To see the other types of publications on this topic, follow the link: Tunable photonic crystals.

Journal articles on the topic 'Tunable photonic crystals'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Tunable photonic crystals.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kitzerow, Heinz. "Tunable photonic crystals." Liquid Crystals Today 11, no. 4 (December 2002): 3–7. http://dx.doi.org/10.1080/1464518021000069229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kuai, Su-Lan, Georges Bader, and P. V. Ashrit. "Tunable electrochromic photonic crystals." Applied Physics Letters 86, no. 22 (May 30, 2005): 221110. http://dx.doi.org/10.1063/1.1929079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Park, Won, and J. B. Lee. "Mechanically Tunable Photonic Crystals." Optics and Photonics News 20, no. 1 (January 1, 2009): 40. http://dx.doi.org/10.1364/opn.20.1.000040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gao, Kuangya, Yueqiang Liang, Chengyu Liu, Yafeng He, Weili Fan, and Fucheng Liu. "Structural Tunable Plasma Photonic Crystals in Dielectric Barrier Discharge." Applied Sciences 10, no. 16 (August 12, 2020): 5572. http://dx.doi.org/10.3390/app10165572.

Full text
Abstract:
We demonstrate a kind of structural tunable plasma photonic crystal in a dielectric barrier discharge by self-organization of the plasma filaments. The symmetry, the lattice constant and the orientations of different plasma photonic crystals can be deliberately controlled by changing the applied voltage. The plasma structures can be tuned from a square lattice to a triangular lattice, the lattice constant is reduced and the crystal orientation varies π6 when the applied voltage is increased. The band diagrams of the plasma photonic crystals under a transverse-magnetic wave have been studied, which shows that the positions and sizes of the band gaps change significantly for different plasma structures. We suggest a flexible way for the fabrication of tunable plasma photonic crystals, which may find wide application in the manipulation of microwaves or terahertz waves.
APA, Harvard, Vancouver, ISO, and other styles
5

Woliński, Tomasz, Sławomir Ertman, Katarzyna Rutkowska, Daniel Budaszewski, Marzena Sala-Tefelska, Miłosz Chychłowski, Kamil Orzechowski, Karolina Bednarska, and Piotr Lesiak. "Photonic Liquid Crystal Fibers – 15 years of research activities at Warsaw University of Technology." Photonics Letters of Poland 11, no. 2 (July 1, 2019): 22. http://dx.doi.org/10.4302/plp.v11i2.907.

Full text
Abstract:
Research activities in the area of photonic liquid crystal fibers carried out over the last 15 years at Warsaw University of Technology (WUT) have been reviewed and current research directions that include metallic nanoparticles doping to enhance electro-optical properties of the photonic liquid crystal fibers are presented. Full Text: PDF ReferencesT.R. Woliński et al., "Propagation effects in a photonic crystal fiber filled with a low-birefringence liquid crystal", Proc. SPIE, 5518, 232-237 (2004). CrossRef F. Du, Y-Q. Lu, S.-T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber", Appl. Phys. Lett. 85, 2181-2183 (2004). CrossRef T.T. Larsen, A. Bjraklev, D.S. Hermann, J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres", Opt. Express, 11, 20, 2589-2596 (2003). CrossRef T.R. Woliński et al., "Tunable properties of light propagation in photonic liquid crystal fibers", Opto-Electron. Rev. 13, 2, 59-64 (2005). CrossRef M. Chychłowski, S. Ertman, T.R. Woliński, "Splay orientation in a capillary", Phot. Lett. Pol. 2, 1, 31-33 (2010). CrossRef T.R. Woliński et al., "Photonic liquid crystal fibers — a new challenge for fiber optics and liquid crystals photonics", Opto-Electron. Rev. 14, 4, 329-334 (2006). CrossRef T.R. Woliński et al., "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres", Meas. Sci. Technol. 17, 985-991 (2006). CrossRef T.R. Woliński et al., "Photonic Liquid Crystal Fibers for Sensing Applications", IEEE Trans. Inst. Meas. 57, 8, 1796-1802 (2008). CrossRef T.R. Woliński, et al., "Multi-Parameter Sensing Based on Photonic Liquid Crystal Fibers", Mol. Cryst. Liq. Cryst. 502: 220-234., (2009). CrossRef T.R. Woliński, Xiao G and Bock WJ Photonics sensing: principle and applications for safety and security monitoring, (New Jersey, Wiley, 147-181, 2012). CrossRef T.R. Woliński et al., "Propagation effects in a polymer-based photonic liquid crystal fiber", Appl. Phys. A 115, 2, 569-574 (2014). CrossRef S. Ertman et al., "Optofluidic Photonic Crystal Fiber-Based Sensors", J. Lightwave Technol., 35, 16, 3399-3405 (2017). CrossRef S. Ertman et al., "Recent Progress in Liquid-Crystal Optical Fibers and Their Applications in Photonics", J. Lightwave Technol., 37, 11, 2516-2526 (2019). CrossRef M.M. Tefelska et al., "Electric Field Sensing With Photonic Liquid Crystal Fibers Based on Micro-Electrodes Systems", J. Lightwave Technol., 33, 2, 2405-2411, (2015). CrossRef S. Ertman et al., "Index Guiding Photonic Liquid Crystal Fibers for Practical Applications", J. Lightwave Technol., 30, 8, 1208-1214 (2012). CrossRef K. Mileńko, S. Ertman, T. R. Woliński, "Numerical analysis of birefringence tuning in high index microstructured fiber selectively filled with liquid crystal", Proc. SPIE - The International Society for Optical Engineering, 8794 (2013). CrossRef O. Jaworska and S. Ertman, "Photonic bandgaps in selectively filled photonic crystal fibers", Phot. Lett. Pol., 9, 3, 79-81 (2017). CrossRef I.C. Khoo, S.T.Wu, "Optics and Nonlinear Optics of Liquid Crystals", World Scientific (1993). CrossRef P. Lesiak et al., "Thermal optical nonlinearity in photonic crystal fibers filled with nematic liquid crystals doped with gold nanoparticles", Proc. SPIE 10228, 102280N (2017). CrossRef K. Rutkowska, T. Woliński, "Modeling of light propagation in photonic liquid crystal fibers", Photon. Lett. Poland 2, 3, 107 (2010). CrossRef K. Rutkowska, L-W. Wei, "Assessment on the applicability of finite difference methods to model light propagation in photonic liquid crystal fibers", Photon. Lett. Poland 4, 4, 161 (2012). CrossRef K. Rutkowska, U. Laudyn, P. Jung, "Nonlinear discrete light propagation in photonic liquid crystal fibers", Photon. Lett. Poland 5, 1, 17 (2013). CrossRef M. Murek, K. Rutkowska, "Two laser beams interaction in photonic crystal fibers infiltrated with highly nonlinear materials", Photon. Lett. Poland 6, 2, 74 (2014). CrossRef M.M. Tefelska et al., "Photonic Band Gap Fibers with Novel Chiral Nematic and Low-Birefringence Nematic Liquid Crystals", Mol. Cryst. Liq. Cryst., 558, 184-193, (2012). CrossRef M.M. Tefelska et al., "Propagation Effects in Photonic Liquid Crystal Fibers with a Complex Structure", Acta Phys. Pol. A, 118, 1259-1261 (2010). CrossRef K. Orzechowski et al., "Polarization properties of cubic blue phases of a cholesteric liquid crystal", Opt. Mater. 69, 259-264 (2017). CrossRef H. Yoshida et al., "Heavy meson spectroscopy under strong magnetic field", Phys. Rev. E 94, 042703 (2016). CrossRef J. Yan et al., "Extended Kerr effect of polymer-stabilized blue-phase liquid crystals", Appl. Phys. Lett. 96, 071105 (2010). CrossRef C.-W. Chen et al., "Random lasing in blue phase liquid crystals", Opt. Express 20, 23978-23984 (2012). CrossRef C.-H. Lee et al., "Polarization-independent bistable light valve in blue phase liquid crystal filled photonic crystal fiber", Appl. Opt. 52, 4849-4853 (2013). CrossRef D. Poudereux et al., "Infiltration of a photonic crystal fiber with cholesteric liquid crystal and blue phase", Proc. SPIE 9290 (2014). CrossRef K. Orzechowski et al., "Optical properties of cubic blue phase liquid crystal in photonic microstructures", Opt. Express 27, 10, 14270-14282 (2019). CrossRef M. Wahle, J. Ebel, D. Wilkes, H.S. Kitzerow, "Asymmetric band gap shift in electrically addressed blue phase photonic crystal fibers", Opt. Express 24, 20, 22718-22729 (2016). CrossRef K. Orzechowski et al., "Investigation of the Kerr effect in a blue phase liquid crystal using a wedge-cell technique", Phot. Lett. Pol. 9, 2, 54-56 (2017). CrossRef M.M. Sala-Tefelska et al., "Influence of cylindrical geometry and alignment layers on the growth process and selective reflection of blue phase domains", Opt. Mater. 75, 211-215 (2018). CrossRef M.M. Sala-Tefelska et al., "The influence of orienting layers on blue phase liquid crystals in rectangular geometries", Phot. Lett. Pol. 10, 4, 100-102 (2018). CrossRef P. G. de Gennes JP. The Physics of Liquid Crystals. (Oxford University Press 1995). CrossRef L.M. Blinov and V.G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (New York, NY: Springer New York 1994). CrossRef D. Budaszewski, A.J. Srivastava, V.G. Chigrinov, T.R. Woliński, "Electro-optical properties of photo-aligned photonic ferroelectric liquid crystal fibres", Liq. Cryst., 46 2, 272-280 (2019). CrossRef V. G. Chigrinov, V. M. Kozenkov, H-S. Kwok. Photoalignment of Liquid Crystalline Materials (Chichester, UK: John Wiley & Sons, Ltd 2008). CrossRef M. Schadt et al., "Surface-Induced Parallel Alignment of Liquid Crystals by Linearly Polymerized Photopolymers", Jpn. J. Appl. Phys.31, 2155-2164 (1992). CrossRef D. Budaszewski et al., "Photo-aligned ferroelectric liquid crystals in microchannels", Opt. Lett. 39, 4679 (2014). CrossRef D. Budaszewski, et al., "Photo‐aligned photonic ferroelectric liquid crystal fibers", J. Soc. Inf. Disp. 23, 196-201 (2015). CrossRef O. Stamatoiu, J. Mirzaei, X. Feng, T. Hegmann, "Nanoparticles in Liquid Crystals and Liquid Crystalline Nanoparticles", Top Curr Chem 318, 331-392 (2012). CrossRef A. Siarkowska et al., "Titanium nanoparticles doping of 5CB infiltrated microstructured optical fibers", Photonics Lett. Pol. 8 1, 29-31 (2016). CrossRef A. Siarkowska et al., "Thermo- and electro-optical properties of photonic liquid crystal fibers doped with gold nanoparticles", Beilstein J. Nanotechnol. 8, 2790-2801 (2017). CrossRef D. Budaszewski et al., "Nanoparticles-enhanced photonic liquid crystal fibers", J. Mol. Liq. 267, 271-278 (2018). CrossRef D. Budaszewski et al., "Enhanced efficiency of electric field tunability in photonic liquid crystal fibers doped with gold nanoparticles", Opt. Exp. 27, 10, 14260-14269 (2019). CrossRef
APA, Harvard, Vancouver, ISO, and other styles
6

Schmidt, M., M. Eich, U. Huebner, and R. Boucher. "Electro-optically tunable photonic crystals." Applied Physics Letters 87, no. 12 (September 19, 2005): 121110. http://dx.doi.org/10.1063/1.2039994.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Figotin, Alex, Yuri A. Godin, and Ilia Vitebsky. "Two-dimensional tunable photonic crystals." Physical Review B 57, no. 5 (February 1, 1998): 2841–48. http://dx.doi.org/10.1103/physrevb.57.2841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rehammar, R., and J. M. Kinaret. "Nanowire-based tunable photonic crystals." Optics Express 16, no. 26 (December 16, 2008): 21682. http://dx.doi.org/10.1364/oe.16.021682.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Akamatsu, N., K. Hisano, R. Tatsumi, M. Aizawa, C. J. Barrett, and A. Shishido. "Thermo-, photo-, and mechano-responsive liquid crystal networks enable tunable photonic crystals." Soft Matter 13, no. 41 (2017): 7486–91. http://dx.doi.org/10.1039/c7sm01287j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Budaszewski, Daniel, and Tomasz R. Woliński. "Light propagation in a photonic crystal fiber infiltrated with mesogenic azobenzene dyes." Photonics Letters of Poland 9, no. 2 (July 1, 2017): 51. http://dx.doi.org/10.4302/plp.v9i2.730.

Full text
Abstract:
In this paper, light propagation in an isotropic photonic crystal fiber as well in a silica-glass microcapillary infiltrated with a mesogenic azobenzene dye has been investigated. It appeared that light spectrum guided inside the photonic crystal fiber infiltrated with the investigated azobenzene dye depends on the illuminating wavelength of the absorption band and on linear polarization. Also, alignment of the mesogenic azobenzene dye molecules inside silica glass microcapillaries and photonic crystal fibers has been investigated. Results obtained may lead to a new design of optically tunable photonic devices. Full Text: PDF ReferencesP. Russell. St. J. "Photonic-Crystal Fibers", J. Lightwave Technol. 24, 4729 (2006). CrossRef T. Larsen, A. Bjarklev, D. Hermann, J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres", Opt. Exp. 11, 2589 (2003). CrossRef D. C. Zografopoulos, A. Asquini, E. E. Kriezis, A. d'Alessandro, R. Beccherelli, "Guided-wave liquid-crystal photonics", Lab Chip, 12, 3598 (2012). CrossRef F. Du, Y-Q. Lu, S-T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber", Appl. Phys. Lett 85, 2181 (2004) CrossRef D. C. Zografopoulos, E. E. Kriezis, "Tunable Polarization Properties of Hybrid-Guiding Liquid-Crystal Photonic Crystal Fibers", J. Lightwave Technol. 27 (6), 773 (2009) CrossRef S. Ertman, M. Tefelska, M. Chychłowski, A. Rodriquez, D. Pysz, R. Buczyński, E. Nowinowski-Kruszelnicki, R. Dąbrowski, T. R. Woliński. "Index Guiding Photonic Liquid Crystal Fibers for Practical Applications", J. Lightwave Technol. 30, 1208 (2012). CrossRef D. Noordegraaf, L. Scolari, J. Laegsgaard, L. Rindorf, T. T. Alkeskjold, "Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers", Opt. Expr. 15, 7901 (2007) CrossRef M. M. Tefelska, M. S. Chychlowski, T. R. Wolinski, R. Dabrowski, W. Rejmer, E. Nowinowski-Kruszelnicki, P. Mergo, "Photonic Band Gap Fibers with Novel Chiral Nematic and Low-Birefringence Nematic Liquid Crystals", Mol. Cryst. Liq. Cryst. 558(1), 184 (2012). CrossRef S. Mathews, Y. Semenova, G. Farrell, "Electronic tunability of ferroelectric liquid crystal infiltrated photonic crystal fibre", Electronics Letters, 45(12), 617 (2009). CrossRef V. Chigrinov, H-S Kwok, H. Takada, H. Takatsu, "Photo-aligning by azo-dyes: Physics and applications", Liquid Crystals Today, 14:4, 1-15, (2005) CrossRef A. Siarkowska, M. Jóźwik, S. Ertman, T.R. Woliński, V.G. Chigrinov, "Photo-alignment of liquid crystals in micro capillaries with point-by-point irradiation", Opto-Electon. Rev. 22, 178 (2014); CrossRef D. Budaszewski, A. K. Srivastava, A. M. W. Tam, T. R. Woliński, V. G. Chigrinov, H-S. Kwok, "Photo-aligned ferroelectric liquid crystals in microchannels", Opt. Lett. 39, 16 (2014) CrossRef J-H Liou, T-H. Chang, T. Lin, Ch-P. Yu, "Reversible photo-induced long-period fiber gratings in photonic liquid crystal fibers", Opt. Expr. 19, (7), 6756, (2011) CrossRef T. T. Alkeskjold, J. Laegsgaard, A. Bjarklev, D. S. Hermann, J. Broeng, J. Li, S-T. Wu, "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers", Opt. Exp, 12 (24), 5857 (2004) CrossRef K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, K. Aoki, "Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer", Langmuir, 4, 1214 (1988) CrossRef http://www.beamco.com/Azobenzene-liquid-crystals DirectLink K. A. Rutkowska, K. Orzechowski, M. Sierakowski, "Wedge-cell technique as a simple and effective method for chromatic dispersion determination of liquid crystals", Phot. Lett, Poland, 8(2), 51 (2016). CrossRef L. Deng, H.-K. Liu, "Nonlinear optical limiting of the azo dye methyl-red doped nematic liquid crystalline films", Opt. Eng. 42, 2936-2941 (2003). CrossRef J. Si, J. Qiu, J. Guo, M. Wang, K. Hirao, "Photoinduced birefringence of azodye-doped materials by a femtosecond laser", Appl. Opt., 42, 7170-7173 (2008). CrossRef
APA, Harvard, Vancouver, ISO, and other styles
11

Qi, YongLe, XiaoHong Sun, Shuai Wang, WenYang Li, and ZhongYong Wang. "Design of an Electrically Tunable Micro-Lens Based on Graded Photonic Crystal." Crystals 8, no. 7 (July 23, 2018): 303. http://dx.doi.org/10.3390/cryst8070303.

Full text
Abstract:
A micro-lens with an adjustable focal length (FL) is designed by using Graded Photonic Crystal (GPC) structures and a Polymer Dispersed Liquid Crystal (PDLC) material. The GPCs are formed by gradually changing the radius of the polymer rods in the Photonic Crystal (PC) with square lattices of polymer rods in the background of Liquid Crystals (LCs). The electrically tunable focusing characteristics of the micro-lens are investigated by loading a continuous voltage source to change the LC rotation angle. The sensitivity of the focal shift in terms of LCs tilting angle is 0.152 λ(nm/deg). Moreover, the effect of the defects and deviations on the focusing characteristics are also analyzed. This research is crucial for future applications of the proposed device in the integrated photonics and adaptive optics.
APA, Harvard, Vancouver, ISO, and other styles
12

SUMMERS, C. J., E. GRAUGNARD, D. P. GAILLOT, and J. S. KING. "LUMINESCENT AND TUNABLE 3D PHOTONIC CRYSTAL STRUCTURES." Journal of Nonlinear Optical Physics & Materials 15, no. 02 (June 2006): 203–18. http://dx.doi.org/10.1142/s0218863506003207.

Full text
Abstract:
We report an investigation of luminescent and tunable photonic crystal structures formed by the infiltration and inversion of opal templates with high index and luminescent materials. Protocols are reported for the deposition of these materials and the properties of the resulting structures investigated by conventional structural and optical measurements. The properties of multi-layered and backfilled structures are reported and demonstrate the potential to modulate and statically tune the luminescence from photonic crystals.
APA, Harvard, Vancouver, ISO, and other styles
13

Kim, Sungwon, and Venkatraman Gopalan. "Strain-tunable photonic band gap crystals." Applied Physics Letters 78, no. 20 (May 14, 2001): 3015–17. http://dx.doi.org/10.1063/1.1371786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kee, Chul-Sik, Jae-Eun Kim, Hae Yong Park, Ikmo Park, and H. Lim. "Two-dimensional tunable magnetic photonic crystals." Physical Review B 61, no. 23 (June 15, 2000): 15523–25. http://dx.doi.org/10.1103/physrevb.61.15523.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Halevi, P., and F. Ramos-Mendieta. "Tunable Photonic Crystals with Semiconducting Constituents." Physical Review Letters 85, no. 9 (August 28, 2000): 1875–78. http://dx.doi.org/10.1103/physrevlett.85.1875.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Chen, Yan-bin, Chao Zhang, Yong-yuan Zhu, Shi-ning Zhu, and Nai-ben Ming. "Tunable photonic crystals with superconductor constituents." Materials Letters 55, no. 1-2 (July 2002): 12–16. http://dx.doi.org/10.1016/s0167-577x(01)00610-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Li, Jian, Yang Wu, Jun Fu, Yang Cong, Juan Peng, and Yanchun Han. "Reversibly strain-tunable elastomeric photonic crystals." Chemical Physics Letters 390, no. 1-3 (May 2004): 285–89. http://dx.doi.org/10.1016/j.cplett.2004.04.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Li, Jian, Weihuan Huang, and Yanchun Han. "Tunable photonic crystals by mixed liquids." Colloids and Surfaces A: Physicochemical and Engineering Aspects 279, no. 1-3 (May 2006): 213–17. http://dx.doi.org/10.1016/j.colsurfa.2006.01.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Glöckler, F., S. Peters, U. Lemmer, and M. Gerken. "Tunable superprism effect in photonic crystals." physica status solidi (a) 204, no. 11 (November 2007): 3790–804. http://dx.doi.org/10.1002/pssa.200776408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Ge, Jianping, Yongxing Hu, and Yadong Yin. "Highly Tunable Superparamagnetic Colloidal Photonic Crystals." Angewandte Chemie 119, no. 39 (October 1, 2007): 7572–75. http://dx.doi.org/10.1002/ange.200701992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ge, Jianping, Yongxing Hu, and Yadong Yin. "Highly Tunable Superparamagnetic Colloidal Photonic Crystals." Angewandte Chemie International Edition 46, no. 39 (October 1, 2007): 7428–31. http://dx.doi.org/10.1002/anie.200701992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Urbas, A., R. Sharp, Y. Fink, E. L. Thomas, M. Xenidou, and L. J. Fetters. "Tunable Block Copolymer/Homopolymer Photonic Crystals." Advanced Materials 12, no. 11 (June 2000): 812–14. http://dx.doi.org/10.1002/(sici)1521-4095(200006)12:11<812::aid-adma812>3.0.co;2-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Wang, Gang, Ji Ping Huang, and Kin Wah Yu. "Tunable photonic Bloch oscillations in electrically modulated photonic crystals." Optics Letters 33, no. 19 (September 25, 2008): 2200. http://dx.doi.org/10.1364/ol.33.002200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Stimulak, Mitja, and Miha Ravnik. "Tunable photonic crystals with partial bandgaps from blue phase colloidal crystals and dielectric-doped blue phases." Soft Matter 10, no. 33 (2014): 6339–46. http://dx.doi.org/10.1039/c4sm00419a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Leonard, S. W., J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann. "Tunable two-dimensional photonic crystals using liquid crystal infiltration." Physical Review B 61, no. 4 (January 15, 2000): R2389—R2392. http://dx.doi.org/10.1103/physrevb.61.r2389.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Liu, C. Y., and L. W. Chen. "Tunable Photonic Crystal Waveguide Coupler With Nematic Liquid Crystals." IEEE Photonics Technology Letters 16, no. 8 (August 2004): 1849–51. http://dx.doi.org/10.1109/lpt.2004.831267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Liu, Y. J., and X. W. Sun. "Holographic Polymer-Dispersed Liquid Crystals: Materials, Formation, and Applications." Advances in OptoElectronics 2008 (April 27, 2008): 1–52. http://dx.doi.org/10.1155/2008/684349.

Full text
Abstract:
By combining polymer-dispersed liquid crystal (PDLC) and holography, holographic PDLC (H-PDLC) has emerged as a new composite material for switchable or tunable optical devices. Generally, H-PDLC structures are created in a liquid crystal cell filled with polymer-dispersed liquid crystal materials by recording the interference pattern generated by two or more coherent laser beams which is a fast and single-step fabrication. With a relatively ideal phase separation between liquid crystals and polymers, periodic refractive index profile is formed in the cell and thus light can be diffracted. Under a suitable electric field, the light diffraction behavior disappears due to the index matching between liquid crystals and polymers. H-PDLCs show a fast switching time due to the small size of the liquid crystal droplets. So far, H-PDLCs have been applied in many promising applications in photonics, such as flat panel displays, switchable gratings, switchable lasers, switchable microlenses, and switchable photonic crystals. In this paper, we review the current state-of-the-art of H-PDLCs including the materials used to date, the grating formation dynamics and simulations, the optimization of electro-optical properties, the photonic applications, and the issues existed in H-PDLCs.
APA, Harvard, Vancouver, ISO, and other styles
28

Chang, Hyung-Kwan, and Jungyul Park. "Electrically Tunable Photonic Crystals: Flexible All-Solid-State Electrically Tunable Photonic Crystals (Advanced Optical Materials 23/2018)." Advanced Optical Materials 6, no. 23 (December 2018): 1870092. http://dx.doi.org/10.1002/adom.201870092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

YANG Ming-wei, 杨明玮, 肖峻 XIAO Jun, and 李锐 LI Rui. "Tunable Negative Refraction Photonic Crystals Filled with Liquid Crystals." ACTA PHOTONICA SINICA 42, no. 2 (2013): 176–80. http://dx.doi.org/10.3788/gzxb20134202.0176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Wang, Yao-Yu, and Lien-Wen Chen. "Tunable negative refraction photonic crystals achieved by liquid crystals." Optics Express 14, no. 22 (2006): 10580. http://dx.doi.org/10.1364/oe.14.010580.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Moscardi, Liliana, Guglielmo Lanzani, Giuseppe M. Paternò, and Francesco Scotognella. "Stimuli-Responsive Photonic Crystals." Applied Sciences 11, no. 5 (February 27, 2021): 2119. http://dx.doi.org/10.3390/app11052119.

Full text
Abstract:
Recently, tunable photonic crystals (PhCs) have received great research interest, thanks to the wide range of applications in which they can be employed, such as light emission and sensing, among others. In addition, the versatility and ease of fabrication of PhCs allow for the integration of a large range of responsive elements that, in turn, can permit active tuning of PhC optical properties upon application of external stimuli, e.g., physical, chemical or even biological triggers. In this work, we summarize the most employed theoretical tools used for the design of optical properties of responsive PhCs and the most used fabrication techniques. Furthermore, we collect the most relevant results related to this field, with particular emphasis on electrochromic devices.
APA, Harvard, Vancouver, ISO, and other styles
32

Golosovsky, M., Y. Neve-Oz, and D. Davidov. "Magnetic-field tunable photonic stop band in metallodielectric photonic crystals." Synthetic Metals 139, no. 3 (October 2003): 705–9. http://dx.doi.org/10.1016/s0379-6779(03)00331-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Ciobanu, M., L. Preda, D. Savastru, M. Mihailescu, and M. Tautan. "Modeling Tunable Microwave Antenna with Photonic Crystals." Journal of Computational and Theoretical Nanoscience 9, no. 6 (June 1, 2012): 778–82. http://dx.doi.org/10.1166/jctn.2012.2095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Wang, Hai-Xiao, Huanyang Chen, Jian-Hua Jiang, and Guang-Yu Guo. "Tunable edge states in reconfigurable photonic crystals." Journal of Applied Physics 126, no. 19 (November 21, 2019): 193105. http://dx.doi.org/10.1063/1.5124893.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Fan, Fei, ShengJiang Chang, and Yu Hou. "Metallic photonic crystals for terahertz tunable filters." Science China Information Sciences 55, no. 1 (December 30, 2011): 72–78. http://dx.doi.org/10.1007/s11432-011-4485-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Fleischhaker, F., A. C. Arsenault, Z. Wang, V. Kitaev, F. C. Peiris, G. von Freymann, I. Manners, R. Zentel, and G. A. Ozin. "Redox-Tunable Defects in Colloidal Photonic Crystals." Advanced Materials 17, no. 20 (October 17, 2005): 2455–58. http://dx.doi.org/10.1002/adma.200501055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Li, Jian-Feng, Jian Wang, Xiao-Tian Wang, Xiao-Gang Wang, Yan Li, and Cheng-Wei Wang. "Bandgap engineering of TiO2 nanotube photonic crystals for enhancement of photocatalytic capability." CrystEngComm 22, no. 11 (2020): 1929–38. http://dx.doi.org/10.1039/c9ce01828j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

ZHOU Jian-wei, 周建伟, 梁静秋 LIANG Jing-qiu, 梁中翥 LIANG Zhong-zhu, and 王维彪 WANG Wei-biao. "Tunable Two-dimensional Photonic Crystals Cavity Attenuator Using Liquid-crystal." Chinese Journal of Luminescence 34, no. 2 (2013): 245–50. http://dx.doi.org/10.3788/fgxb20133402.0245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Gaillot, Davy P., Elton Graugnard, Jeffrey S. King, and Christopher J. Summers. "Tunable Bragg peak response in liquid-crystal-infiltrated photonic crystals." Journal of the Optical Society of America B 24, no. 4 (March 15, 2007): 990. http://dx.doi.org/10.1364/josab.24.000990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Cos, Joaquín, Josep Ferré-Borrull, Josep Pallarès, and Lluís F. Marsal. "Tunable waveguides based on liquid crystal-infiltrated silicon photonic crystals." physica status solidi (c) 8, no. 3 (February 1, 2011): 1075–78. http://dx.doi.org/10.1002/pssc.201000414.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Nucara, Luca, Francesco Greco, and Virgilio Mattoli. "Electrically responsive photonic crystals: a review." Journal of Materials Chemistry C 3, no. 33 (2015): 8449–67. http://dx.doi.org/10.1039/c5tc00773a.

Full text
Abstract:
Tunable photonic crystals (TPCs) represent an important class of intelligent materials, which can be used as optically active components and as functional technology to change an object's colour. Here, we review progresses in electrically responsive PCs: a subclass of these smart materials which employs electrical stimulation as direct or indirect trigger for tuning optical properties.
APA, Harvard, Vancouver, ISO, and other styles
42

Palffy-Muhoray, Peter, Wenyi Cao, Michele Moreira, Bahman Taheri, and Antonio Munoz. "Photonics and lasing in liquid crystal materials." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364, no. 1847 (August 21, 2006): 2747–61. http://dx.doi.org/10.1098/rsta.2006.1851.

Full text
Abstract:
Owing to fundamental reasons of symmetry, liquid crystals are soft materials. This softness allows long length-scales, large susceptibilities and the existence of modulated phases, which respond readily to external fields. Liquid crystals with such phases are tunable, self-assembled, photonic band gap materials; they offer exciting opportunities both in basic science and in technology. Since the density of photon states is suppressed in the stop band and is enhanced at the band edges, these materials may be used as switchable filters or as mirrorless lasers. Disordered periodic liquid crystal structures can show random lasing. We highlight recent advances in this rapidly growing area, and discuss future prospects in emerging liquid crystal materials. Liquid crystal elastomers and orientationally ordered nanoparticle assemblies are of particular interest.
APA, Harvard, Vancouver, ISO, and other styles
43

Liu, Chen-Yang, and Lien-Wen Chen. "Tunable Channel Drop Filter in a Two-Dimensional Photonic Crystal Modulated by a Nematic Liquid Crystal." Journal of Nanomaterials 2006 (2006): 1–6. http://dx.doi.org/10.1155/jnm/2006/52946.

Full text
Abstract:
Photonic crystals (PCs) have many potential applications because of their ability to control light-wave propagation and because PC-based waveguides may be integrated into optical circuits. We propose a novel tunable PC channel drop filter based on nematic liquid crystals and investigate its properties numerically by using the finite-difference time-domain (FDTD) method. The refractive indices of liquid crystals can be actively modulated after infiltrating nematic liquid crystals into the microcavity in PC waveguides with square lattices. Then we can control light propagation in a PC waveguide. We analyze theQ-factors and resonance frequencies of a tunable PC channel drop filter by considering various indices modulation of liquid crystals. The novel component can be used as wavelength division multiplexing in photonic integrated circuits.
APA, Harvard, Vancouver, ISO, and other styles
44

Yadav, Ashish, Neha Yadav, Vikash Agrawal, Sergey P. Polyutov, Alexey S. Tsipotan, Sergei V. Karpov, Vitaliy V. Slabko, et al. "State-of-art plasmonic photonic crystals based on self-assembled nanostructures." Journal of Materials Chemistry C 9, no. 10 (2021): 3368–83. http://dx.doi.org/10.1039/d0tc05254j.

Full text
Abstract:
Controlled self-assembly of plasmonic photonic nanostructures provides a cost-effective and efficient methodology to expand plasmonic photonic nano-platforms with unique, tunable, and coupled optical characteristics.
APA, Harvard, Vancouver, ISO, and other styles
45

Misawa, Hiroaki, Yoshiaki Nishijima, Keisei Ueno, Saulius Juodkazis, Vygantas Mizeikis, Mitsuru Maeda, and Masashi Minaki. "Tunable single-mode photonic lasing from zirconia inverse opal photonic crystals." Optics Express 16, no. 18 (August 20, 2008): 13676. http://dx.doi.org/10.1364/oe.16.013676.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

He, Wan-Li, Ya-Qian Zhang, Wen-Tuo Hu, Hui-Min Zhou, Zhou Yang, Hui Cao, and Dong Wang. "Ionic Chiral Ferrocene Doped Cholesteric Liquid Crystal with Electronically Tunable Reflective Bandwidth performance." Materials 15, no. 24 (December 8, 2022): 8749. http://dx.doi.org/10.3390/ma15248749.

Full text
Abstract:
Cholesteric liquid crystals (CLC) were widely used in optical devices as one-dimensional photonic crystals. However, their reflective bands cannot be adjusted, which limits their wide application in many fields. In this paper, a series of ionic chiral ferrocene derivatives (CD-Fc+) as dopants were designed and prepared, and their doping into negative liquid crystal matrix was investigated to develop cholesteric response liquid crystal composites with electrically tunable reflective bands. The effects of electric field frequency, voltage, retention time of voltage and molecular structure on the broadening of reflection bandwidth were investigated in detail.
APA, Harvard, Vancouver, ISO, and other styles
47

Liu Jiang-Tao, Xiao Wen-Bo, Huang Jie-Hui, Yu Tian-Bao, and Deng Xin-Hua. "Tunable pass band of anomalous dispersion photonic crystals." Acta Physica Sinica 59, no. 3 (2010): 1665. http://dx.doi.org/10.7498/aps.59.1665.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Liu, Xufei, and Xiaohui Li. "Study on Tunable Self-Collimation in Photonic Crystals." Journal of Nanoelectronics and Optoelectronics 12, no. 6 (June 1, 2017): 575–79. http://dx.doi.org/10.1166/jno.2017.2069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Panoiu, Nicolae C., Mayank Bahl, and Richard M. Osgood, Jr. "Optically tunable superprism effect in nonlinear photonic crystals." Optics Letters 28, no. 24 (December 15, 2003): 2503. http://dx.doi.org/10.1364/ol.28.002503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Jing, Weiping. "MOEMS tunable optical filter based on photonic crystals." Journal of Micro/Nanolithography, MEMS, and MOEMS 4, no. 4 (October 1, 2005): 041301. http://dx.doi.org/10.1117/1.2109792.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography