Academic literature on the topic 'Turbine Bypass Valve'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Turbine Bypass Valve.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Turbine Bypass Valve"
Zou, Z., M. Yang, S. Zhou, Z. Ding, Y. Tian, and K. Deng. "Investigation of inter-stage passive flow control for turbine performance improvement on regulated two-stage turbocharger." Journal of Physics: Conference Series 2217, no. 1 (April 1, 2022): 012078. http://dx.doi.org/10.1088/1742-6596/2217/1/012078.
Full textGregory, Brent A., and Oleg Moroz. "Gas Turbine Cooling Flows and Their Influence in Output." Mechanical Engineering 137, no. 03 (March 1, 2015): 48–54. http://dx.doi.org/10.1115/1.2015-mar-4.
Full textAmano, R. S., and G. R. Draxler. "High-Pressure Steam Flow in Turbine Bypass Valve System Part 1: Valve Flow." Journal of Propulsion and Power 18, no. 3 (May 2002): 555–60. http://dx.doi.org/10.2514/2.5996.
Full textMantelli, Luca, David Tucker, and Mario Luigi Ferrari. "Dynamic Effect of Cold-Air Bypass Valve for Compressor Surge Recovery and Prevention in Fuel Cell Gas Turbine Hybrid Systems." E3S Web of Conferences 113 (2019): 02014. http://dx.doi.org/10.1051/e3sconf/201911302014.
Full textFang, Guo Cheng, Shi Da She, Zhen Qi Ye, Ji Zhang, Lai Wei, Qiang Wang, Xiang Qun Zhang, and Yong Yun Ding. "Analysis and Application of Turbine Outages Kept Boiler of FCB Function in the Philippines Mariveles Power Plant." Applied Mechanics and Materials 668-669 (October 2014): 661–64. http://dx.doi.org/10.4028/www.scientific.net/amm.668-669.661.
Full textMazur, Z., G. Urquiza, and R. Campos. "Improvement of the Turbine Main Stop Valves with Flow Simulation in Erosion by Solid Particle Impact CFD." International Journal of Rotating Machinery 10, no. 1 (2004): 65–73. http://dx.doi.org/10.1155/s1023621x04000077.
Full textPugi, Luca, Emanuele Galardi, Carlo Carcasci, and Nicola Lucchesi. "Hardware-in-the-loop testing of bypass valve actuation system: Design and validation of a simplified real time model." Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 231, no. 2 (August 3, 2016): 212–35. http://dx.doi.org/10.1177/0954408915589513.
Full textAmano, R. S., G. R. Draxler, and J. M. Golembiewski. "High-Pressure Steam Flow in Turbine Bypass Valve System Part 2: Pipe Flow." Journal of Propulsion and Power 18, no. 3 (May 2002): 561–71. http://dx.doi.org/10.2514/2.5997.
Full textKwon, W. C., G. R. Kim, S. C. Park, and J. Y. Yoon. "Design of a tortuous path trim for a high-pressure turbine bypass valve." Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 224, no. 2 (February 4, 2010): 149–53. http://dx.doi.org/10.1243/09544089jpme316.
Full textTheotokatos, G., and N. P. Kyrtatos. "Investigation of a Large High- Speed Diesel Engine Transient Behavior Including Compressor Surging and Emergency Shutdown." Journal of Engineering for Gas Turbines and Power 125, no. 2 (April 1, 2003): 580–89. http://dx.doi.org/10.1115/1.1559903.
Full textDissertations / Theses on the topic "Turbine Bypass Valve"
Podešva, Adam. "Použití běžného odstředivého čerpadla jako turbíny." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-444636.
Full textPranoto, Bayu, and 尤卞藤. "Performance characteristic modeling of hybrid proton conducting solid oxide fuel cell (pSOFC) and micro gas turbine (MGT) system using a double bypass valve for heat management." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/20543560654441914584.
Full text國立中央大學
機械工程學系
104
Abstract Conducting Proton-Solid Oxide Fuel Cell (pSOFC), by attaching Micro Gas Turbine (MGT) is oneof the outstanding hybrid system nowadays. The intermediate temperature of pSOFC (around 700 – 800 [0C])is used to raise the performance of micro gas turbine in apower plantsystem. pSOFC has a lower temperature characteristic than old type of SOFC, which can afford more rapid start up/down and improve durability. A new model is proposed in the research based on themodels developed by earlier researchers.The proposed hybrid system is simulated using Matlab-Simulink. Simulations were performed to study the behavior of the pSOFC-MGT hybrid system by changing respective parameters such as pressure, steam to carbon ratio, and fuel utilization.In our research, we proposed, three different configurations by changing the bypass position in my proposed system i.e., with placing the bypass(i) after the combustor, (ii) after turbine, and (iii) after the combustor and turbine. The results show that the higher operating pressure will reduce system efficiency for configuration 1 and 2, and increase the efficiency for configuration 3. The effect of raising Steam to Carbon Ratio will reduce the efficiency of configuration 1 for anoperating pressure of 1 – 2 [bar], but it increasesthe efficiency of configuration 2 and configuration 3. The higherfuel utilization will increase the efficiency for all configurations. For bypass ratio variation, increase in bypass ratio will increase the efficiency of all configurations. Considering all the results ofconfiguration 3 provide the best performance compared to configuration 1 and 2 in all three models. The efficiencies of configuration 1, configuration 2, and configuration 3 are 49%, 63%, and68% respectively. The study obtained that using the overall heat exchanger over 5 W/K will not give an effect to configuration 3 performance so much. The cost analysis can be taken into consideration bychoosing an appropriate device to build a configuration 3 model. The exergy analysis has a same tendency with energy analysis, but it will different in value. Due to the exergy destruction during the process, the value of energy is higher than exergy. To know an amount of exergy destruction, it carried out thecalculations based on the amount of entropy generation and found the devices that have lost exergy from the largest to the smallest in a sequence is combustor 60.2[kW], pSOFC 22.8 [kW] Compressor 21.7 [kW], Pump 5.5 [kW], Fuel Heater 0.9 [kW], reformer 0.7 [kW], water heater 0.4 [kW], air heater 0.23 [kW], and MGT 0.21 [kW]. Keywords: Proton-Conducting Solid Oxide Fuel Cell (pSOFC), Micro Gas Turbine (MGT), Matlab-Simulink, Hybrid configuration mode
GALARDI, EMANUELE. "Development of Innovative Modelling, Real Time and Hardware In the Loop Techniques for Industrial Systems." Doctoral thesis, 2017. http://hdl.handle.net/2158/1080941.
Full textConference papers on the topic "Turbine Bypass Valve"
Logar, Andreas, Thomas Depolt, and Edwin Gobrecht. "Advanced Steam Turbine Bypass Valve Design for Flexible Power Plants." In 2002 International Joint Power Generation Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/ijpgc2002-26071.
Full textAmano, R. S. "Flow in Duct Downstream of a Steam Turbine Bypass Valve." In ASME 2006 Power Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/power2006-88021.
Full textYang, Wenze, Xuan Jiang, Kunming Cheng, Jin Li, Yitao Huang, Lei Zhang, Hongtai Zhang, Jun Zhou, and Wei Yuan. "Influence mechanism of Valve opening on flow field stability of bypass valve of conventional island Steam Turbine." In 2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM). IEEE, 2022. http://dx.doi.org/10.1109/wcmeim56910.2022.10021571.
Full textAmano, R. S. "High-Temperature and High-Pressure Steam Flow Through a Steam Turbine Bypass Valve Line." In ASME 2005 Power Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/pwr2005-50194.
Full textAmano, R. S. "Water Spray Cooling of High-Temperature Steam Flow Through a Steam Turbine Bypass Valve Line." In 17th International Conference on Nuclear Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/icone17-75017.
Full textNakata, T., M. Sato, T. Ninomiya, T. Abe, S. Mandai, and N. Sato. "Experimental Evaluation of a Low NOx LBG Combustor Using Bypass Air." In ASME 1990 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1990. http://dx.doi.org/10.1115/90-gt-380.
Full textEmami, Tooran, Alex Tsai, and David Tucker. "Robust PID Controller Design of a Solid Oxide Fuel Cell Gas Turbine." In ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2016 Power Conference and the ASME 2016 10th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/fuelcell2016-59602.
Full textPezzini, Paolo, Sue Celestin, and David Tucker. "Control Impacts of Cold-Air Bypass on Pressurized Fuel Cell Turbine Hybrids." In ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2014 8th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fuelcell2014-6523.
Full textTucker, David, Larry Lawson, Thomas P. Smith, and Comas Haynes. "Evaluation of Cathodic Air Flow Transients in a Hybrid System Using Hardware Simulation." In ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2006. http://dx.doi.org/10.1115/fuelcell2006-97107.
Full textRestrepo, Bernardo, and David Tucker. "Transient Analysis of Simultaneous Multivariable Signals on Fuel Cell/Gas Turbine Hybrid to Define Control Strategies for Cathode Parameters and Compressor Stall." In ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2017 Power Conference Joint With ICOPE-17, the ASME 2017 11th International Conference on Energy Sustainability, and the ASME 2017 Nuclear Forum. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/fuelcell2017-3555.
Full text