency turbulent flux in spring and summer (winter). (iii) Turbulence intensity exerts noticeable impact on the EBC; when turbulent mixing arrives at certain intensity, the EBC is in an optimal state and stabilized. (iv) Different schemes of surface soil thermal flux have significant effect on the EBC.
APA, Harvard, Vancouver, ISO, and other styles
43

Sievers, J., T. Papakyriakou, S. E. Larsen, M. M. Jammet, S. Rysgaard, M. K. Sejr, and L. L. Sørensen. "Estimating surface fluxes using eddy covariance and numerical ogive optimization." Atmospheric Chemistry and Physics 15, no. 4 (February 26, 2015): 2081–103. http://dx.doi.org/10.5194/acp-15-2081-2015.

Full text
Abstract:
Abstract. Estimating representative surface fluxes using eddy covariance leads invariably to questions concerning inclusion or exclusion of low-frequency flux contributions. For studies where fluxes are linked to local physical parameters and up-scaled through numerical modelling efforts, low-frequency contributions interfere with our ability to isolate local biogeochemical processes of interest, as represented by turbulent fluxes. No method currently exists to disentangle low-frequency contributions on flux estimates. Here, we present a novel comprehensive numerical scheme to identify and separate out low-frequency contributions to vertical turbulent surface fluxes. For high flux rates (|Sensible heat flux| > 40 Wm−2, |latent heat flux|> 20 Wm−2 and |CO2 flux|> 100 mmol m−2 d−1 we found that the average relative difference between fluxes estimated by ogive optimization and the conventional method was low (5–20%) suggesting negligible low-frequency influence and that both methods capture the turbulent fluxes equally well. For flux rates below these thresholds, however, the average relative difference between flux estimates was found to be very high (23–98%) suggesting non-negligible low-frequency influence and that the conventional method fails in separating low-frequency influences from the turbulent fluxes. Hence, the ogive optimization method is an appropriate method of flux analysis, particularly in low-flux environments.
APA, Harvard, Vancouver, ISO, and other styles
44

Sun, Xia, Heather A. Holmes, and Hui Xiao. "Surface Turbulent Fluxes during Persistent Cold-Air Pool Events in the Salt Lake Valley, Utah. Part II: Simulations." Journal of Applied Meteorology and Climatology 59, no. 6 (June 2020): 1029–50. http://dx.doi.org/10.1175/jamc-d-19-0250.1.

Full text
Abstract:
AbstractRealistically representing the land–atmosphere interactions during persistent cold-air pools (PCAPs) is critical in simulating the strength of PCAPs, where uncertainties in simulating the PCAP strength will impact the ability to model the poor air quality. To quantify the model performance for land–atmosphere exchange, measurements of surface turbulent and radiative energy fluxes during two PCAPs, one weak and one strong, in Utah were compared with simulations from the Weather Research and Forecasting (WRF) Model. The results show that the WRF Model simulated the surface energy fluxes well in the weak PCAP case and that the performance degraded in the strong PCAP case. The significantly overestimated surface sensible heat flux H and latent heat flux (LE) in the strong PCAP were related, in part, to the overestimated net radiation and soil moisture and unsuitable turbulence parameterizations. The simulation using the Mellor–Yamada–Nakanishi–Niino planetary boundary layer scheme produced the least bias in both net radiation and surface turbulent fluxes for the strong PCAP case, which is expected because of the local higher-order (2.5) turbulence closure scheme. The surface exchange coefficient (CH), a crucial variable used to calculate H, was overall overestimated by the WRF Model. The underestimation of the nondimensional vertical temperature gradient in the Monin–Obukhov stability function was responsible for the overestimated CH, where the stability functions deviate significantly from expected values from observations for the stable atmospheric boundary layer. Our study highlights the need to improve the flux–profile parameterizations under stable conditions over complex terrain by including impacts due to mountainous terrain, such as surface radiative flux divergence and the diurnal mountain wind system.
APA, Harvard, Vancouver, ISO, and other styles
45

Zhang, Jun A., William M. Drennan, Peter G. Black, and Jeffrey R. French. "Turbulence Structure of the Hurricane Boundary Layer between the Outer Rainbands." Journal of the Atmospheric Sciences 66, no. 8 (August 1, 2009): 2455–67. http://dx.doi.org/10.1175/2009jas2954.1.

Full text
Abstract:
Abstract As part of the Coupled Boundary Layers Air–Sea Transfer (CBLAST)-Hurricane program, flights were conducted to directly measure turbulent fluxes and turbulence properties in the high-wind boundary layer of hurricanes between the outer rainbands. For the first time, vertical profiles of normalized momentum fluxes, sensible heat and humidity fluxes, and variances of three-dimensional wind velocities and specific humidity are presented for the hurricane boundary layer with surface wind speeds ranging from 20 to 30 m s−1. The turbulent kinetic energy budget is estimated, indicating that the shear production and dissipation are the major source and sink terms, respectively. The imbalance in the turbulent kinetic energy budget indicates that the unmeasured terms, such as horizontal advection, may be important in hurricane boundary layer structure and dynamics. Finally, the thermodynamic boundary layer height, estimated based on the virtual potential temperature profiles, is roughly half of the boundary layer height estimated from the momentum flux profiles. The latter height where momentum and humidity fluxes tend to vanish is close to that of the inflow layer and also of the maximum in the tangential velocity profiles.
APA, Harvard, Vancouver, ISO, and other styles
46

Farrell, Brian F., and Petros J. Ioannou. "A Theory of Baroclinic Turbulence." Journal of the Atmospheric Sciences 66, no. 8 (August 1, 2009): 2444–54. http://dx.doi.org/10.1175/2009jas2989.1.

Full text
Abstract:
Abstract Understanding the physical mechanism maintaining fluid turbulence remains a fundamental theoretical problem. The two-layer model is an analytically and computationally simple system in which the dynamics of turbulence can be conveniently studied; in this work, a maximally simplified model of the statistically steady turbulent state in this system is constructed to isolate and identify the essential mechanism of turbulence. In this minimally complex turbulence model the effects of nonlinearity are parameterized using an energetically consistent stochastic process that is white in both space and time, turbulent fluxes are obtained using a stochastic turbulence model (STM), and statistically steady turbulent states are identified using stochastic structural stability theory (SSST). These turbulent states are the fixed-point equilibria of the nonlinear SSST system. For parameter values typical of the midlatitude atmosphere, these equilibria predict the emergence of marginally stable eddy-driven baroclinic jets. The eddy variances and fluxes associated with these jets and the power-law scaling of eddy variances and fluxes are consistent with observations and simulations of baroclinic turbulence. This optimally simple model isolates the essential physics of baroclinic turbulence: maintenance of variance by transient perturbation growth, replenishment of the transiently growing subspace by nonlinear energetically conservative eddy–eddy scattering, and equilibration to a statistically steady state of marginal stability by a combination of nonlinear eddy-induced mean jet modification and eddy dissipation. These statistical equilibrium states provide a theory for the general circulation of baroclinically turbulent planetary atmospheres.
APA, Harvard, Vancouver, ISO, and other styles
47

Brethouwer, Geert. "Passive scalar transport in rotating turbulent channel flow." Journal of Fluid Mechanics 844 (April 4, 2018): 297–322. http://dx.doi.org/10.1017/jfm.2018.198.

Full text
Abstract:
Passive scalar transport in turbulent channel flow subject to spanwise system rotation is studied by direct numerical simulations. The Reynolds number $Re=U_{b}h/\unicode[STIX]{x1D708}$ is fixed at 20 000 and the rotation number $Ro=2\unicode[STIX]{x1D6FA}h/U_{b}$ is varied from 0 to 1.2, where $U_{b}$ is the bulk mean velocity, $h$ the half channel gap width and $\unicode[STIX]{x1D6FA}$ the rotation rate. The scalar is constant but different at the two walls, leading to steady scalar transport across the channel. The rotation causes an unstable channel side with relatively strong turbulence and turbulent scalar transport, and a stable channel side with relatively weak turbulence or laminar-like flow, weak turbulent scalar transport but large scalar fluctuations and steep mean scalar gradients. The distinct turbulent–laminar patterns observed at certain $Ro$ on the stable channel side induce similar patterns in the scalar field. The main conclusions of the study are that rotation reduces the similarity between the scalar and velocity field and that the Reynolds analogy for scalar-momentum transport does not hold for rotating turbulent channel flow. This is shown by a reduced correlation between velocity and scalar fluctuations, and a strongly reduced turbulent Prandtl number of less than 0.2 on the unstable channel side away from the wall at higher $Ro$. On the unstable channel side, scalar scales become larger than turbulence scales according to spectra and the turbulent scalar flux vector becomes more aligned with the mean scalar gradient owing to rotation. Budgets in the governing equations of the scalar energy and scalar fluxes are presented and discussed as well as other statistics relevant for turbulence modelling.
APA, Harvard, Vancouver, ISO, and other styles
48

Ghannam, Khaled, Tomer Duman, Gabriel Katul, and Marcelo Chamecki. "GRADIENT-DIFFUSION CLOSURE AND THE EJECTION-SWEEP CYCLE IN CONVECTIVE BOUNDARY LAYERS." Ciência e Natura 38 (July 20, 2016): 552. http://dx.doi.org/10.5902/2179460x21576.

Full text
Abstract:
The inadequacy of conventional gradient-diffusion closure in modeling turbulent heat flux within the convective atmospheric boundary-layer is often alleviated by accounting for nonlocal transport. Such nonlocal effects are a manifestation of the inherent asymmetry in vertical transport in the convective boundary layer, which is in turn associated with third-order moments (skewness and fluxes of fluxes). In this work, the role of these third-order moments in second-order turbulence closure of the sensible heat flux is examined with the goal of reconciling the models to various closure assumptions. Surface layer similarity theory and mixed-layer parametrizations are used here, complemented by LES results when needed. The turbulent heat flux with various closure assumptions of the flux transport term is solved, including both local and nonlocal approaches. We connect to ejection-sweep cycles in the flow field using the GramCharlier cumulant expansion of the joint probability distribution of vertical velocity and potential temperature. In this nonlocal closure, the transport asymmetry models that include the vertical velocity skewness as a correction term to H originate from ejection-sweep events. Vertical inhomogeneity results in a modified-skewness correction to the nonlocal contribution to the heat flux associated with the relative intensity of ejections and sweeps.
APA, Harvard, Vancouver, ISO, and other styles
49

Thurnherr, A. M., L. Clément, L. St. Laurent, R. Ferrari, and T. Ijichi. "Transformation and Upwelling of Bottom Water in Fracture Zone Valleys." Journal of Physical Oceanography 50, no. 3 (March 2020): 715–26. http://dx.doi.org/10.1175/jpo-d-19-0021.1.

Full text
Abstract:
AbstractClosing the overturning circulation of bottom water requires abyssal transformation to lighter densities and upwelling. Where and how buoyancy is gained and water is transported upward remain topics of debate, not least because the available observations generally show downward-increasing turbulence levels in the abyss, apparently implying mean vertical turbulent buoyancy-flux divergence (densification). Here, we synthesize available observations indicating that bottom water is made less dense and upwelled in fracture zone valleys on the flanks of slow-spreading midocean ridges, which cover more than one-half of the seafloor area in some regions. The fracture zones are filled almost completely with water flowing up-valley and gaining buoyancy. Locally, valley water is transformed to lighter densities both in thin boundary layers that are in contact with the seafloor, where the buoyancy flux must vanish to match the no-flux boundary condition, and in thicker layers associated with downward-decreasing turbulence levels below interior maxima associated with hydraulic overflows and critical-layer interactions. Integrated across the valley, the turbulent buoyancy fluxes show maxima near the sidewall crests, consistent with net convergence below, with little sensitivity of this pattern to the vertical structure of the turbulence profiles, which implies that buoyancy flux convergence in the layers with downward-decreasing turbulence levels dominates over the divergence elsewhere, accounting for the net transformation to lighter densities in fracture zone valleys. We conclude that fracture zone topography likely exerts a controlling influence on the transformation and upwelling of bottom water in many areas of the global ocean.
APA, Harvard, Vancouver, ISO, and other styles
50

Litt, M., J. E. Sicart, and W. Helgason. "A study of turbulent fluxes and their measurement errors for different wind regimes over the tropical Zongo Glacier (16° S) during the dry season." Atmospheric Measurement Techniques 8, no. 8 (August 13, 2015): 3229–50. http://dx.doi.org/10.5194/amt-8-3229-2015.

Full text
Abstract:
Abstract. Over glaciers in the outer tropics, during the dry winter season, turbulent fluxes are an important sink of melt energy due to high sublimation rates, but measurements in stable surface layers in remote and complex terrains remain challenging. Eddy-covariance (EC) and bulk-aerodynamic (BA) methods were used to estimate surface turbulent heat fluxes of sensible (H) and latent heat (LE) in the ablation zone of the tropical Zongo Glacier, Bolivia (16° S, 5080 m a.s.l.), from 22 July to 1 September 2007. We studied the turbulent fluxes and their associated random and systematic measurement errors under the three most frequent wind regimes. For nightly, density-driven katabatic flows, and for strong downslope flows related to large-scale forcing, H generally heats the surface (i.e. is positive), while LE cools it down (i.e. is negative). On average, both fluxes exhibit similar magnitudes and cancel each other out. Most energy losses through turbulence occur for daytime upslope flows, when H is weak due to small temperature gradients and LE is strongly negative due to very dry air. Mean random errors of the BA method (6 % on net H + LE fluxes) originated mainly from large uncertainties in roughness lengths. For EC fluxes, mean random errors were due mainly to poor statistical sampling of large-scale outer-layer eddies (12 %). The BA method is highly sensitive to the method used to derive surface temperature from longwave radiation measurements and underestimates fluxes due to vertical flux divergence at low heights and nonstationarity of turbulent flow. The EC method also probably underestimates the fluxes, albeit to a lesser extent, due to underestimation of vertical wind speed and to vertical flux divergence. For both methods, when H and LE compensate each other in downslope fluxes, biases tend to cancel each other out or remain small. When the net turbulent fluxes (H + LE) are the largest in upslope flows, nonstationarity effects and underestimations of the vertical wind speed do not compensate, and surface temperature errors are important, so that large biases on H + LE are expected when using both the EC and the BA method.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography