To see the other types of publications on this topic, follow the link: Tunneling (Physics) Tunneling spectroscopy.

Journal articles on the topic 'Tunneling (Physics) Tunneling spectroscopy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Tunneling (Physics) Tunneling spectroscopy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Dalidchik, F. I., M. V. Grishin, S. A. Kovalevskii, N. N. Kolchenko, and B. R. Shub. "Scanning Tunneling Vibrational Spectroscopy." Spectroscopy Letters 30, no. 7 (October 1997): 1429–40. http://dx.doi.org/10.1080/00387019708006735.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lalowicz, Zdzislaw T. "2H-NMR Spectroscopy of Tunneling Ammonium Ion General Site Symmetry." Zeitschrift für Naturforschung A 43, no. 10 (October 1, 1988): 895–908. http://dx.doi.org/10.1515/zna-1988-1010.

Full text
Abstract:
Abstract 2H-NMR powder spectra of tunneling ammonium-d4 ions are computed. A representation of the tunneling Hamiltonian is worked out in the basis of simple product spin wavefunctions. Secular parts of quadrupole and dipole Hamiltonians are taken into account. Examples of spectra are given for tunneling about one C2 or C3 axis, as well as for overall rotations in potentials of higher symmetry. Ranges of tunneling frequencies measurable from the spectra are given for each case. Characteristic shapes of the spectra allow recognition of various ground torsional level structures. Possible further applications and available data are discussed.
APA, Harvard, Vancouver, ISO, and other styles
3

Hasegawa, T., M. Nantoh, S. Heike, A. Takagi, H. Ikuta, K. Kitazawa, M. Kawasaki, and H. Koinuma. "Scanning tunneling spectroscopy on highTcsuperconductors." Physica Scripta T49A (January 1, 1993): 215–18. http://dx.doi.org/10.1088/0031-8949/1993/t49a/035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ng, K. W., S. Pan, A. L. de Lozanne, A. J. Panson, and J. Talvacchio. "Tunneling Spectroscopy of HighTcOxide Superconductors with a Scanning Tunneling Microscope." Japanese Journal of Applied Physics 26, S3-2 (January 1, 1987): 993. http://dx.doi.org/10.7567/jjaps.26s3.993.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

BOBBA, F., F. GIUBILEO, M. GOMBOS, C. NOCE, A. VECCHIONE, A. M. CUCOLO, D. RODITCHEV, R. LAMY, W. SACKS, and J. KLEIN. "SCANNING TUNNELING SPECTROSCOPY ON THE GdSr2RuCu2O8 COMPOUND." International Journal of Modern Physics B 17, no. 04n06 (March 10, 2003): 608–13. http://dx.doi.org/10.1142/s0217979203016315.

Full text
Abstract:
Topographic and spectroscopic information on GdSr2RuCu2O8 sintered pellets have been obtained by a home built low temperature Scanning Tunneling Microscope (STM) operating at 4.2 K. The topographic image of the surface showed non homogeneous samples with grains of typical size of about 100 nm. In many locations studied, the Tunneling Spectroscopy reveals the presence of charging effects in the current-voltage characteristics over a voltage range up to 100 mV. Two types of charging effects are clearly distinguished: one corresponds to the reduction of the tunneling conductance around zero bias and is attributed to the Coulomb blockade, and another onw, a stepwise increasing of the current as a function of the bias voltage is identified as Coulomb staircase regime. Besides these spurious charging effects, the current-voltage characteristics often show a pronounced non-linearity around 4.0 mV. This non-linearity, disappearing above the critical temperature of the materials, is connected to the superconducting gap in the GdSr 2 RuCu 2 O 8.
APA, Harvard, Vancouver, ISO, and other styles
6

