To see the other types of publications on this topic, follow the link: Tunnel FETs.

Journal articles on the topic 'Tunnel FETs'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Tunnel FETs.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Lind, Erik, Elvedin Memisevic, Anil W. Dey, and Lars-Erik Wernersson. "III-V Heterostructure Nanowire Tunnel FETs." IEEE Journal of the Electron Devices Society 3, no. 3 (May 2015): 96–102. http://dx.doi.org/10.1109/jeds.2015.2388811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pandey, Rahul, Saurabh Mookerjea, and Suman Datta. "Opportunities and Challenges of Tunnel FETs." IEEE Transactions on Circuits and Systems I: Regular Papers 63, no. 12 (December 2016): 2128–38. http://dx.doi.org/10.1109/tcsi.2016.2614698.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sedighi, Behnam, Xiaobo Sharon Hu, Huichu Liu, Joseph J. Nahas, and Michael Niemier. "Analog Circuit Design Using Tunnel-FETs." IEEE Transactions on Circuits and Systems I: Regular Papers 62, no. 1 (January 2015): 39–48. http://dx.doi.org/10.1109/tcsi.2014.2342371.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Moselund, K. E., H. Schmid, C. Bessire, M. T. Bjork, H. Ghoneim, and H. Riel. "InAs–Si Nanowire Heterojunction Tunnel FETs." IEEE Electron Device Letters 33, no. 10 (October 2012): 1453–55. http://dx.doi.org/10.1109/led.2012.2206789.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ortiz-Conde, Adelmo, Francisco J. García-Sánchez, Juan Muci, Andrea Sucre-González, João Antonio Martino, Paula Ghedini Der Agopian, and Cor Claeys. "Threshold voltage extraction in Tunnel FETs." Solid-State Electronics 93 (March 2014): 49–55. http://dx.doi.org/10.1016/j.sse.2013.12.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wu, Jianzhi, Jie Min, and Yuan Taur. "Short-Channel Effects in Tunnel FETs." IEEE Transactions on Electron Devices 62, no. 9 (September 2015): 3019–24. http://dx.doi.org/10.1109/ted.2015.2458977.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Verhulst, Anne S., William G. Vandenberghe, Karen Maex, Stefan De Gendt, Marc M. Heyns, and Guido Groeseneken. "Complementary Silicon-Based Heterostructure Tunnel-FETs With High Tunnel Rates." IEEE Electron Device Letters 29, no. 12 (December 2008): 1398–401. http://dx.doi.org/10.1109/led.2008.2007599.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Huang, Jun Z., Pengyu Long, Michael Povolotskyi, Gerhard Klimeck, and Mark J. W. Rodwell. "P-Type Tunnel FETs With Triple Heterojunctions." IEEE Journal of the Electron Devices Society 4, no. 6 (November 2016): 410–15. http://dx.doi.org/10.1109/jeds.2016.2614915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Avedillo, M. J., and J. Núñez. "Improving speed of tunnel FETs logic circuits." Electronics Letters 51, no. 21 (October 2015): 1702–4. http://dx.doi.org/10.1049/el.2015.2416.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pandey, Rahul, Bijesh Rajamohanan, Huichu Liu, Vijaykrishnan Narayanan, and Suman Datta. "Electrical Noise in Heterojunction Interband Tunnel FETs." IEEE Transactions on Electron Devices 61, no. 2 (February 2014): 552–60. http://dx.doi.org/10.1109/ted.2013.2293497.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Dayeh, Shadi A., and S. Tom Picraux. "Axial Ge/Si Nanowire Heterostructure Tunnel FETs." ECS Transactions 33, no. 6 (December 17, 2019): 373–78. http://dx.doi.org/10.1149/1.3487568.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Richter, S., S. Blaeser, L. Knoll, S. Trellenkamp, A. Fox, A. Schäfer, J. M. Hartmann, Q. T. Zhao, and S. Mantl. "Silicon–germanium nanowire tunnel-FETs with homo- and heterostructure tunnel junctions." Solid-State Electronics 98 (August 2014): 75–80. http://dx.doi.org/10.1016/j.sse.2014.04.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Gudlavalleti, R. H., B. Saman, R. Mays, M. Lingalugari, E. Heller, J. Chandy, and F. Jain. "Modeling of Multi-State Si and Ge Cladded Quantum Dot Gate FETs Using Verilog and ABM Simulations." International Journal of High Speed Electronics and Systems 28, no. 03n04 (September 2019): 1940026. http://dx.doi.org/10.1142/s0129156419400263.

Full text
Abstract:
Quantum dot gate (QDG) field-effect transistors (FETs) fabricated using Si and Ge quantum dot layers, self-assembled in the gate region over the tunnel oxide, have exhibited 3- and 4-state behavior applicable for ternary and quaternary logic, respectively. This paper presents simulation of QDG-FETs comprising mixed Ge and Si quantum dot layers over tunnel oxide using an analog behavior model (ABM) and Verilog model. The simulations reproduce the experimental I-V characteristics of a fabricated mixed dot QDG-FET. GeOx-cladded Ge quantum dot layer is in interface to the tunnel oxide and is deposited over with a SiOx-cladded Si quantum dot layer. The fabricated QDG-FET has one source and one gate. The ABM simulation models QDG-FET using conventional BSIM 3V3 FETs with capacitances and other device parameters. In addition, VERILOG model is presented. The agreement in circuit and quantum simulations and experimental data will further advance in the designing of QDG-FET-based analog-to-digital converters (ADCs), 2-bit logic gates and SRAM cells.
APA, Harvard, Vancouver, ISO, and other styles
14

Aghanejad Ahmadchally, Alireza, and Morteza Gholipour. "Investigation of 6-armchair graphene nanoribbon tunnel FETs." Journal of Computational Electronics 20, no. 3 (May 6, 2021): 1114–24. http://dx.doi.org/10.1007/s10825-021-01709-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Zhang, Qin, Yeqing Lu, Curt A. Richter, Debdeep Jena, and Alan Seabaugh. "Optimum Bandgap and Supply Voltage in Tunnel FETs." IEEE Transactions on Electron Devices 61, no. 8 (August 2014): 2719–24. http://dx.doi.org/10.1109/ted.2014.2330805.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Ilatikhameneh, Hesameddin, Gerhard Klimeck, and Rajib Rahman. "Can Homojunction Tunnel FETs Scale Below 10 nm?" IEEE Electron Device Letters 37, no. 1 (January 2016): 115–18. http://dx.doi.org/10.1109/led.2015.2501820.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Chen, Hongwei, Li Yuan, Qi Zhou, Chunhua Zhou, and Kevin J. Chen. "Normally-off AlGaN/GaN power tunnel-junction FETs." physica status solidi (c) 9, no. 3-4 (February 3, 2012): 871–74. http://dx.doi.org/10.1002/pssc.201100338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Pala, Marco G., and David Esseni. "Interface Traps in InAs Nanowire Tunnel-FETs and MOSFETs—Part I: Model Description and Single Trap Analysis in Tunnel-FETs." IEEE Transactions on Electron Devices 60, no. 9 (September 2013): 2795–801. http://dx.doi.org/10.1109/ted.2013.2274196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

KARMAKAR, SUPRIYA, JOHN A. CHANDY, and FAQUIR C. JAIN. "APPLICATION OF 25 NM QUANTUM DOT GATE FETs TO THE DESIGN OF ADC AND DAC CIRCUITS." International Journal of High Speed Electronics and Systems 20, no. 03 (September 2011): 653–68. http://dx.doi.org/10.1142/s0129156411006945.

Full text
Abstract:
This paper describes design of analog-to-digital converters (ADCs) and digital-to-analog onverters (DACs) using field-effect transistors that exhibit three states in their transfer characteristics. An intermediate state " i " has been observed in the transfer characteristics (drain current-gate voltage) of FETs when two layers of cladded quantum dots (e.g. SiO x - Si and GeO x - Ge ) are introduced in the gate region above the tunnel insulator between the source and drain regions. Three states in such a transistor, defined as quantum dot gate field-effect transistor (QDG-FET) include two stable states (ON and OFF) and a low-current saturation state " i " in its transfer characteristics. QDG-FETs are quite different in construction than nanodot based nonvolatile memories, reported in the literature, where the quantum dots are sandwiched between a tunnel gate insulator and a relatively thick control gate dielectric. In this paper we present analog-to-digital converters (ADCs) using comparators based on QDG-FETs. A comparator is designed with fewer three-state QDG-FETs. Designs of 3-bit ADC, using 25 nm QDG-FETs, are simulated showing a signal-to-noise ratio (SNR) of ~18. In addition, the R-2R ladder problem, encountered in conventional analog-to digital converters (ADCs), is absent in QDG-FET based architecture.
APA, Harvard, Vancouver, ISO, and other styles
20

Chen, Yi-Ju, and Bing-Yue Tsui. "Bandgap engineering of Si1− x Ge x epitaxial tunnel layer for tunnel FETs." Japanese Journal of Applied Physics 57, no. 8 (July 13, 2018): 084201. http://dx.doi.org/10.7567/jjap.57.084201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Zhao, Q. T., S. Richter, L. Knoll, G. V. Luong, S. Blaeser, C. Schulte-Braucks, A. Schafer, S. Trellenkamp, D. Buca, and S. Mantl. "(Invited) Si Nanowire Tunnel FETs for Energy Efficient Nanoelectronics." ECS Transactions 66, no. 4 (May 15, 2015): 69–78. http://dx.doi.org/10.1149/06604.0069ecst.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Mallik, A. "Tunnel FETs for Mixed-Signal System-On-Chip Applications." ECS Transactions 53, no. 5 (May 2, 2013): 93–104. http://dx.doi.org/10.1149/05305.0093ecst.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Conzatti, F., M. G. Pala, and D. Esseni. "Surface-Roughness-Induced Variability in Nanowire InAs Tunnel FETs." IEEE Electron Device Letters 33, no. 6 (June 2012): 806–8. http://dx.doi.org/10.1109/led.2012.2192091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Jiang, Zhi, Yiqi Zhuang, Cong Li, Ping Wang, and Yuqi Liu. "Vertical-dual-source tunnel FETs with steeper subthreshold swing." Journal of Semiconductors 37, no. 9 (September 2016): 094003. http://dx.doi.org/10.1088/1674-4926/37/9/094003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Fiore, Antonio, Jacopo Franco, Moonju Cho, Felice Crupi, Sebastiano Strangio, Philippe J. Roussel, Rita Rooyackers, Nadine Collaert, and Dimitri Linten. "Single Defect Discharge Events in Vertical-Nanowire Tunnel-FETs." IEEE Transactions on Device and Materials Reliability 17, no. 1 (March 2017): 253–58. http://dx.doi.org/10.1109/tdmr.2017.2655623.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Conzatti, F., M. G. Pala, D. Esseni, E. Bano, and L. Selmi. "Strain-Induced Performance Improvements in InAs Nanowire Tunnel FETs." IEEE Transactions on Electron Devices 59, no. 8 (August 2012): 2085–92. http://dx.doi.org/10.1109/ted.2012.2200253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Zhang, Lining, Xinnan Lin, Jin He, and Mansun Chan. "An Analytical Charge Model for Double-Gate Tunnel FETs." IEEE Transactions on Electron Devices 59, no. 12 (December 2012): 3217–23. http://dx.doi.org/10.1109/ted.2012.2217145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Gupta, Sumeet Kumar, Jaydeep P. Kulkarni, Suman Datta, and Kaushik Roy. "Heterojunction Intra-Band Tunnel FETs for Low-Voltage SRAMs." IEEE Transactions on Electron Devices 59, no. 12 (December 2012): 3533–42. http://dx.doi.org/10.1109/ted.2012.2221127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Boucart, Kathy, and Adrian Mihai Ionescu. "A new definition of threshold voltage in Tunnel FETs." Solid-State Electronics 52, no. 9 (September 2008): 1318–23. http://dx.doi.org/10.1016/j.sse.2008.04.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Najmzadeh, M., K. Boucart, W. Riess, and A. M. Ionescu. "Asymmetrically strained all-silicon multi-gate n-Tunnel FETs." Solid-State Electronics 54, no. 9 (September 2010): 935–41. http://dx.doi.org/10.1016/j.sse.2010.04.037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Hutin, L., R. P. Oeflein, J. Borrel, S. Martinie, C. Tabone, C. Le Royer, and M. Vinet. "Investigation of ambipolar signature in SiGeOI homojunction tunnel FETs." Solid-State Electronics 115 (January 2016): 160–66. http://dx.doi.org/10.1016/j.sse.2015.08.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Ding, Lili, Elena Gnani, Simone Gerardin, Marta Bagatin, Francesco Driussi, Pierpaolo Palestri, Luca Selmi, Cyrille Le Royer, and Alessandro Paccagnella. "Total Ionizing Dose Effects in Si-Based Tunnel FETs." IEEE Transactions on Nuclear Science 61, no. 6 (December 2014): 2874–80. http://dx.doi.org/10.1109/tns.2014.2367548.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Dong, Yunpeng, Lining Zhang, Xiangbin Li, Xinnan Lin, and Mansun Chan. "A Compact Model for Double-Gate Heterojunction Tunnel FETs." IEEE Transactions on Electron Devices 63, no. 11 (November 2016): 4506–13. http://dx.doi.org/10.1109/ted.2016.2604001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Huang, Jun Z., Pengyu Long, Michael Povolotskyi, Gerhard Klimeck, and Mark J. W. Rodwell. "Scalable GaSb/InAs Tunnel FETs With Nonuniform Body Thickness." IEEE Transactions on Electron Devices 64, no. 1 (January 2017): 96–101. http://dx.doi.org/10.1109/ted.2016.2624744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Mori, Yoshiaki, Shingo Sato, Yasuhisa Omura, Avik Chattopadhyay, and Abhijit Mallik. "On the definition of threshold voltage for tunnel FETs." Superlattices and Microstructures 107 (July 2017): 17–27. http://dx.doi.org/10.1016/j.spmi.2017.04.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Panda, Subhrasmita, Sidhartha Dash, and Guru Prasad Mishra. "Extensive electrostatic investigation of workfunction-modulated SOI tunnel FETs." Journal of Computational Electronics 15, no. 4 (October 4, 2016): 1326–33. http://dx.doi.org/10.1007/s10825-016-0907-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Roy, T., Z. R. Hesabi, C. A. Joiner, A. Fujimoto, and E. M. Vogel. "Barrier engineering for double layer CVD graphene tunnel FETs." Microelectronic Engineering 109 (September 2013): 117–19. http://dx.doi.org/10.1016/j.mee.2013.02.090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Chen, Yi-Hsuan, William Cheng-Yu Ma, Jer-Yi Lin, Chun-Yen Lin, Po-Yang Hsu, Chi-Yuan Huang, and Tien-Sheng Chao. "Impact of Crystallization Method on Poly-Si Tunnel FETs." IEEE Electron Device Letters 36, no. 10 (October 2015): 1060–62. http://dx.doi.org/10.1109/led.2015.2468060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Dharmireddy, Ajay Kumar, Dr Sreenivasa Rao Ijjada, and Dr I. Hema Latha. "Performance Analysis of Various Fin Patterns of Hybrid Tunnel FET." International Journal of Electrical and Electronics Research 10, no. 4 (December 30, 2022): 806–10. http://dx.doi.org/10.37391/ijeer.100407.

Full text
Abstract:
High speed and low power dissipation devices are expected from future generation technology of Nano-electronic devices. Tunnel field effect transistor (TFET) technology is unique to the prominent devices in low power applications. To minimize leakage currents, the tunnel switching technology of TFETs is superior to conventional MOS FETs. The gate coverage area of different fin shape hybrid tunnel field-effect transistors is more impacted on electric characteristics of drive current, leakage current and subthreshold slope. In this paper design various fin patterns of hybrid TFET devices and shows on better performance as compared with other fin shape hybrid tunnel FET. The TCAD simulation tool is used to determine the characteristics of different fin shape tunnel FET.
APA, Harvard, Vancouver, ISO, and other styles
40

Xu, Hui Fang, Yue Hua Dai, Bang Gui Guan, and Yong Feng Zhang. "Two-dimensional analytical model for asymmetric dual-gate tunnel FETs." Japanese Journal of Applied Physics 56, no. 1 (December 5, 2016): 014301. http://dx.doi.org/10.7567/jjap.56.014301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Tomioka, K., T. Fukui, and J. Motohisa. "(Invited) Vertical Tunnel FETs Using III-V Nanowire/Si Heterojunctions." ECS Transactions 69, no. 10 (October 2, 2015): 109–18. http://dx.doi.org/10.1149/06910.0109ecst.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Wang, Hao, Sheng Chang, Jin He, Qijun Huang, and Feng Liu. "The Dual Effects of Gate Dielectric Constant in Tunnel FETs." IEEE Journal of the Electron Devices Society 4, no. 6 (November 2016): 445–50. http://dx.doi.org/10.1109/jeds.2016.2610478.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Tomioka, K., and T. Fukui. "(Invited) Vertical Tunnel FETs Using III-V Nanowire/Si Heterojunctions." ECS Transactions 61, no. 3 (March 26, 2014): 81–89. http://dx.doi.org/10.1149/06103.0081ecst.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Kim, Jang Hyun, Sang Wan Kim, Hyun Woo Kim, and Byung‐Gook Park. "Vertical type double gate tunnelling FETs with thin tunnel barrier." Electronics Letters 51, no. 9 (April 2015): 718–20. http://dx.doi.org/10.1049/el.2014.3864.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Chen, Cheng, Qianqian Huang, Jiadi Zhu, Yang Zhao, Lingyi Guo, and Ru Huang. "New Understanding of Random Telegraph Noise Amplitude in Tunnel FETs." IEEE Transactions on Electron Devices 64, no. 8 (August 2017): 3324–30. http://dx.doi.org/10.1109/ted.2017.2712714.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Ahmed, Sheikh Z., Daniel S. Truesdell, Yaohua Tan, Benton H. Calhoun, and Avik W. Ghosh. "A comprehensive analysis of Auger generation impacted planar Tunnel FETs." Solid-State Electronics 169 (July 2020): 107782. http://dx.doi.org/10.1016/j.sse.2020.107782.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Zhang, Lining, and Mansun Chan. "SPICE Modeling of Double-Gate Tunnel-FETs Including Channel Transports." IEEE Transactions on Electron Devices 61, no. 2 (February 2014): 300–307. http://dx.doi.org/10.1109/ted.2013.2295237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Gholizadeh, Mahdi, and Seyed Ebrahim Hosseini. "A 2-D Analytical Model for Double-Gate Tunnel FETs." IEEE Transactions on Electron Devices 61, no. 5 (May 2014): 1494–500. http://dx.doi.org/10.1109/ted.2014.2313037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Ghosh, Krishnendu, and Uttam Singisetti. "RF Performance and Avalanche Breakdown Analysis of InN Tunnel FETs." IEEE Transactions on Electron Devices 61, no. 10 (October 2014): 3405–10. http://dx.doi.org/10.1109/ted.2014.2344914.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Taur, Yuan, Jianzhi Wu, and Jie Min. "An Analytic Model for Heterojunction Tunnel FETs With Exponential Barrier." IEEE Transactions on Electron Devices 62, no. 5 (May 2015): 1399–404. http://dx.doi.org/10.1109/ted.2015.2407695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography