Academic literature on the topic 'Turbulent flow'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Turbulent flow.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Turbulent flow"
Oluwadare, Benjamin Segun, Paul Chukwulozie Okolie, David Ojo Akindele, Oluwafemi Festus Olaiyapo, Ayobami Phillip Akinsipe, and Oku Ekpenyong Nyong. "Transition to Turbulence of a Laminar Flow Accelerated to a Statistically Steady Turbulent Flow." European Journal of Theoretical and Applied Sciences 2, no. 3 (May 1, 2024): 430–45. http://dx.doi.org/10.59324/ejtas.2024.2(3).34.
Full textOluwadare, Benjamin Segun, Paul Chukwulozie Okolie, David Ojo Akindele, Oluwafemi Festus Olaiyapo, Ayobami Phillip Akinsipe, and Oku Ekpenyong Nyong. "Transition to Turbulence of a Laminar Flow Accelerated to a Statistically Steady Turbulent Flow." European Journal of Theoretical and Applied Sciences 2, no. 2 (March 1, 2024): 928–43. http://dx.doi.org/10.59324/ejtas.2024.2(2).82.
Full textA., Gorin. "1111 UNIVERSAL TRENDS OF FORCED CONVECTION IN COMPLEX TURBULENT FLOWS CLASSIFIED UNDER TURBULENT SEPARATED FLOW." Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2013.4 (2013): _1111–1_—_1111–6_. http://dx.doi.org/10.1299/jsmeicjwsf.2013.4._1111-1_.
Full textNeuhaus, Lars, Daniel Ribnitzky, Michael Hölling, Matthias Wächter, Kerstin Avila, Martin Kühn, and Joachim Peinke. "Model wind turbine performance in turbulent–non-turbulent boundary layer flow." Journal of Physics: Conference Series 2767, no. 4 (June 1, 2024): 042018. http://dx.doi.org/10.1088/1742-6596/2767/4/042018.
Full textStamenkovic, Zivojin, Milos Kocic, and Jelena Petrovic. "The CFD modeling of two-dimensional turbulent MHD channel flow." Thermal Science 21, suppl. 3 (2017): 837–50. http://dx.doi.org/10.2298/tsci160822093s.
Full textGorin, Alexander V. "HEAT TRANSFER IN TURBULENT SEPARATED FLOWS(Flow around Cylinder 1)." Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2005 (2005): 445–50. http://dx.doi.org/10.1299/jsmeicjwsf.2005.445.
Full textKashyap, Pavan, Yohann Duguet, and Olivier Dauchot. "Flow Statistics in the Transitional Regime of Plane Channel Flow." Entropy 22, no. 9 (September 8, 2020): 1001. http://dx.doi.org/10.3390/e22091001.
Full textAnsorge, Cedrick, and Juan Pedro Mellado. "Analyses of external and global intermittency in the logarithmic layer of Ekman flow." Journal of Fluid Mechanics 805 (September 23, 2016): 611–35. http://dx.doi.org/10.1017/jfm.2016.534.
Full textBech, Knut H., and Helge I. Andersson. "Secondary flow in weakly rotating turbulent plane Couette flow." Journal of Fluid Mechanics 317 (June 25, 1996): 195–214. http://dx.doi.org/10.1017/s0022112096000729.
Full textZhao, Hanqing, Jing Yan, Saiyu Yuan, Jiefu Liu, and Jinyu Zheng. "Effects of Submerged Vegetation Density on Turbulent Flow Characteristics in an Open Channel." Water 11, no. 10 (October 16, 2019): 2154. http://dx.doi.org/10.3390/w11102154.
Full textDissertations / Theses on the topic "Turbulent flow"
Alves, Portela Felipe. "Turbulence cascade in an inhomogeneous turbulent flow." Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/63233.
Full textGoh, Eng Yew. "Turbulent slender flow calculations." Thesis, Imperial College London, 1990. http://hdl.handle.net/10044/1/46316.
Full textWang, Yueping. "Flow-dependent corrosion in turbulent pipe flow." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/nq23972.pdf.
Full textNewley, Trevor Michael Jeremy. "Turbulent air flow over hills." Thesis, University of Cambridge, 1986. https://www.repository.cam.ac.uk/handle/1810/250880.
Full textShahmardi, Armin. "Turbulent Duct Flow with Polymers." Thesis, KTH, Mekanik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-226157.
Full textDirekt numerisk simulering av det turbulenta flödet i en kvadratisk kanal med polymerer har utförts och resultaten har jämförts med de laboratorieexperiment som gjorts vid KTH: s maskintekniska avdelning. Polymersuspensionen simuleras med FENE-P-modellen och de numeriska resultaten används för att belysa mekanismen som ger dragreduktion och effekten av polymerer på sekundärrörelsen som är typisk för det turbulenta flödet i kanaler. Experiment används för att stödja och validera de numeriska data och för att diskutera Reynolds beroendet av den erhållna dragreduceringen. Studien visar att Prandtls sekundära flöde modifieras av polymererna: de klassiska 8 regionerna i tvärsnittet med hög vorticitet är större i polymerflödet än de i det newtonska fallet och deras centra är förskjutna mot centrum av kanalen bort från väggen. I planfluktuationer reduceras och strömningsförstärkt sammanhängning av flödet förbättras i närvaro av polymerer.
DeGiuli, Eric. "Turbulent flow in geophysical channels." Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/12802.
Full textRatnanather, John Tilak. "Numerical analysis of turbulent flow." Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236094.
Full textALBAGLI, RAFAEL CAMEL. "WAX DEPOSITION IN TURBULENT FLOW." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2017. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=29917@1.
Full textWax deposition is a phenomenon present in oil production systems (mainly in deep water due to the low temperatures), which consists in the adhesion of solids fractions of hydrocarbon to tubing and lines, reducing the area opened to flow until be completely blocked. The comprehension of the mechanisms that influences in the deposition has not yet been fully achieved. Given the relevance of this kind of system in new fields development and the absence of a theory able to explain the deposit s evolution and characteristics, the production limitation caused by this phenomenon is one of the main issues in flow assurance. Aiming to expand the knowledge about the phenomena that exist in deposition process and identify dominant mechanisms, different mathematical models can be compared with experimental data. The flow regime in production lines is usually turbulent. Thus, in this work, a two equation k-omega turbulence model coupled to the enthalpy-porosity model, where the deposit is a porous media, was developed. From a thermodynamic equilibrium, the species that comes out of solution are determined while their distribution are determined by each molar conservation equation. The conservations equations were solved with the finite volume method, employing the Power-law and implicit Euler schemes to handle the spatial and temporal discretization. Comparisons with experimental data in an annular duct were realized, showing good agreement in the steady state. The deposit thickness, howeve, was overestimated during the transient. The deposit thickness reduction with the Reynold number increase was verified.
Tapia, Siles Silvia Cecilia. "Robotic locomotion in turbulent flow." Paris 6, 2011. http://www.theses.fr/2011PA066414.
Full textWu, Jiunn-Chi. "A study of unsteady turbulent flow past airfoils." Diss., Georgia Institute of Technology, 1988. http://hdl.handle.net/1853/13091.
Full textBooks on the topic "Turbulent flow"
Drikakis, D., and B. J. Geurts, eds. Turbulent Flow Computation. Dordrecht: Kluwer Academic Publishers, 2004. http://dx.doi.org/10.1007/0-306-48421-8.
Full textD, Drikakis, and Geurts Bernard, eds. Turbulent flow computation. Dordrecht: Kluwer Academic, 2002.
Find full textHin, Andrea Joanna Serafina. Visualization of turbulent flow. Delft: Delft University of Technology, 1994.
Find full textHoffman, Johan, and Claes Johnson. Computational Turbulent Incompressible Flow. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-46533-1.
Full textPeyret, Roger, and Egon Krause, eds. Advanced Turbulent Flow Computations. Vienna: Springer Vienna, 2000. http://dx.doi.org/10.1007/978-3-7091-2590-8.
Full textPitts, William M. Chemically reacting turbulent flow. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1986.
Find full textAstrup, Poul. Turbulent gas-particle flow. Roskilde: Risø National Laboratory, 1992.
Find full textC, Mongia H., So Ronald M. C, and Whitelaw James H, eds. Turbulent reactive flow calculations. New York: Gordon and Breach Science Publishers, 1988.
Find full textBook chapters on the topic "Turbulent flow"
Stanišić, M. M. "Turbulent Flow." In Universitext, 10–91. New York, NY: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4612-3840-9_2.
Full textGooch, Jan W. "Turbulent Flow." In Encyclopedic Dictionary of Polymers, 774. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_12218.
Full textStanišić, M. M. "Turbulent Flow." In Universitext, 10–91. New York, NY: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-0263-6_3.
Full textKumar, Shiv. "Turbulent Flow." In Fluid Mechanics (Vol. 2), 83–117. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99754-0_2.
Full textHirschel, Ernst Heinrich, Jean Cousteix, and Wilhelm Kordulla. "Laminar-Turbulent Transition and Turbulence." In Three-Dimensional Attached Viscous Flow, 201–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41378-0_9.
Full textDoolan, Con, and Danielle Moreau. "Laminar and Turbulent Flow." In Flow Noise, 71–105. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2484-2_6.
Full textBabu, V. "Turbulent Flows." In Fundamentals of Incompressible Fluid Flow, 157–69. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74656-8_8.
Full textYershin, Shakhbaz A. "Turbulent Flow Dispersion." In Paradoxes in Aerohydrodynamics, 231–55. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25673-3_9.
Full textPrud’homme, Roger. "Turbulent Flow Concepts." In Flows of Reactive Fluids, 169–229. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4659-2_8.
Full textTaler, Dawid. "Turbulent Fluid Flow." In Numerical Modelling and Experimental Testing of Heat Exchangers, 129–56. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91128-1_4.
Full textConference papers on the topic "Turbulent flow"
Nakabayashi, Koichi, Osami Kitoh, and Yoshitaka Katou. "TURBULENCE CHARACTERISTICS OF COUETTE-POISEUILLE TURBULENT FLOWS." In Second Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2001. http://dx.doi.org/10.1615/tsfp2.80.
Full textNishiki, Shinnosuke, Tatsuya Hasegawa, and Ryutaro Himeno. "ANISOTROPIC TURBULENCE GENERATION IN TURBULENT PREMIXED FLAMES." In Second Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2001. http://dx.doi.org/10.1615/tsfp2.240.
Full textRedford, John A., and Gary N. Coleman. "NUMERICAL STUDY OF TURBULENT WAKES IN BACKGROUND TURBULENCE." In Fifth International Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2007. http://dx.doi.org/10.1615/tsfp5.860.
Full textPal, Anikesh, and Sutanu Sarkar. "EFFECT OF EXTERNAL TURBULENCE ON A TURBULENT WAKE." In Ninth International Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2015. http://dx.doi.org/10.1615/tsfp9.180.
Full textTaveira, Rodrigo M. R., and Carlos B. da Silva. "SCALAR MIXING AT TURBULENT/NON-TURBULENT INTERFACE OF A TURBULENT PLANE JET." In Eighth International Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2013. http://dx.doi.org/10.1615/tsfp8.520.
Full textJohansson, Peter S., Helge I. Andersson, and Robbert Fortunati. "MODELLING TURBULENT FILM FLOW." In Second Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2001. http://dx.doi.org/10.1615/tsfp2.1100.
Full textAhn, Junsun, Jae Hwa Lee, and Hyung Jin Sung. "Inner-scaled turbulent statistics of turbulent pipe flows." In Eighth International Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2013. http://dx.doi.org/10.1615/tsfp8.670.
Full textJACOBS, J., R. JAMES, C. RATLIFF, and A. GLEZER. "Turbulent jets induced by surface actuators." In 3rd Shear Flow Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-3243.
Full textKramer, Felix, Rene Grueneberger, Frank Thiele, Erik Wassen, Wolfram Hage, and Robert Meyer. "Wavy riblets for turbulent drag reduction." In 5th Flow Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-4583.
Full textWassen, Erik, Felix Kramer, Frank Thiele, Rene Grueneberger, Wolfram Hage, and Robert Meyer. "Turbulent Drag Reduction by Oscillating Riblets." In 4th Flow Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-4204.
Full textReports on the topic "Turbulent flow"
Reynolds, W. C. Turbulent Flow Control. Fort Belvoir, VA: Defense Technical Information Center, May 1995. http://dx.doi.org/10.21236/ada329673.
Full textPitts, William M., and Takashi Kashiwagi. Chemically reacting turbulent flow. Gaithersburg, MD: National Bureau of Standards, 1986. http://dx.doi.org/10.6028/nbs.ir.85-3299.
Full textTruman, C. R. Flow Diagnostic Instrumentation for Turbulent Flow Studies. Fort Belvoir, VA: Defense Technical Information Center, December 2000. http://dx.doi.org/10.21236/ada386696.
Full textTruman, C. R. Flow Diagnostic Instrumentation for Turbulent Flow Studies. Fort Belvoir, VA: Defense Technical Information Center, December 2000. http://dx.doi.org/10.21236/ada386840.
Full textTai, Yu-Chong. Microsensors for Turbulent Flow Diagnostics. Fort Belvoir, VA: Defense Technical Information Center, July 1995. http://dx.doi.org/10.21236/ada299481.
Full textPitts, William M., and Takashi Kahiwagi. Mixing in variable density, isothermal turbulent flow and implications for chemically reacting turbulent flows. Gaithersburg, MD: National Bureau of Standards, 1987. http://dx.doi.org/10.6028/nbs.ir.87-3550.
Full textMorton, D. S. Colloidal particle deposition in turbulent flow. Office of Scientific and Technical Information (OSTI), May 1994. http://dx.doi.org/10.2172/10157881.
Full textDechant, Lawrence. Approximate Model for Turbulent Stagnation Point Flow. Office of Scientific and Technical Information (OSTI), January 2016. http://dx.doi.org/10.2172/1235211.
Full textMahrt, Larry. Turbulent and Mesoscale Flow in Stable Conditions. Fort Belvoir, VA: Defense Technical Information Center, June 2002. http://dx.doi.org/10.21236/ada429211.
Full textKashiwa, B. Statistical theory of turbulent incompressible multimaterial flow. Office of Scientific and Technical Information (OSTI), October 1987. http://dx.doi.org/10.2172/6009875.
Full text