Svistunov, V. S. "Principles of electron tunneling spectroscopy." Uspekhi Fizicheskih Nauk 152, no. 8 (1987): 715. http://dx.doi.org/10.3367/ufnr.0152.198708t.0715.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Svistunov, V. M., M. A. Belogolovskii, and A. I. D'yachenko. "Vacuum tunneling microscopy and spectroscopy." Uspekhi Fizicheskih Nauk 154, no. 1 (1988): 153. http://dx.doi.org/10.3367/ufnr.0154.198801f.0153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Khaikin, M. S. "Scanning tunneling microscopy and spectroscopy." Uspekhi Fizicheskih Nauk 155, no. 5 (1988): 158–59. http://dx.doi.org/10.3367/ufnr.0155.198805i.0158.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Batkova, M., I. Batko, I. Royanian, A. Prokofiev, and E. Bauer. "Tunneling spectroscopy studies of CePt3Si." Journal of Physics: Conference Series 150, no. 5 (March 1, 2009): 052018. http://dx.doi.org/10.1088/1742-6596/150/5/052018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Suzuki, Morio, Shuzo Kawata, and Shigenori Ichinose. "Magneto-Tunneling Spectroscopy of InSb." Journal of the Physical Society of Japan 57, no. 4 (April 15, 1988): 1372–76. http://dx.doi.org/10.1143/jpsj.57.1372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Louis, E., F. Flores, and P. M. Echenique. "Theory of scanning tunneling spectroscopy." Radiation Effects and Defects in Solids 109, no. 1-4 (July 1989): 309–23. http://dx.doi.org/10.1080/10420158908220548.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Schneider, Wolf-Dieter, and Richard Berndt. "Low-temperature scanning tunneling spectroscopy:." Journal of Electron Spectroscopy and Related Phenomena 109, no. 1-2 (August 2000): 19–31. http://dx.doi.org/10.1016/s0368-2048(00)00104-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Kashiwaya, Satoshi, Hiromi Kashiwaya, Kohta Saitoh, Yasunori Mawatari, and Yukio Tanaka. "Tunneling spectroscopy of topological superconductors." Physica E: Low-dimensional Systems and Nanostructures 55 (January 2014): 25–29. http://dx.doi.org/10.1016/j.physe.2013.07.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Suderow, H., J. G. Rodrigo, P. Martinez-Samper, S. Vieira, J. P. Brison, P. Lejay, P. C. Canfield, S. I. Lee, and S. Tajima. "Scanning Tunneling Spectroscopy in Anisotropic s-Wave Superconductors." International Journal of Modern Physics B 17, no. 18n20 (August 10, 2003): 3300–3303. http://dx.doi.org/10.1142/s0217979203020892.

Full text
Abstract:
We discuss Scanning Tunneling Microscopy and Spectroscopy (STM/S) measurements at very low temperatures in single crystals of the non magnetic borocarbide superconductors RNi 2 B 2 C ( R = Y , Lu , T c=15.5 and 16.5 K) and in MgB 2. The tunneling spectra in some regions of the surface show a clear reduction of the anisotropy of the superconducting gap.
APA, Harvard, Vancouver, ISO, and other styles
15

Feuchtwang, T. E. "Principles of electron tunneling spectroscopy." Materials Research Bulletin 21, no. 4 (April 1986): 503. http://dx.doi.org/10.1016/0025-5408(86)90017-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Niemi, Eeva, and Jouko Nieminen. "Channel selective scanning tunneling spectroscopy." Surface Science 600, no. 12 (June 2006): 2548–54. http://dx.doi.org/10.1016/j.susc.2006.04.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Sandow, B., O. Bleibaum, and W. Schirmacher. "Tunneling spectroscopy in the hopping regime." physica status solidi (c) 1, no. 1 (January 2004): 92–95. http://dx.doi.org/10.1002/pssc.200303639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Sobol, W. T., K. R. Sridharan, I. G. Cameron, and M. M. Pintar. "Tunneling Spectroscopy by Nuclear Magnetic Resonance: Analysis of Rotational Tunneling in Solid Pentamethylbenzene." Zeitschrift für Naturforschung A 40, no. 11 (November 1, 1985): 1075–84. http://dx.doi.org/10.1515/zna-1985-1102.

Full text
Abstract:
The frequency dependence of the spin-lattice relaxation time T1 was measured at three temperatures near one of the Zeeman-tunneling level matching resonances for pentamethylbenzene. These measurements are correlated with 71 temperature dependence data from the literature. It is shown that the frequency dependence of the Zeeman-torsion coupling time cannot be explained in terms of the semiclassical perturbation theory using time correlation functions. A three bath polarization transfer model is also employed and the applicability of both models discussed. Zeeman-torsion coupling is further investigated using a saturation sequence and the results are compared with the predictions of the three bath polarization transfer model.
APA, Harvard, Vancouver, ISO, and other styles
19

Onari, S., and Y. Tanaka. "Theory of tunneling spectroscopy in." Physica C: Superconductivity 469, no. 15-20 (October 2009): 912–14. http://dx.doi.org/10.1016/j.physc.2009.05.097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Sakata, H., T. Sakuyama, and T. Kato. "Scanning tunneling spectroscopy on Bi2SrCaCuO6+." Physica C: Superconductivity and its Applications 470 (December 2010): S104—S105. http://dx.doi.org/10.1016/j.physc.2009.12.038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Martinez-Samper, P., J. G. Rodrigo, G. Rubio-Bollinger, H. Suderow, S. Vieira, S. Lee, and S. Tajima. "Scanning tunneling spectroscopy in MgB2." Physica C: Superconductivity 385, no. 1-2 (March 2003): 233–43. http://dx.doi.org/10.1016/s0921-4534(02)02296-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Panov, Vladimir I. "Scanning tunneling microscopy and surface spectroscopy." Uspekhi Fizicheskih Nauk 155, no. 5 (1988): 155–58. http://dx.doi.org/10.3367/ufnr.0155.198805h.0155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Baťková, M., I. Baťko, E. Konovalova, and N. Shitsevalova. "Tunneling Spectroscopy Studies of SmB6and YbB12." Acta Physica Polonica A 113, no. 1 (January 2008): 255–58. http://dx.doi.org/10.12693/aphyspola.113.255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Baiburin, V. B., Yu P. Volkov, E. M. Il’in, and S. V. Semenov. "Tunneling spectroscopy of palladium-barium emitters." Technical Physics Letters 28, no. 12 (December 2002): 981–82. http://dx.doi.org/10.1134/1.1535508.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Maggio-Aprile, I., Ch Renner, A. Erb, E. Walker, and �. Fischer. "Scanning tunneling spectroscopy studies on YBa2Cu3O7??" Journal of Low Temperature Physics 105, no. 5-6 (December 1996): 1129–34. http://dx.doi.org/10.1007/bf00753851.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Ichimura, Koichi, Kazushige Nomura, and Atsushi Kawamoto. "Scanning Tunneling Spectroscopy on Organic Superconductors." Japanese Journal of Applied Physics 45, no. 3B (March 27, 2006): 2264–67. http://dx.doi.org/10.1143/jjap.45.2264.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Morita, Seizo, Yutaka Maita, and Yoshiaki Takahashi. "Scanning Tunneling Potentiometry/Spectroscopy (STP/STS)." Japanese Journal of Applied Physics 28, Part 2, No. 11 (November 20, 1989): L2034—L2036. http://dx.doi.org/10.1143/jjap.28.l2034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

KATO, T., T. MACHIDA, Y. KAMIJO, K. HARADA, R. SAITO, T. NOGUCHI, and H. SAKATA. "SPATIAL EVOLUTION OF THE BACKGROUND CONDUCTANCE IN THE TUNNELING SPECTRA IN Bi2Sr2-xLaxCuO6+δ." International Journal of Modern Physics B 21, no. 18n19 (July 30, 2007): 3190–93. http://dx.doi.org/10.1142/s0217979207044160.

Full text
Abstract:
The spatial evolution of the background conductance in the tunneling spectra was investigated with low-temperature scanning tunneling spectroscopy on a slightly overdoped Bi 2 Sr 1.74 La 0.26 CuO 6+δ single crystal at 4.2 K. The asymmetry in the background conductance between positive and negative biases strongly correlates with the local energy gap, which shows the inhomogeneous spatial variation: the tunneling spectra become more asymmetric in the regions where the spectra exhibit larger gap value.
APA, Harvard, Vancouver, ISO, and other styles
29

Bagraev, N. T. "Local Tunneling Spectroscopy of Silicon Nanostructures." Semiconductors 39, no. 6 (2005): 685. http://dx.doi.org/10.1134/1.1944860.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

MIYAKAWA, N., K. TOKIWA, S. MIKUSU, T. WATANABE, A. IYO, J. F. ZASADZINSKI, and T. KANEKO. "TUNNELING SPECTROSCOPY OF TRILAYER HIGH-TC CUPRATE, TlBa2Ca2Cu2O10-δ." International Journal of Modern Physics B 19, no. 01n03 (January 30, 2005): 225–29. http://dx.doi.org/10.1142/s0217979205028281.

Full text
Abstract:
We present point contact tunneling spectroscopy measured on TlBa 2 Ca 2 Cu 3 O 10-δ ( Tl 1223) with three CuO 2 planes in a unit cell. Our samples of Tl 1223 with Tc~91 K are heavily overdoped at the outer CuO 2 planes (OP), but slightly underdoped at the inner CuO 2 planes (IP). The tunneling conductances on Tl 1223 exhibit two kinds of gaps that originate from crystallographically inequivalent IP and OP. The overall spectral shape of tunneling conductance for Tl 1223 is consistent with that observed on a bilayer Bi 2 Sr 2 CaCu 2 O 8+δ, that is, unusual peak-dip-hump (PDH) structures are observed. The origin of PDH structures is controversial, but these results, especially, the observation of PDH for trilayer Tl 1223 in which interlayer effects should be quite different from that in bilayer, put severe constraints on any theoretical model for the origin of these structures.
APA, Harvard, Vancouver, ISO, and other styles
31

Zypman, Fredy R. "Scanning tunneling microscope spectroscopy of polymers." Scanning 24, no. 3 (December 6, 2006): 154–56. http://dx.doi.org/10.1002/sca.4950240308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Fan, Fu Ren F., and Allen J. Bard. "Scanning tunneling microscopy and tunneling spectroscopy of the titania(001) surface." Journal of Physical Chemistry 94, no. 9 (May 1990): 3761–66. http://dx.doi.org/10.1021/j100372a075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Schneider, W. D. "Scanning Tunneling Microscopy/Spectroscopy of Nanostructures." physica status solidi (a) 187, no. 1 (September 2001): 125–36. http://dx.doi.org/10.1002/1521-396x(200109)187:1<125::aid-pssa125>3.0.co;2-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Matyushkin, Yakov, Natalia Kaurova, Boris Voronov, Gregory Goltsman, and Georgy Fedorov. "On chip carbon nanotube tunneling spectroscopy." Fullerenes, Nanotubes and Carbon Nanostructures 28, no. 1 (October 11, 2019): 50–53. http://dx.doi.org/10.1080/1536383x.2019.1671365.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Noh, Joo-Hyong, Hajime Asahi, Seong-Jin Kim, Minori Takemoto, and Shun-ichi Gonda. "Scanning Tunneling Microscopy/Scanning Tunneling Spectroscopy Observation of III–V Compound Semiconductor Nanostructures." Japanese Journal of Applied Physics 35, Part 1, No. 6B (June 30, 1996): 3743–48. http://dx.doi.org/10.1143/jjap.35.3743.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Selloni, A., C. D. Chen, and E. Tosatti. "Scanning tunneling spectroscopy of graphite and intercalates." Physica Scripta 38, no. 2 (August 1, 1988): 297–300. http://dx.doi.org/10.1088/0031-8949/38/2/036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Olk, Charles H., and Joseph P. Heremans. "Scanning tunneling spectroscopy of carbon nanotubes." Journal of Materials Research 9, no. 2 (February 1994): 259–62. http://dx.doi.org/10.1557/jmr.1994.0259.

Full text
Abstract:
Calculations predict that carbon nanotubes may exist as either semimetals or semiconductors, depending on diameter and degree of helicity. This communication presents experimental evidence supporting the calculations. Scanning tunneling microscopy and spectroscopy (STM-S) data taken in air on nanotubes with outer diameters from 17 to 90 Å show evidence of one-dimensional behavior; the current-voltage (I-V) characteristics are consistent with a density of states containing Van Hove type singularities for which the energies vary linearly with inverse nanotube diameter.
APA, Harvard, Vancouver, ISO, and other styles
38

Severin, N., S. Groeper, R. Kniprath, H. Glowatzki, N. Koch, I. M. Sokolov, and J. P. Rabe. "Data scattering in scanning tunneling spectroscopy." Ultramicroscopy 109, no. 1 (December 2008): 85–90. http://dx.doi.org/10.1016/j.ultramic.2008.08.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Aarts, J., and A. P. Volodin. "Tunneling spectroscopy on correlated electron systems." Physica B: Condensed Matter 206-207 (February 1995): 43–48. http://dx.doi.org/10.1016/0921-4526(94)00363-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

GALPERIN, YU M., ULRIK HANKE, K. A. CHAO, and NANZHI ZOU. "SHOT NOISES IN A CORRELATED TUNNELING CURRENT." Modern Physics Letters B 07, no. 17 (July 20, 1993): 1159–65. http://dx.doi.org/10.1142/s0217984993001168.

Full text
Abstract:
An analytical expression for shot noises in a correlated sequential tunneling current has been derived by solving the Master equation exactly. The existing result for the simplest case of Pauli correlation is easily reproduced. Our theory is applied to the Coulomb blockade single-electron tunneling system with two tunnel junctions. Given capacitances and resistances of the system, both the suppressed zero-frequency shot noise and the entire finite-frequency noise spectrum are obtained, which are much more complicated than the simplest Pauli correlation case. Our theoretical predictions, after being confirmed experimentally, will introduce the noise spectroscopy as a tool to investigate correlated tunneling current.
APA, Harvard, Vancouver, ISO, and other styles
41

Carroll, D. L., P. M. Ajayan, and S. Curran. "Local Electronic Structure in Ordered Aggregates of Carbon Nanotubes: Scanning Tunneling Microscopy/scanning Tunneling Spectroscopy Study." Journal of Materials Research 13, no. 9 (September 1998): 2389–95. http://dx.doi.org/10.1557/jmr.1998.0332.

Full text
Abstract:
The recent application of tunneling probes in electronic structure studies of carbon nanotubes has proven both powerful and challenging. Using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS), local electronic properties in ordered aggregates of carbon nanotubes (multiwalled nanotubes and ropes of single walled nanotubes) have been probed. In this report, we present evidence for interlayer (concentric tube) interactions in multiwalled tubes and tube-tube interactions in singlewalled nanotube ropes. The spatially resolved, local electronic structure, as determined by the local density of electronic states, is shown to clearly reflect tube-tube interactions in both of these aggregate forms.
APA, Harvard, Vancouver, ISO, and other styles
42

Zhang, H., D. Mautes, and U. Hartmann. "Electron tunneling through a monolayer of small metal clusters investigated by scanning tunneling spectroscopy." Journal of Physics: Conference Series 61 (April 1, 2007): 1331–35. http://dx.doi.org/10.1088/1742-6596/61/1/263.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Nolen, S., and S. T. Ruggiero. "Tunneling spectroscopy of fullerene/Ge multilayer systems." Chemical Physics Letters 300, no. 5-6 (February 1999): 656–60. http://dx.doi.org/10.1016/s0009-2614(98)01442-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Wnuk, J. J., R. T. M. Smokers, F. W. Nolden, L. W. M. Schreurs, Y. S. Wang, and H. van Kempen. "Tunneling spectroscopy in (PbxBi1-x)2Sr2CaCu2O8crystals." Superconductor Science and Technology 4, no. 1S (January 1, 1991): S412—S414. http://dx.doi.org/10.1088/0953-2048/4/1s/123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Yada, Keiji, Alexander A. Golubov, Yukio Tanaka, and Satoshi Kashiwaya. "Microscopic Theory of Tunneling Spectroscopy in Sr2RuO4." Journal of the Physical Society of Japan 83, no. 7 (July 15, 2014): 074706. http://dx.doi.org/10.7566/jpsj.83.074706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Wang, Z. Z., J. C. Girard, C. Pasquier, and D. Jérome. "Spatially resolved tunneling spectroscopy on TTF-TCNQ." Journal de Physique IV (Proceedings) 114 (April 2004): 91–94. http://dx.doi.org/10.1051/jp4:2004114017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Chapelier, C., M. Vinet, and F. Lefloch. "Scanning tunneling spectroscopy on superconducting proximity nanostructures." Physics-Uspekhi 44, no. 10S (October 1, 2001): 71–74. http://dx.doi.org/10.1070/1063-7869/44/10s/s15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Jourdan, M., A. Conca, C. Herbort, M. Kallmayer, H. J. Elmers, and H. Adrian. "Tunneling spectroscopy of the Heusler compound Co2Cr0.6Fe0.1Al." Journal of Applied Physics 102, no. 9 (November 2007): 093710. http://dx.doi.org/10.1063/1.2805399.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Volkov, V. A., E. E. Takhtamirov, D. Yu Ivanov, Yu V. Dubrovskii, L. Eaves, P. C. Main, M. Henini, et al. "Tunneling spectroscopy of quasi-two-dimensional plasmons." Uspekhi Fizicheskih Nauk 171, no. 12 (2001): 1368. http://dx.doi.org/10.3367/ufnr.0171.200112g.1368.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Zeng, Caifu, Minsheng Wang, Yi Zhou, Murong Lang, Bob Lian, Emil Song, Guangyu Xu, Jianshi Tang, Carlos Torres, and Kang L. Wang. "Tunneling spectroscopy of metal-oxide-graphene structure." Applied Physics Letters 97, no. 3 (July 19, 2010): 032104. http://dx.doi.org/10.1063/1.3460283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography