Academic literature on the topic 'Tumor xenograft'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Tumor xenograft.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Tumor xenograft"
Siu, I.-Mei, Vafi Salmasi, Brent A. Orr, Qi Zhao, Zev A. Binder, Christine Tran, Masaru Ishii, Gregory J. Riggins, Christine L. Hann, and Gary L. Gallia. "Establishment and characterization of a primary human chordoma xenograft model." Journal of Neurosurgery 116, no. 4 (April 2012): 801–9. http://dx.doi.org/10.3171/2011.12.jns111123.
Full textSicklick, Jason Keith, Stephanie Yvette Leonard, Evangeline Mose, Randall P. French, Michele Criscuoli, Dawn V. Jaquish, Karly Maruyama, Richard B. Schwab, David Cheresh, and Andrew M. Lowy. "A novel xenograft model of gastrointestinal stromal tumors." Journal of Clinical Oncology 30, no. 4_suppl (February 1, 2012): 202. http://dx.doi.org/10.1200/jco.2012.30.4_suppl.202.
Full textDavies, Jason M., Aaron E. Robinson, Cynthia Cowdrey, Praveen V. Mummaneni, Gregory S. Ducker, Kevan M. Shokat, Andrew Bollen, Byron Hann, and Joanna J. Phillips. "Generation of a patient-derived chordoma xenograft and characterization of the phosphoproteome in a recurrent chordoma." Journal of Neurosurgery 120, no. 2 (February 2014): 331–36. http://dx.doi.org/10.3171/2013.10.jns13598.
Full textDong, Yiyu, Brandon Manley, A. Ari Hakimi, Jonathan A. Coleman, Paul Russo, and James Hsieh. "Comparing surgical tissue versus biopsy tissue in the development of a clear cell renal cell carcinoma xenograft model." Journal of Clinical Oncology 34, no. 2_suppl (January 10, 2016): 519. http://dx.doi.org/10.1200/jco.2016.34.2_suppl.519.
Full textLukbanova, E. A., M. V. Mindar, E. A. Dzhenkova, A. Yu Maksimov, A. S. Goncharova, Yu S. Shatova, A. A. Maslov, A. V. Shaposhnikov, E. V. Zaikina, and Yu N. Lazutin. "Experimental approach to obtaining subcutaneous xenograft of non-small cell lung cancer." Research and Practical Medicine Journal 9, no. 2 (May 4, 2022): 65–76. http://dx.doi.org/10.17709/2410-1893-2022-9-2-5.
Full textBreij, Esther CW, David Satijn, Sandra Verploegen, Bart de Goeij, Danita Schuurhuis, Wim Bleeker, Mischa Houtkamp, and Paul Parren. "Use of an antibody-drug conjugate targeting tissue factor to induce complete tumor regression in xenograft models with heterogeneous target expression." Journal of Clinical Oncology 31, no. 15_suppl (May 20, 2013): 3066. http://dx.doi.org/10.1200/jco.2013.31.15_suppl.3066.
Full textDougherty, Mark, Eric Taylor, and Marlan Hansen. "TMET-34. RADIATION METABOLOMICS IN PRIMARY HUMAN MENINGIOMA AND SCHWANNOMA: EARLY EXPERIENCE AND INITIAL RESULTS." Neuro-Oncology 24, Supplement_7 (November 1, 2022): vii269. http://dx.doi.org/10.1093/neuonc/noac209.1039.
Full textJeuken, Judith W. M., Sandra H. E. Sprenger, Pieter Wesseling, Hans J. J. A. Bernsen, Ron F. Suijkerbuijk, Femke Roelofs, Merryn V. E. Macville, H. Jacobus Gilhuis, Jacobus J. van Overbeeke, and Rudolf H. Boerman. "Genetic reflection of glioblastoma biopsy material in xenografts: characterization of 11 glioblastoma xenograft lines by comparative genomic hybridization." Journal of Neurosurgery 92, no. 4 (April 2000): 652–58. http://dx.doi.org/10.3171/jns.2000.92.4.0652.
Full textSingh, Kanika, Negar Jamshidi, Roby Zomer, Terrence J. Piva, and Nitin Mantri. "Cannabinoids and Prostate Cancer: A Systematic Review of Animal Studies." International Journal of Molecular Sciences 21, no. 17 (August 29, 2020): 6265. http://dx.doi.org/10.3390/ijms21176265.
Full textDobbin, Zachary C., Ashwini A. Katre, Angela Ziebarth, Monjri Shah, Adam D. Steg, Ronald David Alvarez, Michael G. Conner, and Charles N. Landen. "Use of an optimized primary ovarian cancer xenograft model to mimic patient tumor biology and heterogeneity." Journal of Clinical Oncology 30, no. 15_suppl (May 20, 2012): 5036. http://dx.doi.org/10.1200/jco.2012.30.15_suppl.5036.
Full textDissertations / Theses on the topic "Tumor xenograft"
Williams, K. J., M. R. Albertella, B. Fitzpatrick, Paul M. Loadman, Steven D. Shnyder, E. C. Chinje, B. A. Telfer, C. R. Dunk, P. A. Harris, and I. J. Stratford. "In vivo activation of the hypoxia-targeted cytotoxin AQ4N in human tumor xenograft." AACR Publications, 2009. http://hdl.handle.net/10454/4561.
Full textAQ4N (banoxantrone) is a prodrug that, under hypoxic conditions, is enzymatically converted to a cytotoxic DNA-binding agent, AQ4. Incorporation of AQ4N into conventional chemoradiation protocols therefore targets both oxygenated and hypoxic regions of tumors, and potentially will increase the effectiveness of therapy. This current pharmacodynamic and efficacy study was designed to quantify tumor exposure to AQ4 following treatment with AQ4N, and to relate exposure to outcome of treatment. A single dose of 60 mg/kg AQ4N enhanced the response of RT112 (bladder) and Calu-6 (lung) xenografts to treatment with cisplatin and radiation therapy. AQ4N was also given to separate cohorts of tumor-bearing mice 24 hours before tumor excision for subsequent analysis of metabolite levels. AQ4 was detected by high performance liquid chromatography/mass spectrometry in all treated samples of RT112 and Calu-6 tumors at mean concentrations of 0.23 and 1.07 microg/g, respectively. These concentrations are comparable with those shown to be cytotoxic in vitro. AQ4-related nuclear fluorescence was observed in all treated tumors by confocal microscopy, which correlated with the high performance liquid chromatography/mass spectrometry data. The presence of the hypoxic marker Glut-1 was shown by immunohistochemistry in both Calu-6 tumors and RT112 tumors, and colocalization of AQ4 fluorescence and Glut-1 staining strongly suggested that AQ4N was activated in these putatively hypoxic areas. This is the first demonstration that AQ4N will increase the efficacy of chemoradiotherapy in preclinical models; the intratumoral levels of AQ4 found in this study are comparable with tumor AQ4 levels found in a recent phase I clinical study, which suggests that these levels could be potentially therapeutic.
Tin, Man Ying. "Study of the anticarcinogenic mechanisms of astragalus membranaceus in colon cancer cells and tumor xenograft." HKBU Institutional Repository, 2006. http://repository.hkbu.edu.hk/etd_ra/777.
Full textTabassum, Doris Priscilla. "Exploring Intra-tumor Cooperation in Metastasis and Drug Resistance using Heterogeneous Xenograft Models of Breast Cancer." Thesis, Harvard University, 2016. http://nrs.harvard.edu/urn-3:HUL.InstRepos:33493472.
Full textMedical Sciences
Volk, Lisa Danielle. "The Combination of Nab-Paclitaxel and Bevacizumab Therapy Synergistically Improves Tumor Response in Xenograft Breast Cancer Models." Available to subscribers only, 2008. http://proquest.umi.com/pqdweb?did=1674100511&sid=1&Fmt=2&clientId=1509&RQT=309&VName=PQD.
Full text"Department of Medical Microbiology, Immunology, and Cell Biology." Includes bibliographical references (p. 86-119). Also available online.
Maekawa, Hisatsugu. "A Chemosensitivity Study of Colorectal Cancer Using Xenografts of Patient-Derived Tumor Initiating Cells." Kyoto University, 2018. http://hdl.handle.net/2433/235985.
Full textYoshida, Toru. "Antiandrogen bicalutamide promotes tumor growth in a novel androgen-dependent prostate cancer xenograft model derived from a bicalutamide-treated patient." Kyoto University, 2006. http://hdl.handle.net/2433/135622.
Full textMaftei, Constantin Alin Verfasser], Christine [Akademischer Betreuer] Bayer, Peter [Akademischer Betreuer] [Vaupel, and Gabriele [Akademischer Betreuer] Multhoff. "Determination of the dynamics of tumor hypoxia during radiation therapy using biological imaging on mouse xenograft tumors / Constantin Alin Maftei. Gutachter: Peter Vaupel ; Gabriele Multhoff. Betreuer: Christine Bayer." München : Universitätsbibliothek der TU München, 2013. http://d-nb.info/1034134779/34.
Full textLiwschitz, Maxim [Verfasser]. "Wirkungen einer kombinierten Hemmung von Angiopoetin 2 und VEGF auf die Tumor-Angiogenese in einem Xenograft-Maus-Modell des kolonrektalen Karzinoms / Maxim Liwschitz." Köln : Deutsche Zentralbibliothek für Medizin, 2016. http://d-nb.info/1084240637/34.
Full textTanaka, Kuniaki. "Direct Delivery of piggyBac CD19 CAR T Cells Has Potent Anti-tumor Activity against ALL Cells in CNS in a Xenograft Mouse Model." Kyoto University, 2021. http://hdl.handle.net/2433/261609.
Full textHuang, Yingbo. "Intrapulmonary Inoculation of Multicellular Tumor Spheroids to Construct an Orthotopic Lung Cancer Xenograft Model that Mimics Four Clinical Stages of Non-small Cell Lung Cancer." Scholarly Commons, 2019. https://scholarlycommons.pacific.edu/uop_etds/3596.
Full textBooks on the topic "Tumor xenograft"
Winograd, Benjamin, Michael Peckham, and Herbert Michael Pinedo, eds. Human Tumour Xenografts in Anticancer Drug Development. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73252-2.
Full textSeminar on Human Tumour Xenografts (1986 Milan, Italy). Human tumour xenografts in anticancer drug development. Berlin: Springer-Verlag, 1988.
Find full textB, Winograd, Peckham Michael J, Pinedo H. M, and European School of Oncology, eds. Human tumour xenografts in anticancer drug development. Berlin: Springer, 1988.
Find full textPatient Derived Tumor Xenograft Models. Elsevier, 2017. http://dx.doi.org/10.1016/c2015-0-00204-0.
Full textUthamanthil, Rajesh, Peggy Tinkey, and Elisa de Stanchina. Patient Derived Tumor Xenograft Models: Promise, Potential and Practice. Elsevier Science & Technology Books, 2016.
Find full textTinkey, Peggy, Elisa de Stanchina, and Rajesh K. Uthamanthil. Patient Derived Tumor Xenograft Models: Promise, Potential and Practice. Elsevier Science & Technology Books, 2016.
Find full textWinograd, Benjamin. Human Tumour Xenografts in Anticancer Drug Development. Springer, 2012.
Find full textPinedo, Herbert M., Michael Peckham, and Benjamin Winograd. Human Tumour Xenografts in Anticancer Drug Development. Springer London, Limited, 2013.
Find full text(Editor), H. M. Pinedo, ed. Human Tumour Xenografts in Anticancer Drug Development (Eso Monographs (European School of Oncology)). Springer, 1988.
Find full textBook chapters on the topic "Tumor xenograft"
Liu, Ming, and Daniel Hicklin. "Human Tumor Xenograft Efficacy Models." In Tumor Models in Cancer Research, 99–124. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-968-0_5.
Full textPresta, Marco, Giulia De Sena, and Chiara Tobia. "The Zebrafish/Tumor Xenograft Angiogenesis Assay." In The Textbook of Angiogenesis and Lymphangiogenesis: Methods and Applications, 253–68. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4581-0_16.
Full textLin, Dong, Xinya Wang, Peter W. Gout, and Yuzhuo Wang. "Patient-Derived Tumor Xenografts: Historical Background." In Patient-Derived Xenograft Models of Human Cancer, 1–9. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55825-7_1.
Full textAnnibali, Daniela, Eleonora Leucci, Els Hermans, and Frédéric Amant. "Development of Patient-Derived Tumor Xenograft Models." In Metabolic Signaling, 217–25. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8769-6_15.
Full textDong, Xin, Peter W. Gout, Lu Yi, Yinhuai Wang, Yong Xu, and Kuo Yang. "First-Generation Tumor Xenografts: A Link Between Patient-Derived Xenograft Models and Clinical Disease." In Patient-Derived Xenograft Models of Human Cancer, 155–76. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55825-7_11.
Full textAlley, Michael C., Melinda G. Hollingshead, Donald J. Dykes, and William R. Waud. "Human Tumor Xenograft Models in NCI Drug Development." In Anticancer Drug Development Guide, 125–52. Totowa, NJ: Humana Press, 2004. http://dx.doi.org/10.1007/978-1-59259-739-0_7.
Full textSuarez, Christopher D., and Laurie E. Littlepage. "Patient-Derived Tumor Xenograft Models of Breast Cancer." In Methods in Molecular Biology, 211–23. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3444-7_19.
Full textPlowman, Jacqueline, Donald J. Dykes, Melinda Hollingshead, Linda Simpson-Herren, and Michael C. Alley. "Human Tumor Xenograft Models in NCI Drug Development." In Anticancer Drug Development Guide, 101–25. Totowa, NJ: Humana Press, 1997. http://dx.doi.org/10.1007/978-1-4615-8152-9_6.
Full textDavies, Alastair H., Fraser Johnson, Kirsi Ketola, and Amina Zoubeidi. "The Plasticity of Stem-Like States in Patient-Derived Tumor Xenografts." In Patient-Derived Xenograft Models of Human Cancer, 71–91. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55825-7_6.
Full textLukiewicz, Stanislaw, Przemyslaw Plonka, Beata Plonka, Jolanta Raczek, Stanislawa Pajak, and Krystyna Cieszka. "Animal EPR Studies on Allo- and Xenograft Rejection." In Nitric Oxide in Transplant Rejection and Anti-Tumor Defense, 157–87. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5081-5_10.
Full textConference papers on the topic "Tumor xenograft"
Singh, Nagendra S., and Irving W. Wainer. "Abstract B32: GRP55 antagonists alter tumor microenvironment and inhibit tumor growth in a pancreatic tumor xenograft model." In Abstracts: AACR Special Conference on Pancreatic Cancer: Advances in Science and Clinical Care; May 12-15, 2016; Orlando, FL. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.panca16-b32.
Full textRoy, Somdutta, Kevin Martinez, Arturo Ramirez, Daniel Campton, Joshua Nordberg, Eric Kaldjian, Scott J. Dylla, and Holger Karsunky. "Abstract 646: Feasibility of assessing circulating tumor cells in patient-derived xenograft tumor models." In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-646.
Full textPark, Gyeongsin, Byunghoo Song, Seonghak Lee, Chan Kwon Jung Jung, Ahwon Lee, Yang-Guk Chung, Yeong-Jin Choi, Kyo-Young Lee, and Chang Suk Kang. "Abstract 5164: Mesenchymal stromal cells promote tumor engraftment and progression in tumor xenograft model." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-5164.
Full textIbrahimov, Emin, Nhu-An Pham, Fannong Meng, Mayleen Sukhram, Dianne Chadwick, Stefano Serra, Patricia Shaw, et al. "Abstract B91: Primary tumor xenograft establishment from pancreatic resection specimens." In Abstracts: AACR Special Conference on Pancreatic Cancer: Progress and Challenges; June 18-21, 2012; Lake Tahoe, NV. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.panca2012-b91.
Full textFerenci, Tamas, Johanna Sapi, and Levente Kovacs. "Modelling xenograft tumor growth under antiangiogenic inhibitation with mixed-effects models." In 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2016. http://dx.doi.org/10.1109/smc.2016.7844845.
Full textBasel, Matthew T., Sanjeev Narayanan, Chanran Ganta, Tej B. Shrestha, Marla Pyle, Stefan H. Bossmann, and Deryl L. Troyer. "Abstract 4820: Developing a xenograft human tumor model in immunocompetent mice." In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-4820.
Full textLiu, Haoyan, Nagma Vohra, Keith Bailey, Magda El-Shenawee, and Alexander Nelson. "Semantic Segmentation of Xenograft Tumor Tissues Imaged with Pulsed Terahertz Technology." In 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/USNC-URSI). IEEE, 2022. http://dx.doi.org/10.1109/ap-s/usnc-ursi47032.2022.9887166.
Full textSiu, I.-Mei, Peter C. Burger, Qi Zhao, Jacob Ruzevick, Nick Connis, Christine L. Hann, and Gary L. Gallia. "Abstract 360: Erlotinib inhibits growth of a patient derived chordoma tumor xenograft." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-360.
Full textWulf-Goldenberg, Annika, Maria Stecklum, Iduna Fichtner, and Jens Hoffmann. "Abstract 5200: Preclinical model of patient-derived tumor xenograft in humanized mice." In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-5200.
Full textSchueler, Julia, Mariette Heins, Artem Shatillo, Kimmo Lehtimäki, Anne-Lise Peille, Taina-Kaisa Stenius, Timo Bragge, Jussi Rytkönen, Diana Miszczuk, and Tuulia Huhtala. "Abstract 2774: Longitudinal characterization of patient-derived orthotopic xenograft brain tumor models." In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-2774.
Full textReports on the topic "Tumor xenograft"
Li, Xiao-Nan. Harnessing Autopsied DIPG Tumor Tissues for Orthotopic Xenograft Model Development in the Brain Stems of SCID Mice. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada568355.
Full text