Journal articles on the topic 'Tunable RF MEMS impedance matching'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 33 journal articles for your research on the topic 'Tunable RF MEMS impedance matching.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Guo, X. L., J. Huang, Z. L. Wang, H. H. Yin, Z. J. Zhang, M. Shi, and H. Jiang. "Tunable Matching Network Using MEMS Switches." Advanced Materials Research 765-767 (September 2013): 2575–78. http://dx.doi.org/10.4028/www.scientific.net/amr.765-767.2575.
Full textIannacci, Jacopo, Giuseppe Resta, Paola Farinelli, and Roberto Sorrentino. "RF-MEMS Components and Networks for High-Performance Reconfigurable Telecommunication and Wireless Systems." Advances in Science and Technology 81 (September 2012): 65–74. http://dx.doi.org/10.4028/www.scientific.net/ast.81.65.
Full textFigur, Sascha A., Friedbert van Raay, Rüdiger Quay, Peter Lohmiller, Larissa Vietzorreck, and Volker Ziegler. "RF-MEMS variable matching networks and switches for multi-band and multi-mode GaN power amplifiers." International Journal of Microwave and Wireless Technologies 6, no. 3-4 (March 12, 2014): 265–76. http://dx.doi.org/10.1017/s175907871400021x.
Full textBhatia, Vinay, Sukhdeep Kaur, Kuldeep Sharma, Punam Rattan, Vishal Jagota, and Mohammed Abdella Kemal. "Design and Simulation of Capacitive MEMS Switch for Ka Band Application." Wireless Communications and Mobile Computing 2021 (July 12, 2021): 1–8. http://dx.doi.org/10.1155/2021/2021513.
Full textSorrentino, Roberto, Paola Farinelli, Alessandro Cazzorla, and Luca Pelliccia. "RF-MEMS Application to RF Tuneable Circuits." Advances in Science and Technology 100 (October 2016): 100–108. http://dx.doi.org/10.4028/www.scientific.net/ast.100.100.
Full textQin Shen and N. S. Bar. "Distributed MEMS tunable matching network using minimal-contact RF-MEMS varactors." IEEE Transactions on Microwave Theory and Techniques 54, no. 6 (June 2006): 2646–58. http://dx.doi.org/10.1109/tmtt.2006.872943.
Full textSaha, Shimul C., Ulrik Hanke, Håkon Sagberg, Tor A. Fjeldly, and Trond Sæther. "Tunable Lowpass Filter with RF MEMS Capacitance and Transmission Line." Active and Passive Electronic Components 2012 (2012): 1–5. http://dx.doi.org/10.1155/2012/502465.
Full textPalson, C. L., D. D. Krishna, B. R. Jose, J. Mathew, and M. Ottavi. "Memristor Based Planar Tunable RF Circuits." Journal of Circuits, Systems and Computers 28, no. 13 (February 11, 2019): 1950225. http://dx.doi.org/10.1142/s0218126619502256.
Full textIannacci, J. "Reconfigurable RF-MEMS-based impedance matching networks for a hybrid RF-MEMS/CMOS class-E power amplifier." Microsystem Technologies 25, no. 12 (June 8, 2019): 4709–19. http://dx.doi.org/10.1007/s00542-019-04510-3.
Full textGholamian, Sholeh, and Ebrahim Abbaspour-Sani. "Design and Simulation of RF MEMS Tunable Spiral Inductor." Advanced Materials Research 403-408 (November 2011): 4148–51. http://dx.doi.org/10.4028/www.scientific.net/amr.403-408.4148.
Full textFigur, Sascha A., Friedbert van Raay, Rüdiger Quay, Larissa Vietzorreck, and Volker Ziegler. "RF-MEMS multi-mode-matching networks for GaN power transistors." International Journal of Microwave and Wireless Technologies 6, no. 5 (April 1, 2014): 447–58. http://dx.doi.org/10.1017/s1759078714000427.
Full textWong, Yan Chiew, Ranjit Singh Sarban Singh, Syafeeza Binti Ahmad Radzi, and Norihan Binti Abdul Hamid. "Tunable impedance matching network with wide impedance coverage for multi frequency standards RF front-end." AEU - International Journal of Electronics and Communications 82 (December 2017): 74–82. http://dx.doi.org/10.1016/j.aeue.2017.08.004.
Full textHoarau, C., N. Corrao, J. D. Arnould, P. Ferrari, and P. Xavier. "Complete Design and Measurement Methodology for a Tunable RF Impedance-Matching Network." IEEE Transactions on Microwave Theory and Techniques 56, no. 11 (November 2008): 2620–27. http://dx.doi.org/10.1109/tmtt.2008.2006105.
Full textSaberkari, Alireza, Saman Ziabakhsh, Herminio Martinez, and Eduard Alarcón. "Active inductor-based tunable impedance matching network for RF power amplifier application." Integration 52 (January 2016): 301–8. http://dx.doi.org/10.1016/j.vlsi.2015.07.013.
Full textDal Fabbro, P. A., and M. Kayal. "RF power amplifier employing a frequency-tunable impedance matching network based on coupled inductors." Electronics Letters 44, no. 19 (2008): 1131. http://dx.doi.org/10.1049/el:20089196.
Full textSahar, N. M., M. T. Islam, N. Misran, and M. R. Zaman. "Development of Reconfigurable Antenna for Advanced Tracking Technology." Indonesian Journal of Electrical Engineering and Computer Science 10, no. 2 (May 1, 2018): 672. http://dx.doi.org/10.11591/ijeecs.v10.i2.pp672-679.
Full textJmai, Bassem, Hugo Dinis, Pedro Anacleto, Adnen Rajhi, Paulo M. Mendes, and Ali Gharsallah. "Modelling, design and fabrication of a novel reconfigurable ultra‐wide‐band impedance matching based on RF MEMS technology." IET Circuits, Devices & Systems 13, no. 8 (November 2019): 1299–304. http://dx.doi.org/10.1049/iet-cds.2019.0116.
Full textLee, Dong-gu, Duehee Lee, and Kuduck Kwon. "A CMOS Wideband RF Energy Harvester Employing Tunable Impedance Matching Network for Video Surveillance Disposable IoT Applications." Transactions of The Korean Institute of Electrical Engineers 68, no. 2 (February 28, 2019): 304–9. http://dx.doi.org/10.5370/kiee.2019.68.2.304.
Full textFouladi, Siamak, Frederic Domingue, Nino Zahirovic, and Raafat R. Mansour. "Distributed MEMS Tunable Impedance-Matching Network Based on Suspended Slow-Wave Structure Fabricated in a Standard CMOS Technology." IEEE Transactions on Microwave Theory and Techniques 58, no. 4 (April 2010): 1056–64. http://dx.doi.org/10.1109/tmtt.2010.2042511.
Full textChung, Myungjin, Heijun Jeong, Yong-Kweon Kim, Sungjoon Lim, and Chang-Wook Baek. "Design and Fabrication of Millimeter-Wave Frequency-Tunable Metamaterial Absorber Using MEMS Cantilever Actuators." Micromachines 13, no. 8 (August 20, 2022): 1354. http://dx.doi.org/10.3390/mi13081354.
Full textSampe, Jahariah, Noor Hidayah Mohd Yunus, Jumril Yunas, and Ahmad G. Ismail. "Performance Analysis of Low Power Radio Frequency Micro Energy Harvester using MEMS Antenna for Wireless Sensor Networks." Jurnal Kejuruteraan 35, no. 1 (January 30, 2023): 133–40. http://dx.doi.org/10.17576/jkukm-2023-35(1)-13.
Full textJanardhanan, Shankaran, Joan Z. Delalic, Jeffrey Catchmark, and Dharanipal Saini. "Development of Biocompatible MEMS Wireless Capacitive Pressure Sensor." Journal of Microelectronics and Electronic Packaging 2, no. 4 (October 1, 2005): 287–96. http://dx.doi.org/10.4071/1551-4897-2.4.287.
Full textCho, Kwang Hwan, Jong Yoon Ha, Chong Yun Kang, Ji Won Choi, Young Pak Lee, and Seok Jin Yoon. "Structural Features and Microwave Properties of Ba0.5Sr0.5TiO3 Films Grown on Sapphire Substrates." Solid State Phenomena 124-126 (June 2007): 1829–32. http://dx.doi.org/10.4028/www.scientific.net/ssp.124-126.1829.
Full textGaur, Tushar, Pragya Mishra, Gopalkrishna Hegde, and Talabattula Srinivas. "Modeling and Analysis of Device Orientation, Analog and Digital Performance of Electrode Design for High Speed Electro-Optic Modulator." Photonics 10, no. 3 (March 12, 2023): 301. http://dx.doi.org/10.3390/photonics10030301.
Full textPark, Yong-Hee, Jae-Hyoung Park, Yong-Dae Kim, Hee-Chul Lee, Hong-Teuk Kim, Jonguk Bu, and Hyo-Jin Nam. "A tunable planar inverted-F antenna with an RF MEMS switch for the correction of impedance mismatch due to human hand effects." Journal of Micromechanics and Microengineering 19, no. 1 (December 10, 2008): 015026. http://dx.doi.org/10.1088/0960-1317/19/1/015026.
Full textXia, Hong, Jin Min Song, and Chang Jie Su. "Design and Implementation of Long Range UHF RFID Reader." Applied Mechanics and Materials 241-244 (December 2012): 3229–37. http://dx.doi.org/10.4028/www.scientific.net/amm.241-244.3229.
Full textKetata, Ilef, Sarah Ouerghemmi, Ahmed Fakhfakh, and Faouzi Derbel. "Design and Implementation of Low Noise Amplifier Operating at 868 MHz for Duty Cycled Wake-Up Receiver Front-End." Electronics 11, no. 19 (October 8, 2022): 3235. http://dx.doi.org/10.3390/electronics11193235.
Full textKandala, Sri Kirthi, and Sung-Min Sohn. "Design of standalone wireless impedance matching (SWIM) system for RF coils in MRI." Scientific Reports 12, no. 1 (December 14, 2022). http://dx.doi.org/10.1038/s41598-022-26143-9.
Full textvan Beek, Joost T. M., Marc H. W. M. van Delden, Auke van Dijken, Patrick van Eerd, Andre B. M. Jansman, Anton L. A. M. Kemmeren, Theo G. S. M. Rijks, et al. "High-Q integrated RF passives and RF-MEMS on silicon." MRS Proceedings 783 (2003). http://dx.doi.org/10.1557/proc-783-b3.1.
Full textMohan, Arun, Ankit Kumar Sahoo, and Saroj Mondal. "A tunable impedance matching strategy for RF energy harvesting systems." Analog Integrated Circuits and Signal Processing, October 9, 2022. http://dx.doi.org/10.1007/s10470-022-02105-z.
Full textLi, Liang, Taijun Liu, Yan Ye, Xiaojun Luo, Gang Cao, Xiaofeng Guo, and Ming Hui. "Electronically Tunable Impedance-Matching Networks for Intelligent RF Power Amplifiers." TELKOMNIKA Indonesian Journal of Electrical Engineering 11, no. 11 (November 1, 2013). http://dx.doi.org/10.11591/telkomnika.v11i11.3514.
Full textTakahashi, Kazunori, Ryoji Imai, and Kengo Hanaoka. "Automatically Controlled Frequency-Tunable rf Plasma Thruster: Ion Beam and Thrust Measurements." Frontiers in Physics 9 (March 31, 2021). http://dx.doi.org/10.3389/fphy.2021.639010.
Full textWang, Qipeng, Zhiguo Su, Shunli Li, Hongxin Zhao, and Xiaoxing Yin. "Electrically Tunable Liquid Crystal Phase Shifter With Excellent Phase Shift Capability Per Wavelength Based on Opposed Coplanar Waveguide." Journal of Physics D: Applied Physics, July 14, 2022. http://dx.doi.org/10.1088/1361-6463/ac8127.
Full text