Academic literature on the topic 'Tunneling field effect transistor'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Tunneling field effect transistor.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Tunneling field effect transistor"

1

Hähnel, D., M. Oehme, M. Sarlija, A. Karmous, M. Schmid, J. Werner, O. Kirfel, I. Fischer, and J. Schulze. "Germanium vertical Tunneling Field-Effect Transistor." Solid-State Electronics 62, no. 1 (August 2011): 132–37. http://dx.doi.org/10.1016/j.sse.2011.03.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chou, S. Y., J. S. Harris, and R. F. W. Pease. "Lateral resonant tunneling field‐effect transistor." Applied Physics Letters 52, no. 23 (June 6, 1988): 1982–84. http://dx.doi.org/10.1063/1.99656.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

GHOREISHI, SEYED SALEH, KAMYAR SAGHAFI, and MOHAMMAD KAZEM MORAVVEJ-FARSHI. "A NOVEL GRAPHENE NANO-RIBBON FIELD EFFECT TRANSISTOR WITH SCHOTTKY TUNNELING DRAIN AND OHMIC TUNNELING SOURCE." Modern Physics Letters B 27, no. 26 (October 10, 2013): 1350189. http://dx.doi.org/10.1142/s0217984913501893.

Full text
Abstract:
In this paper, we propose a novel tunneling graphene nanoribbon field effect transistor by modification of the conventional structure in a way that its drain high-doped extension part is replaced by lightly linear doped region. Then the proposed structure has a Schottky contact at the drain side. As the source contact is ohmic and the drain contact is Schottky, this structure is called Schottky–Ohmic tunneling graphene nanoribbon field effect transistor. Electrical behaviors of the proposed device are investigated by mode space nonequilibrium Green's function (NEGF) formalism in the ballistic limit. Simulation results show that without increasing transistor length, I OFF , I ON /I OFF , ambipolar behavior, delay time and PDP of the proposed structure improve, in comparison with the conventional tunneling graphene nanoribbon field effect transistor with the same dimension. Also subthreshold swing which is one of the evident characteristics of the tunneling FET is preserved in this structure.
APA, Harvard, Vancouver, ISO, and other styles
4

Oh, Jong Hyeok, and Yun Seop Yu. "Investigation of Tunneling Effect for a N-Type Feedback Field-Effect Transistor." Micromachines 13, no. 8 (August 16, 2022): 1329. http://dx.doi.org/10.3390/mi13081329.

Full text
Abstract:
In this paper, the tunneling effect for a N-type feedback field-effect transistor (NFBFET) was investigated. The NFBFET has highly doped N-P junction in the channel region. When drain-source voltage is applied at the NFBFET, the aligning between conduction band of N-region and valence band of P-region occur, and band-to-band tunneling (BTBT) current can be formed on surface region of N-P junction in the channel of the NFBFET. When the doping concentration of gated-channel region (Ngc) is 4 × 1018 cm−3, the tunneling current makes off-currents increase approximately 104 times. As gate-source voltage is applied to NFBFET, the tunneling rate decreases owing to reducing of aligned region between bands by stronger gate-field. Eventually, the tunneling currents are vanished at the BTBT vanishing point before threshold voltage. When Ngc increase from 4 × 1018 to 6 × 1018, the tunneling current is generated not only at the surface region but also at the bulk region. Moreover, the tunneling length is shorter at the surface and bulk regions, and hence the leakage currents more increase. The BTBT vanishing point also increases due to increase of tunneling rates at surface and bulk region as Ngc increases.
APA, Harvard, Vancouver, ISO, and other styles
5

Capasso, Federico, Susanta Sen, and Alfred Y. Cho. "Negative transconductance resonant tunneling field‐effect transistor." Applied Physics Letters 51, no. 7 (August 17, 1987): 526–28. http://dx.doi.org/10.1063/1.98387.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ismail, K., D. A. Antoniadis, and H. I. Smith. "A planar resonant-tunneling field-effect transistor." IEEE Transactions on Electron Devices 36, no. 11 (November 1989): 2617. http://dx.doi.org/10.1109/16.43732.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

YOUSEFI, REZA, and SEYED SALEH GHOREYSHI. "NUMERICAL STUDY OF OHMIC-SCHOTTKY CARBON NANOTUBE FIELD EFFECT TRANSISTOR." Modern Physics Letters B 26, no. 15 (May 17, 2012): 1250096. http://dx.doi.org/10.1142/s0217984912500960.

Full text
Abstract:
MOS-like transistors are one of the transistor topologies based on the carbon nanotubes. Some modified structures have been proposed to improve their electrical characteristics, such as band to band tunneling (BTBT) and switching behavior. Unfortunately, most of them increase the transistor length due to the use of additional regions. In this paper, we propose a structure that improves the OFF state and switching behavior of the transistor without increase in the transistor length. The proposed structure is constructed by a modification of the conventional structure in a way that its drain high-doped extension part is replaced by a lightly linear doped region. Then, the proposed structure has a Schottky contact at the drain side. With a nonequilibrium Green's function (NEGF) formalism, we have studied the characteristics of the proposed device and compared them with those obtained by a conventional structure with the same channel length. The results show that the proposed structure enjoys from better switching characteristics and OFF-state behavior, especially at low currents, in comparison to the main structure and, as a result, can be a good candidate for the low-power applications.
APA, Harvard, Vancouver, ISO, and other styles
8

Abdul-Kadir, Firas Natheer, Yasir Hashim, Muhammad Nazmus Shakib, and Faris Hassan Taha. "Electrical characterization of si nanowire GAA-TFET based on dimensions downscaling." International Journal of Electrical and Computer Engineering (IJECE) 11, no. 1 (February 1, 2021): 780. http://dx.doi.org/10.11591/ijece.v11i1.pp780-787.

Full text
Abstract:
This research paper explains the effect of the dimensions of Gate-all-around Si nanowire tunneling field effect transistor (GAA Si-NW TFET) on ON/OFF current ratio, drain induces barrier lowering (DIBL), sub-threshold swing (SS), and threshold voltage (VT). These parameters are critical factors of the characteristics of tunnel field effect transistors. The Silvaco TCAD has been used to study the electrical characteristics of Si-NW TFET. Output (gate voltage-drain current) characteristics with channel dimensions were simulated. Results show that 50nm long nanowires with 9nm-18nm diameter and 3nm oxide thickness tend to have the best nanowire tunnel field effect transistor (Si-NW TFET) characteristics.
APA, Harvard, Vancouver, ISO, and other styles
9

Peng-Fei Guo, Li-Tao Yang, Yue Yang, Lu Fan, Gen-Quan Han, G. S. Samudra, and Yee-Chia Yeo. "Tunneling Field-Effect Transistor: Effect of Strain and Temperature on Tunneling Current." IEEE Electron Device Letters 30, no. 9 (September 2009): 981–83. http://dx.doi.org/10.1109/led.2009.2026296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kim, Hyun Woo, and Daewoong Kwon. "Analysis on Tunnel Field-Effect Transistor with Asymmetric Spacer." Applied Sciences 10, no. 9 (April 27, 2020): 3054. http://dx.doi.org/10.3390/app10093054.

Full text
Abstract:
Tunnel field-effect transistor (Tunnel FET) with asymmetric spacer is proposed to obtain high on-current and reduced inverter delay simultaneously. In order to analyze the proposed Tunnel FET, electrical characteristics are evaluated by technology computer-aided design (TCAD) simulations with calibrated tunneling model parameters. The impact of the spacer κ values on tunneling rate is investigated with the symmetric spacer. As the κ values of the spacer increase, the on-current becomes enhanced since tunneling probabilities are increased by the fringing field through the spacer. However, on the drain-side, that fringing field through the drain-side spacer increases ambipolar current and gate-to-drain capacitance, which degrades leakage property and switching response. Therefore, the drain-side low-κ spacer, which makes the low fringing field, is adapted asymmetrically with the source-side high-κ spacer. This asymmetric spacer results in the reduction of gate-to-drain capacitance and switching delay with the improved on-current induced by the source-side high-κ spacer.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Tunneling field effect transistor"

1

Nirschl, Thomas [Verfasser]. "Circuit Applications of the Tunneling Field Effect Transistor (TFET) / Thomas Nirschl." Aachen : Shaker, 2007. http://d-nb.info/1166512053/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chou, Mike Chuan 1969. "Process development for a silicon planar resonant-tunneling field-effect transistor." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/34047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shao, Ye. "Study of wide bandgap semiconductor nanowire field effect transistor and resonant tunneling device." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1448230793.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

AL-SHADEEDI, AKRAM. "LATERAL AND VERTICAL ORGANIC TRANSISTORS." Kent State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=kent1492441683969202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Glaß, Stefan [Verfasser], Siegfried [Akademischer Betreuer] Mantl, and Matthias [Akademischer Betreuer] Wuttig. "Si/SiGe-based gate-normal tunneling field-effect transistors / Stefan Glaß ; Siegfried Mantl, Matthias Wuttig." Aachen : Universitätsbibliothek der RWTH Aachen, 2019. http://d-nb.info/1193181453/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rolseth, Erlend Granbo [Verfasser], and Jörg [Akademischer Betreuer] Schulze. "Experimental studies on germanium-tin p-channel tunneling field effect transistors / Erlend Granbo Rolseth ; Betreuer: Jörg Schulze." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2017. http://d-nb.info/1156603994/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Schmidt, Matthias [Verfasser]. "Fabrication, characterization and simulation of band-to-band tunneling field-effect transistors based on silicon-germanium / Matthias Schmidt." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2013. http://d-nb.info/1044748915/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Lihui. "Quantum Mechanical Effects on MOSFET Scaling." Diss., Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-07072006-111805/.

Full text
Abstract:
Thesis (Ph. D.)--Electrical and Computer Engineering, Georgia Institute of Technology, 2007.
Philip First, Committee Member ; Ian F. Akyildiz, Committee Member ; Russell Dupuis, Committee Member ; James D. Meindl, Committee Chair ; Willianm R. Callen, Committee Member.
APA, Harvard, Vancouver, ISO, and other styles
9

Nadimi, Ebrahim. "Quantum Mechanical and Atomic Level ab initio Calculation of Electron Transport through Ultrathin Gate Dielectrics of Metal-Oxide-Semiconductor Field Effect Transistors." Doctoral thesis, Universitätsbibliothek Chemnitz, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200800477.

Full text
Abstract:
The low dimensions of the state-of-the-art nanoscale transistors exhibit increasing quantum mechanical effects, which are no longer negligible. Gate tunneling current is one of such effects, that is responsible for high power consumption and high working temperature in microprocessors. This in turn put limits on further down scaling of devices. Therefore modeling and calculation of tunneling current is of a great interest. This work provides a review of existing models for the calculation of the gate tunneling current in MOSFETs. The quantum mechanical effects are studied with a model, based on a self-consistent solution of the Schrödinger and Poisson equations within the effective mass approximation. The calculation of the tunneling current is focused on models based on the calculation of carrier’s lifetime on quasi-bound states (QBSs). A new method for the determination of carrier’s lifetime is suggested and then the tunneling current is calculated for different samples and compared to measurements. The model is also applied to the extraction of the “tunneling effective mass” of electrons in ultrathin oxynitride gate dielectrics. Ultrathin gate dielectrics (tox<2 nm) consist of only few atomic layers. Therefore, atomic scale deformations at interfaces and within the dielectric could have great influences on the performance of the dielectric layer and consequently on the tunneling current. On the other hand the specific material parameters would be changed due to atomic level deformations at interfaces. A combination of DFT and NEGF formalisms has been applied to the tunneling problem in the second part of this work. Such atomic level ab initio models take atomic level distortions automatically into account. An atomic scale model interface for the Si/SiO2 interface has been constructed and the tunneling currents through Si/SiO2/Si stack structures are calculated. The influence of single and double oxygen vacancies on the tunneling current is investigated. Atomic level distortions caused by a tensile or compression strains on SiO2 layer as well as their influence on the tunneling current are also investigated
Die vorliegende Arbeit beschäftigt sich mit der Berechnung von Tunnelströmen in MOSFETs (Metal-Oxide-Semiconductor Field Effect Transistors). Zu diesem Zweck wurde ein quantenmechanisches Modell, das auf der selbstkonsistenten Lösung der Schrödinger- und Poisson-Gleichungen basiert, entwickelt. Die Gleichungen sind im Rahmen der EMA gelöst worden. Die Lösung der Schrödinger-Gleichung unter offenen Randbedingungen führt zur Berechnung von Ladungsverteilung und Lebensdauer der Ladungsträger in den QBSs. Der Tunnelstrom wurde dann aus diesen Informationen ermittelt. Der Tunnelstrom wurde in verschiedenen Proben mit unterschiedlichen Oxynitrid Gatedielektrika berechnet und mit gemessenen Daten verglichen. Der Vergleich zeigte, dass die effektive Masse sich sowohl mit der Schichtdicke als auch mit dem Stickstoffgehalt ändert. Im zweiten Teil der vorliegenden Arbeit wurde ein atomistisches Modell zur Berechnung des Tunnelstroms verwendet, welche auf der DFT und NEGF basiert. Zuerst wurde ein atomistisches Modell für ein Si/SiO2-Schichtsystem konstruiert. Dann wurde der Tunnelstrom für verschiedene Si/SiO2/Si-Schichtsysteme berechnet. Das Modell ermöglicht die Untersuchung atom-skaliger Verzerrungen und ihren Einfluss auf den Tunnelstrom. Außerdem wurde der Einfluss einer einzelnen und zwei unterschiedlich positionierter neutraler Sauerstoffleerstellen auf den Tunnelstrom berechnet. Zug- und Druckspannungen auf SiO2 führen zur Deformationen in den chemischen Bindungen und ändern den Tunnelstrom. Auch solche Einflüsse sind anhand des atomistischen Modells berechnet worden
APA, Harvard, Vancouver, ISO, and other styles
10

Vishnoi, Rajat. "Modelling of nanoscale tunnelling field effect transistors." Thesis, IIT Delhi, 2016. http://localhost:8080/xmlui/handle/12345678/7030.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Tunneling field effect transistor"

1

Zhang, Lining, and Mansun Chan, eds. Tunneling Field Effect Transistor Technology. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31653-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Samuel, T. S. Arun, Young Suh Song, Shubham Tayal, P. Vimala, and Shiromani Balmukund Rahi. Tunneling Field Effect Transistors. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003327035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Shiyu, Zakir Hossain, Yan Zhao, and Tao Han. Graphene Field-Effect Transistor Biosensors. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1212-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Park, Byung-Eun, Hiroshi Ishiwara, Masanori Okuyama, Shigeki Sakai, and Sung-Min Yoon, eds. Ferroelectric-Gate Field Effect Transistor Memories. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-024-0841-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Park, Byung-Eun, Hiroshi Ishiwara, Masanori Okuyama, Shigeki Sakai, and Sung-Min Yoon, eds. Ferroelectric-Gate Field Effect Transistor Memories. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1212-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Corporation, Mitsubishi Electric. Ga As field effect transistor(chip) databook. Tokyo: Mitsubishi Electric Corporation, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Amiri, Iraj Sadegh, and Mahdiar Ghadiry. Analytical Modelling of Breakdown Effect in Graphene Nanoribbon Field Effect Transistor. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6550-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Karmakar, Supriya. Novel Three-state Quantum Dot Gate Field Effect Transistor. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1635-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Corporation, Mitsubishi Electric. GaAs field effect transistor MGF 1900 series user's manual. Tokyo: Mitsubishi Electric Corporation, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Corporation, Mitsubishi Electric. Mitsubishi semiconductors 1994: GaAs field effect transistor (data book). Tokyo: Mitsubishi Electric Corporation, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Tunneling field effect transistor"

1

Kumar, Pramod, Neha Paras, and Manisha Bharti. "Designing of Nonvolatile Memories Utilizing Tunnel Field Effect Transistor." In Tunneling Field Effect Transistors, 235–50. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003327035-13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Usha, C., and P. Vimala. "Evolution of Heterojunction Tunnel Field Effect Transistor and its Advantages." In Tunneling Field Effect Transistors, 99–123. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003327035-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yu, Tao, Judy L. Hoyt, and Dimitri A. Antoniadis. "Tunneling FET Fabrication and Characterization." In Tunneling Field Effect Transistor Technology, 33–60. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31653-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, Fei, Qing Shi, Jian Wang, and Hong Guo. "Atomistic Simulations of Tunneling FETs." In Tunneling Field Effect Transistor Technology, 111–49. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31653-6_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Lining, Jun Huang, and Mansun Chan. "Steep Slope Devices and TFETs." In Tunneling Field Effect Transistor Technology, 1–31. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31653-6_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Lining, and Mansun Chan. "Compact Models of TFETs." In Tunneling Field Effect Transistor Technology, 61–87. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31653-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fan, Ming-Long, Yin-Nien Chen, Pin Su, and Ching-Te Chuang. "Challenges and Designs of TFET for Digital Applications." In Tunneling Field Effect Transistor Technology, 89–109. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31653-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Huang, Jun Z., Lining Zhang, Pengyu Long, Michael Povolotskyi, and Gerhard Klimeck. "Quantum Transport Simulation of III-V TFETs with Reduced-Order $$ \varvec{k} \cdot \varvec{p} $$ k · p Method." In Tunneling Field Effect Transistor Technology, 151–80. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31653-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Hao. "Carbon Nanotube TFETs: Structure Optimization with Numerical Simulation." In Tunneling Field Effect Transistor Technology, 181–210. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31653-6_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Singh, Prabhat, and Dharmendra Singh Yadav. "Analysis of Channel Doping Variation on Transfer Characteristics to High-Frequency Performance of F-TFET." In Tunneling Field Effect Transistors, 193–203. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003327035-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Tunneling field effect transistor"

1

Reddy, Dharmendar, Leonard F. Register, and Sanjay K. Banerjee. "Bilayer graphene vertical tunneling field effect transistor." In 2012 70th Annual Device Research Conference (DRC). IEEE, 2012. http://dx.doi.org/10.1109/drc.2012.6256932.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jiao, G. F., X. Y. Huang, Z. X. Chen, W. Cao, D. M. Huang, H. Y. Yu, N. Singh, G. Q. Lo, D. L. Kwong, and Ming-Fu Li. "Investigation of tunneling field effect transistor reliability." In 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). IEEE, 2010. http://dx.doi.org/10.1109/icsict.2010.5667426.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fischer, I. A., D. Hahnel, H. Isemann, A. Kottantharayil, G. Murali, M. Oehme, and J. Schulze. "Si Tunneling Field Effect Transistor with Tunnelling In-Line with the Gate Field." In 2012 International Silicon-Germanium Technology and Device Meeting (ISTDM). IEEE, 2012. http://dx.doi.org/10.1109/istdm.2012.6222411.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vijayvargiya, Vikas, and Santosh Vishvakarma. "Effect of doping profile on tunneling field effect transistor performance." In 2013 Spanish Conference on Electron Devices (CDE). IEEE, 2013. http://dx.doi.org/10.1109/cde.2013.6481376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Es-Sakhi, Azzedin D., and Masud H. Chowdhury. "Multichannel Tunneling Carbon Nanotube Field Effect Transistor (MT-CNTFET)." In 2014 27th IEEE International System-on-Chip Conference (SOCC). IEEE, 2014. http://dx.doi.org/10.1109/socc.2014.6948918.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhao, Pei, R. M. Feenstra, Gong Gu, and Debdeep Jena. "SymFET: A proposed symmetric graphene tunneling field effect transistor." In 2012 70th Annual Device Research Conference (DRC). IEEE, 2012. http://dx.doi.org/10.1109/drc.2012.6257006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Han, Ru, Haichao Zhang, and Danghui Wang. "Inverted π-shaped Si/Ge Tunneling Field Effect Transistor." In 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). IEEE, 2018. http://dx.doi.org/10.1109/icsict.2018.8564939.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Suzuki, S., M. Muruganathan, S. Oda, and H. Mizuta. "Band-to-Band Graphene Resonant Tunneling Field Effect Transistor." In 2015 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2015. http://dx.doi.org/10.7567/ssdm.2015.b-5-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Elgamal, Muhammad. "Genetic Algorithm to Optimize Performance of Tunneling Field-Effect Transistor." In 2020 International Conference on Innovative Trends in Communication and Computer Engineering (ITCE). IEEE, 2020. http://dx.doi.org/10.1109/itce48509.2020.9047768.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yang, Q., J. Zhang, C. Zhu, X. Lin, F. Yan, and X. Ji. "Performance evaluation of tunneling field effect transistor on Terahertz detection." In 2018 China Semiconductor Technology International Conference (CSTIC). IEEE, 2018. http://dx.doi.org/10.1109/cstic.2018.8369195.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Tunneling field effect transistor"

1

Suslov, Alexey, and Tzu-Ming Lu. Capacitance of a Ge/SiGe heterostructure field-effect transistor. Office of Scientific and Technical Information (OSTI), November 2018. http://dx.doi.org/10.2172/1484586.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dorsey, Andrew M., and Matthew H. Ervin. Effects of Differing Carbon Nanotube Field-effect Transistor Architectures. Fort Belvoir, VA: Defense Technical Information Center, July 2009. http://dx.doi.org/10.21236/ada502660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Blair, S. M. AlGaN/InGaN Nitride Based Modulation Doped Field Effect Transistor. Fort Belvoir, VA: Defense Technical Information Center, November 2003. http://dx.doi.org/10.21236/ada422632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Allen, N., L. Voss, C. Frye, K. KWeon, J. Varley, and Q. Shao. Gallium Nitride Superjunction Fin Field Effect Transistor: Continued Funding Report. Office of Scientific and Technical Information (OSTI), October 2021. http://dx.doi.org/10.2172/1826468.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sun, W. D., Fred H. Pollak, Patrick A. Folkes, and Godfrey A. Gumbs. Band-Bending Effect of Low-Temperature GaAs on a Pseudomorphic Modulation-Doped Field-Effect Transistor. Fort Belvoir, VA: Defense Technical Information Center, March 1999. http://dx.doi.org/10.21236/ada361412.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Huebschman, Benjamin D., Pankaj B. Shah, and Romeo Del Rosario. Theory and Operation of Cold Field-effect Transistor (FET) External Parasitic Parameter Extraction. Fort Belvoir, VA: Defense Technical Information Center, May 2009. http://dx.doi.org/10.21236/ada499619.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Harrison, Richard Karl, Stephen Wayne Howell, Jeffrey B. Martin, and Allister B. Hamilton. Exploring graphene field effect transistor devices to improve spectral resolution of semiconductor radiation detectors. Office of Scientific and Technical Information (OSTI), December 2013. http://dx.doi.org/10.2172/1200672.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jackson, H. G., T. T. Shimizu, and B. Leskovar. Preliminary measurements of gamma ray effects on characteristics of broad-band GaAs field-effect transistor preamplifiers. Office of Scientific and Technical Information (OSTI), January 1985. http://dx.doi.org/10.2172/5126571.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cooper, Donald E., and Steven C. Moss. Picosecond Optoelectronic Measurement of the High Frequency Scattering Parameters of a GaAs FET (Field Effect Transistor). Fort Belvoir, VA: Defense Technical Information Center, June 1986. http://dx.doi.org/10.21236/ada170618.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Aizin, Gregory. Plasmon Enhanced Electron Drag and Terahertz Photoconductance in a Grating-Gated Field-Effect Transistor with Two-Dimensional Electron Channel. Fort Belvoir, VA: Defense Technical Information Center, January 2006. http://dx.doi.org/10.21236/ada447174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography