Academic literature on the topic 'Tunneling field effect transistor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Tunneling field effect transistor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Tunneling field effect transistor"
Hähnel, D., M. Oehme, M. Sarlija, A. Karmous, M. Schmid, J. Werner, O. Kirfel, I. Fischer, and J. Schulze. "Germanium vertical Tunneling Field-Effect Transistor." Solid-State Electronics 62, no. 1 (August 2011): 132–37. http://dx.doi.org/10.1016/j.sse.2011.03.011.
Full textChou, S. Y., J. S. Harris, and R. F. W. Pease. "Lateral resonant tunneling field‐effect transistor." Applied Physics Letters 52, no. 23 (June 6, 1988): 1982–84. http://dx.doi.org/10.1063/1.99656.
Full textGHOREISHI, SEYED SALEH, KAMYAR SAGHAFI, and MOHAMMAD KAZEM MORAVVEJ-FARSHI. "A NOVEL GRAPHENE NANO-RIBBON FIELD EFFECT TRANSISTOR WITH SCHOTTKY TUNNELING DRAIN AND OHMIC TUNNELING SOURCE." Modern Physics Letters B 27, no. 26 (October 10, 2013): 1350189. http://dx.doi.org/10.1142/s0217984913501893.
Full textOh, Jong Hyeok, and Yun Seop Yu. "Investigation of Tunneling Effect for a N-Type Feedback Field-Effect Transistor." Micromachines 13, no. 8 (August 16, 2022): 1329. http://dx.doi.org/10.3390/mi13081329.
Full textCapasso, Federico, Susanta Sen, and Alfred Y. Cho. "Negative transconductance resonant tunneling field‐effect transistor." Applied Physics Letters 51, no. 7 (August 17, 1987): 526–28. http://dx.doi.org/10.1063/1.98387.
Full textIsmail, K., D. A. Antoniadis, and H. I. Smith. "A planar resonant-tunneling field-effect transistor." IEEE Transactions on Electron Devices 36, no. 11 (November 1989): 2617. http://dx.doi.org/10.1109/16.43732.
Full textYOUSEFI, REZA, and SEYED SALEH GHOREYSHI. "NUMERICAL STUDY OF OHMIC-SCHOTTKY CARBON NANOTUBE FIELD EFFECT TRANSISTOR." Modern Physics Letters B 26, no. 15 (May 17, 2012): 1250096. http://dx.doi.org/10.1142/s0217984912500960.
Full textAbdul-Kadir, Firas Natheer, Yasir Hashim, Muhammad Nazmus Shakib, and Faris Hassan Taha. "Electrical characterization of si nanowire GAA-TFET based on dimensions downscaling." International Journal of Electrical and Computer Engineering (IJECE) 11, no. 1 (February 1, 2021): 780. http://dx.doi.org/10.11591/ijece.v11i1.pp780-787.
Full textPeng-Fei Guo, Li-Tao Yang, Yue Yang, Lu Fan, Gen-Quan Han, G. S. Samudra, and Yee-Chia Yeo. "Tunneling Field-Effect Transistor: Effect of Strain and Temperature on Tunneling Current." IEEE Electron Device Letters 30, no. 9 (September 2009): 981–83. http://dx.doi.org/10.1109/led.2009.2026296.
Full textKim, Hyun Woo, and Daewoong Kwon. "Analysis on Tunnel Field-Effect Transistor with Asymmetric Spacer." Applied Sciences 10, no. 9 (April 27, 2020): 3054. http://dx.doi.org/10.3390/app10093054.
Full textDissertations / Theses on the topic "Tunneling field effect transistor"
Nirschl, Thomas [Verfasser]. "Circuit Applications of the Tunneling Field Effect Transistor (TFET) / Thomas Nirschl." Aachen : Shaker, 2007. http://d-nb.info/1166512053/34.
Full textChou, Mike Chuan 1969. "Process development for a silicon planar resonant-tunneling field-effect transistor." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/34047.
Full textShao, Ye. "Study of wide bandgap semiconductor nanowire field effect transistor and resonant tunneling device." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1448230793.
Full textAL-SHADEEDI, AKRAM. "LATERAL AND VERTICAL ORGANIC TRANSISTORS." Kent State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=kent1492441683969202.
Full textGlaß, Stefan [Verfasser], Siegfried [Akademischer Betreuer] Mantl, and Matthias [Akademischer Betreuer] Wuttig. "Si/SiGe-based gate-normal tunneling field-effect transistors / Stefan Glaß ; Siegfried Mantl, Matthias Wuttig." Aachen : Universitätsbibliothek der RWTH Aachen, 2019. http://d-nb.info/1193181453/34.
Full textRolseth, Erlend Granbo [Verfasser], and Jörg [Akademischer Betreuer] Schulze. "Experimental studies on germanium-tin p-channel tunneling field effect transistors / Erlend Granbo Rolseth ; Betreuer: Jörg Schulze." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2017. http://d-nb.info/1156603994/34.
Full textSchmidt, Matthias [Verfasser]. "Fabrication, characterization and simulation of band-to-band tunneling field-effect transistors based on silicon-germanium / Matthias Schmidt." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2013. http://d-nb.info/1044748915/34.
Full textWang, Lihui. "Quantum Mechanical Effects on MOSFET Scaling." Diss., Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-07072006-111805/.
Full textPhilip First, Committee Member ; Ian F. Akyildiz, Committee Member ; Russell Dupuis, Committee Member ; James D. Meindl, Committee Chair ; Willianm R. Callen, Committee Member.
Nadimi, Ebrahim. "Quantum Mechanical and Atomic Level ab initio Calculation of Electron Transport through Ultrathin Gate Dielectrics of Metal-Oxide-Semiconductor Field Effect Transistors." Doctoral thesis, Universitätsbibliothek Chemnitz, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200800477.
Full textDie vorliegende Arbeit beschäftigt sich mit der Berechnung von Tunnelströmen in MOSFETs (Metal-Oxide-Semiconductor Field Effect Transistors). Zu diesem Zweck wurde ein quantenmechanisches Modell, das auf der selbstkonsistenten Lösung der Schrödinger- und Poisson-Gleichungen basiert, entwickelt. Die Gleichungen sind im Rahmen der EMA gelöst worden. Die Lösung der Schrödinger-Gleichung unter offenen Randbedingungen führt zur Berechnung von Ladungsverteilung und Lebensdauer der Ladungsträger in den QBSs. Der Tunnelstrom wurde dann aus diesen Informationen ermittelt. Der Tunnelstrom wurde in verschiedenen Proben mit unterschiedlichen Oxynitrid Gatedielektrika berechnet und mit gemessenen Daten verglichen. Der Vergleich zeigte, dass die effektive Masse sich sowohl mit der Schichtdicke als auch mit dem Stickstoffgehalt ändert. Im zweiten Teil der vorliegenden Arbeit wurde ein atomistisches Modell zur Berechnung des Tunnelstroms verwendet, welche auf der DFT und NEGF basiert. Zuerst wurde ein atomistisches Modell für ein Si/SiO2-Schichtsystem konstruiert. Dann wurde der Tunnelstrom für verschiedene Si/SiO2/Si-Schichtsysteme berechnet. Das Modell ermöglicht die Untersuchung atom-skaliger Verzerrungen und ihren Einfluss auf den Tunnelstrom. Außerdem wurde der Einfluss einer einzelnen und zwei unterschiedlich positionierter neutraler Sauerstoffleerstellen auf den Tunnelstrom berechnet. Zug- und Druckspannungen auf SiO2 führen zur Deformationen in den chemischen Bindungen und ändern den Tunnelstrom. Auch solche Einflüsse sind anhand des atomistischen Modells berechnet worden
Vishnoi, Rajat. "Modelling of nanoscale tunnelling field effect transistors." Thesis, IIT Delhi, 2016. http://localhost:8080/xmlui/handle/12345678/7030.
Full textBooks on the topic "Tunneling field effect transistor"
Zhang, Lining, and Mansun Chan, eds. Tunneling Field Effect Transistor Technology. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31653-6.
Full textSamuel, T. S. Arun, Young Suh Song, Shubham Tayal, P. Vimala, and Shiromani Balmukund Rahi. Tunneling Field Effect Transistors. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003327035.
Full textWang, Shiyu, Zakir Hossain, Yan Zhao, and Tao Han. Graphene Field-Effect Transistor Biosensors. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1212-1.
Full textPark, Byung-Eun, Hiroshi Ishiwara, Masanori Okuyama, Shigeki Sakai, and Sung-Min Yoon, eds. Ferroelectric-Gate Field Effect Transistor Memories. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-024-0841-6.
Full textPark, Byung-Eun, Hiroshi Ishiwara, Masanori Okuyama, Shigeki Sakai, and Sung-Min Yoon, eds. Ferroelectric-Gate Field Effect Transistor Memories. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1212-4.
Full textCorporation, Mitsubishi Electric. Ga As field effect transistor(chip) databook. Tokyo: Mitsubishi Electric Corporation, 1986.
Find full textAmiri, Iraj Sadegh, and Mahdiar Ghadiry. Analytical Modelling of Breakdown Effect in Graphene Nanoribbon Field Effect Transistor. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6550-7.
Full textKarmakar, Supriya. Novel Three-state Quantum Dot Gate Field Effect Transistor. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1635-3.
Full textCorporation, Mitsubishi Electric. GaAs field effect transistor MGF 1900 series user's manual. Tokyo: Mitsubishi Electric Corporation, 1987.
Find full textCorporation, Mitsubishi Electric. Mitsubishi semiconductors 1994: GaAs field effect transistor (data book). Tokyo: Mitsubishi Electric Corporation, 1994.
Find full textBook chapters on the topic "Tunneling field effect transistor"
Kumar, Pramod, Neha Paras, and Manisha Bharti. "Designing of Nonvolatile Memories Utilizing Tunnel Field Effect Transistor." In Tunneling Field Effect Transistors, 235–50. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003327035-13.
Full textUsha, C., and P. Vimala. "Evolution of Heterojunction Tunnel Field Effect Transistor and its Advantages." In Tunneling Field Effect Transistors, 99–123. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003327035-6.
Full textYu, Tao, Judy L. Hoyt, and Dimitri A. Antoniadis. "Tunneling FET Fabrication and Characterization." In Tunneling Field Effect Transistor Technology, 33–60. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31653-6_2.
Full textLiu, Fei, Qing Shi, Jian Wang, and Hong Guo. "Atomistic Simulations of Tunneling FETs." In Tunneling Field Effect Transistor Technology, 111–49. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31653-6_5.
Full textZhang, Lining, Jun Huang, and Mansun Chan. "Steep Slope Devices and TFETs." In Tunneling Field Effect Transistor Technology, 1–31. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31653-6_1.
Full textZhang, Lining, and Mansun Chan. "Compact Models of TFETs." In Tunneling Field Effect Transistor Technology, 61–87. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31653-6_3.
Full textFan, Ming-Long, Yin-Nien Chen, Pin Su, and Ching-Te Chuang. "Challenges and Designs of TFET for Digital Applications." In Tunneling Field Effect Transistor Technology, 89–109. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31653-6_4.
Full textHuang, Jun Z., Lining Zhang, Pengyu Long, Michael Povolotskyi, and Gerhard Klimeck. "Quantum Transport Simulation of III-V TFETs with Reduced-Order $$ \varvec{k} \cdot \varvec{p} $$ k · p Method." In Tunneling Field Effect Transistor Technology, 151–80. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31653-6_6.
Full textWang, Hao. "Carbon Nanotube TFETs: Structure Optimization with Numerical Simulation." In Tunneling Field Effect Transistor Technology, 181–210. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31653-6_7.
Full textSingh, Prabhat, and Dharmendra Singh Yadav. "Analysis of Channel Doping Variation on Transfer Characteristics to High-Frequency Performance of F-TFET." In Tunneling Field Effect Transistors, 193–203. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003327035-10.
Full textConference papers on the topic "Tunneling field effect transistor"
Reddy, Dharmendar, Leonard F. Register, and Sanjay K. Banerjee. "Bilayer graphene vertical tunneling field effect transistor." In 2012 70th Annual Device Research Conference (DRC). IEEE, 2012. http://dx.doi.org/10.1109/drc.2012.6256932.
Full textJiao, G. F., X. Y. Huang, Z. X. Chen, W. Cao, D. M. Huang, H. Y. Yu, N. Singh, G. Q. Lo, D. L. Kwong, and Ming-Fu Li. "Investigation of tunneling field effect transistor reliability." In 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). IEEE, 2010. http://dx.doi.org/10.1109/icsict.2010.5667426.
Full textFischer, I. A., D. Hahnel, H. Isemann, A. Kottantharayil, G. Murali, M. Oehme, and J. Schulze. "Si Tunneling Field Effect Transistor with Tunnelling In-Line with the Gate Field." In 2012 International Silicon-Germanium Technology and Device Meeting (ISTDM). IEEE, 2012. http://dx.doi.org/10.1109/istdm.2012.6222411.
Full textVijayvargiya, Vikas, and Santosh Vishvakarma. "Effect of doping profile on tunneling field effect transistor performance." In 2013 Spanish Conference on Electron Devices (CDE). IEEE, 2013. http://dx.doi.org/10.1109/cde.2013.6481376.
Full textEs-Sakhi, Azzedin D., and Masud H. Chowdhury. "Multichannel Tunneling Carbon Nanotube Field Effect Transistor (MT-CNTFET)." In 2014 27th IEEE International System-on-Chip Conference (SOCC). IEEE, 2014. http://dx.doi.org/10.1109/socc.2014.6948918.
Full textZhao, Pei, R. M. Feenstra, Gong Gu, and Debdeep Jena. "SymFET: A proposed symmetric graphene tunneling field effect transistor." In 2012 70th Annual Device Research Conference (DRC). IEEE, 2012. http://dx.doi.org/10.1109/drc.2012.6257006.
Full textHan, Ru, Haichao Zhang, and Danghui Wang. "Inverted π-shaped Si/Ge Tunneling Field Effect Transistor." In 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). IEEE, 2018. http://dx.doi.org/10.1109/icsict.2018.8564939.
Full textSuzuki, S., M. Muruganathan, S. Oda, and H. Mizuta. "Band-to-Band Graphene Resonant Tunneling Field Effect Transistor." In 2015 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2015. http://dx.doi.org/10.7567/ssdm.2015.b-5-2.
Full textElgamal, Muhammad. "Genetic Algorithm to Optimize Performance of Tunneling Field-Effect Transistor." In 2020 International Conference on Innovative Trends in Communication and Computer Engineering (ITCE). IEEE, 2020. http://dx.doi.org/10.1109/itce48509.2020.9047768.
Full textYang, Q., J. Zhang, C. Zhu, X. Lin, F. Yan, and X. Ji. "Performance evaluation of tunneling field effect transistor on Terahertz detection." In 2018 China Semiconductor Technology International Conference (CSTIC). IEEE, 2018. http://dx.doi.org/10.1109/cstic.2018.8369195.
Full textReports on the topic "Tunneling field effect transistor"
Suslov, Alexey, and Tzu-Ming Lu. Capacitance of a Ge/SiGe heterostructure field-effect transistor. Office of Scientific and Technical Information (OSTI), November 2018. http://dx.doi.org/10.2172/1484586.
Full textDorsey, Andrew M., and Matthew H. Ervin. Effects of Differing Carbon Nanotube Field-effect Transistor Architectures. Fort Belvoir, VA: Defense Technical Information Center, July 2009. http://dx.doi.org/10.21236/ada502660.
Full textBlair, S. M. AlGaN/InGaN Nitride Based Modulation Doped Field Effect Transistor. Fort Belvoir, VA: Defense Technical Information Center, November 2003. http://dx.doi.org/10.21236/ada422632.
Full textAllen, N., L. Voss, C. Frye, K. KWeon, J. Varley, and Q. Shao. Gallium Nitride Superjunction Fin Field Effect Transistor: Continued Funding Report. Office of Scientific and Technical Information (OSTI), October 2021. http://dx.doi.org/10.2172/1826468.
Full textSun, W. D., Fred H. Pollak, Patrick A. Folkes, and Godfrey A. Gumbs. Band-Bending Effect of Low-Temperature GaAs on a Pseudomorphic Modulation-Doped Field-Effect Transistor. Fort Belvoir, VA: Defense Technical Information Center, March 1999. http://dx.doi.org/10.21236/ada361412.
Full textHuebschman, Benjamin D., Pankaj B. Shah, and Romeo Del Rosario. Theory and Operation of Cold Field-effect Transistor (FET) External Parasitic Parameter Extraction. Fort Belvoir, VA: Defense Technical Information Center, May 2009. http://dx.doi.org/10.21236/ada499619.
Full textHarrison, Richard Karl, Stephen Wayne Howell, Jeffrey B. Martin, and Allister B. Hamilton. Exploring graphene field effect transistor devices to improve spectral resolution of semiconductor radiation detectors. Office of Scientific and Technical Information (OSTI), December 2013. http://dx.doi.org/10.2172/1200672.
Full textJackson, H. G., T. T. Shimizu, and B. Leskovar. Preliminary measurements of gamma ray effects on characteristics of broad-band GaAs field-effect transistor preamplifiers. Office of Scientific and Technical Information (OSTI), January 1985. http://dx.doi.org/10.2172/5126571.
Full textCooper, Donald E., and Steven C. Moss. Picosecond Optoelectronic Measurement of the High Frequency Scattering Parameters of a GaAs FET (Field Effect Transistor). Fort Belvoir, VA: Defense Technical Information Center, June 1986. http://dx.doi.org/10.21236/ada170618.
Full textAizin, Gregory. Plasmon Enhanced Electron Drag and Terahertz Photoconductance in a Grating-Gated Field-Effect Transistor with Two-Dimensional Electron Channel. Fort Belvoir, VA: Defense Technical Information Center, January 2006. http://dx.doi.org/10.21236/ada447174.
Full text